JPS62266440A - Gas detector - Google Patents

Gas detector

Info

Publication number
JPS62266440A
JPS62266440A JP11170486A JP11170486A JPS62266440A JP S62266440 A JPS62266440 A JP S62266440A JP 11170486 A JP11170486 A JP 11170486A JP 11170486 A JP11170486 A JP 11170486A JP S62266440 A JPS62266440 A JP S62266440A
Authority
JP
Japan
Prior art keywords
gas
measured
absorption spectrum
cell
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11170486A
Other languages
Japanese (ja)
Inventor
Akira Sawada
亮 澤田
Shoji Doi
土肥 正二
Iwao Sugiyama
巌 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP11170486A priority Critical patent/JPS62266440A/en
Publication of JPS62266440A publication Critical patent/JPS62266440A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the measurement of the concentration of a gas to be measured in the atmospheric air, by employing an absorption spectrum of a reference gas cell with the wavelength of the absorption spectrum approximate to that of the gas being measured and sealed with a chemically stable gas. CONSTITUTION:A semiconductor laser 1 is cooled 14 and a light emitted from a laser is divided in two directions with a half mirror 3 through a lens 2. One part of the light is received with an infrared sensor 11 through a lens 10 passing through a reference cell 13 by way of through mirrors 8a and 8b and inputted into a signal processing circuit 7 after subjected to a photoelectric conversion processing. The cell 13 has an absorption spectrum with the wavelength thereof approximate to that of a gas to be measured and is sealed with NH3 of the chemically stable known concentration. Then, an optical system on the other measuring side divided by the mirror 3 composes a long optical path comprising mirrors 15a-15e, spherical mirrors 16a-16c and lenses 5a and 5b. Light absorbed by the gas being measured is received with an infrared sensor 6 to be inputted into the circuit 7, with which 7 the concentration of NO2 of the gas being measured is determined and displayed 12.

Description

【発明の詳細な説明】 〔4既要〕 本発明は赤外半導体レーザを用いた二酸化窒素ガス(N
O□)センサにおいて、前記レーザの発振波長を検出す
るだめの基準ガスセルの内壁に二酸化窒素ガス(No□
)が吸着する欠点を解決するために、該二酸化窒素ガス
(No□)に近似波長の吸収スペクトルを有し、かつ化
学的に安定なアンモニアガス(N1)3)を用いて測定
を行うものである。
[Detailed Description of the Invention] [4 Already Required] The present invention relates to the production of nitrogen dioxide gas (N2) using an infrared semiconductor laser.
In the O□) sensor, nitrogen dioxide gas (No□
) In order to solve the problem of adsorption of nitrogen dioxide gas (No. be.

〔産業上の利用分野〕[Industrial application field]

本発明はガス検出装置に係り、特に赤外レーザ方式のガ
スセンサに関する。
The present invention relates to a gas detection device, and particularly to an infrared laser type gas sensor.

公害ガスセンサとしては、小型、高速、高精度なものが
要求される。赤外レーザ方式のガスセンサは可搬型であ
り、望ましい特徴を備えているが、ぞれゆえに対環境性
能もまた高いことが要求される。
Pollution gas sensors are required to be small, fast, and highly accurate. Although infrared laser gas sensors are portable and have desirable features, they are also required to have high environmental performance.

〔従来の技術〕[Conventional technology]

第4図は従来の赤外レーザ方式のガス検出装置の原理図
を示す。図において、半導体レーザ1の出射光は、レン
ズ2により平行光線にされ、ハーフミラ−3を透過して
大気中の被測定ガス4〔例えば二酸化窒素ガス(NO2
) 〕を透過した光は、レンズ5により赤外線センサ6
に集光され、ここで光電変換される。この変換信号は信
号処理回路7に入力される。
FIG. 4 shows a principle diagram of a conventional infrared laser type gas detection device. In the figure, the emitted light from a semiconductor laser 1 is made into parallel light by a lens 2, passes through a half mirror 3, and is transmitted to a gas to be measured 4 in the atmosphere [for example, nitrogen dioxide gas (NO2)].
) ] is transmitted to an infrared sensor 6 by a lens 5.
The light is focused and photoelectrically converted here. This converted signal is input to the signal processing circuit 7.

一方、ハーフミラ−3にて反射されたレーザ光は、ミラ
ー8を介して)fE準ガスセル(予め既知濃度の測定対
象ガスを封入したもの)9を透過し、レンズ10を介し
て赤外線センサ1)に集光され、光電変換後に信号処理
回路7に人力される。
On the other hand, the laser beam reflected by the half mirror 3 passes through the fE quasi gas cell (preliminarily filled with a gas to be measured at a known concentration) 9 via the mirror 8, and passes through the infrared sensor 1) via the lens 10. The light is focused, and after photoelectric conversion, it is manually input to the signal processing circuit 7.

半導体レーザ1からの赤外線センサ6.1)に対する入
射光は電流を変化させることにより連続的に波長を掃引
できるので、第5図に示すような測定ガスの吸収スペク
トルを測定できる。なお、基準ガスセル9を透過した信
号に基づき信号処理回路7は半導体レーザ1の温度制御
も行う。
Since the wavelength of the light incident on the infrared sensor 6.1) from the semiconductor laser 1 can be continuously swept by changing the current, the absorption spectrum of the measurement gas as shown in FIG. 5 can be measured. Note that the signal processing circuit 7 also controls the temperature of the semiconductor laser 1 based on the signal transmitted through the reference gas cell 9.

第5図は測定ガスの吸収スペクトルを示す。以ド第5図
を参照しながら第4図の説明を行う。第5図は被測定ガ
スに二酸化窒素ガス(NO2)を選んだ場合の特性曲線
であって1、縦軸に透過率、横軸に波長をとっている。
FIG. 5 shows the absorption spectrum of the measurement gas. Hereinafter, FIG. 4 will be explained with reference to FIG. FIG. 5 is a characteristic curve when nitrogen dioxide gas (NO2) is selected as the gas to be measured, and the vertical axis represents the transmittance and the horizontal axis represents the wavelength.

図中、実線で示す特性は基〈1(ガスセル9の吸収スペ
クトル、破線で示す特性は大気中の被測定ガス4である
二酸化窒素ガス(No□)による吸収スペクトルを示す
In the figure, the characteristics shown by the solid line represent the absorption spectrum of the base <1 (gas cell 9), and the characteristics shown by the broken line represent the absorption spectrum due to nitrogen dioxide gas (No. □), which is the gas to be measured 4 in the atmosphere.

大気中の二酸化窒素ガス(NO2)は通常301ρbと
少ないため、レーザ発振波長の同調には、既知濃度の大
きい基準ガスセル9(測定対象ガスと同じガス体を封入
したもの)を用いる。この基準ガスセルの吸収スペクト
ル特性には、波長λlとゐにおいてそれぞれピークがあ
り、波長kにおいて最小点がある。
Since nitrogen dioxide gas (NO2) in the atmosphere is normally as small as 301 ρb, a reference gas cell 9 (filled with the same gas as the gas to be measured) with a known high concentration is used to tune the laser oscillation wavelength. The absorption spectrum characteristics of this reference gas cell have peaks at wavelengths λl and λ, and a minimum point at wavelength k.

信号処理回路7では、実線と破線のそれぞれの特性に対
応して上記二つのピーク点を結ぶ線と波長にの最小点か
ら立てた垂直線との交点Pから前記最小点までの間の透
過率の差りを求める。この透過率の差りは濃度に比例す
る値であり、基準ガスセル9の濃度は既知であるから画
濃度の比を21算して大気中の被測定ガス4である二酸
化窒素ガス(N(h)の濃度を求めることができる。こ
の算出濃度を表示器12にて表示を行う。
The signal processing circuit 7 calculates the transmittance between the intersection point P of the line connecting the two peak points and the vertical line drawn from the minimum point of the wavelength to the minimum point, corresponding to the characteristics of the solid line and the broken line. Find the difference. This difference in transmittance is a value proportional to the concentration, and since the concentration of the reference gas cell 9 is known, the ratio of the image density is calculated by 21, and the measured gas 4 in the atmosphere, nitrogen dioxide gas (N (h ) can be calculated.This calculated concentration is displayed on the display 12.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の二酸化窒素ガス(No□)を封入した基準ガスセ
ルでは、二酸化窒素ガス(No□)が化学的に不安定で
あるためにガスセルの内面に反のして吸着する。これに
よりセル内の二酸化窒素ガス(NO,)の濃度が徐々に
低下する。従って基準濃度を維持するためには当該ガス
の充填がえを頻繁に行う必要があり保守の手間が煩わし
いという欠点がある。
In a conventional reference gas cell filled with nitrogen dioxide gas (No□), nitrogen dioxide gas (No□) is chemically unstable and therefore adsorbs against the inner surface of the gas cell. As a result, the concentration of nitrogen dioxide gas (NO,) within the cell gradually decreases. Therefore, in order to maintain the reference concentration, it is necessary to frequently refill the gas, resulting in troublesome maintenance.

本発明は上記従来の欠点に鑑みて創作されたもので、大
気中における二酸化窒素ガス(No□)の濃度を測定す
るために、保守の容易な基準ガスセルを用いる判定手段
の提供を目的とする。
The present invention was created in view of the above-mentioned conventional drawbacks, and aims to provide a determination means that uses an easy-to-maintain reference gas cell to measure the concentration of nitrogen dioxide gas (No□) in the atmosphere. .

〔問題点を解決するための手段〕[Means for solving problems]

本発明のガス検出装置は第1図°に示すように、大気中
の吸収スペクトルを測定して、大気中に含まれる被測定
ガス4の濃度を検出する赤外レーザ方式のガス検出装置
において、前記被測定ガス4に近似の波長に吸収スペク
トルを有し、かつ化学的に安定なガス体を前記基準ガス
セル13に封入したごとを特徴とするものである。
As shown in FIG. 1, the gas detection device of the present invention is an infrared laser type gas detection device that measures the absorption spectrum in the atmosphere to detect the concentration of a gas to be measured 4 contained in the atmosphere. This is characterized in that a chemically stable gas having an absorption spectrum at a wavelength similar to that of the gas to be measured 4 is sealed in the reference gas cell 13.

その具体例としては、大気中の二酸化窒素ガス(Not
)の濃度を検出するに際し、該二酸化窒素ガス(NOZ
)に近似波長の吸収スペクトルを存し、かつ化学的に安
定で基準ガスセル13の容器内壁に吸着現象を起こし難
いアンモニアガス(Nl+1)を、前記基準ガスセル1
3に封入したことを特徴とする。
A specific example is nitrogen dioxide gas (Not
) When detecting the concentration of nitrogen dioxide gas (NOZ
), ammonia gas (Nl+1) which is chemically stable and does not easily cause an adsorption phenomenon on the inner wall of the container of the reference gas cell 13 is added to the reference gas cell 1.
It is characterized by being enclosed in 3.

〔作用〕[Effect]

第2図に示すように本発明においては、λ+、h。 As shown in FIG. 2, in the present invention, λ+, h.

石の各波長を大気中の二酸化窒素ガス(NO2)による
吸収スペクトルから求めることをせず、アンモニアガス
(Ni1.)による吸収スペクトルから求める。
Each wavelength of the stone is not determined from the absorption spectrum due to nitrogen dioxide gas (NO2) in the atmosphere, but is determined from the absorption spectrum due to ammonia gas (Ni1.).

アンモニアガス(Nlh)の吸収スペクトルの中心波長
のムと、前記二酸化窒素ガス(NO2)の吸収スペクト
ルのλ1. 712. Asとの差は既知であるので、
アンモニアガス(Nlh)を封入した基準ガスセル13
を用いてレーザ発振波長の同調が可能となり、これによ
り大気中の二酸化窒素ガス(No□)の濃度を算出でき
る。
λ1 of the absorption spectrum of ammonia gas (Nlh), and λ1 of the absorption spectrum of nitrogen dioxide gas (NO2). 712. Since the difference from As is known,
Reference gas cell 13 filled with ammonia gas (Nlh)
It becomes possible to tune the laser oscillation wavelength using , and thereby the concentration of nitrogen dioxide gas (No□) in the atmosphere can be calculated.

〔実施例] 以下本発明の実施例を図面によって詳述する。〔Example] Embodiments of the present invention will be described in detail below with reference to the drawings.

なお、F1)4成、動作の説明を理解し易くするために
全図を通じて同一部分には同一符号を付してその重複説
明を省略する。
In order to make it easier to understand the explanation of the operation of the F1) 4 structure, the same parts are given the same reference numerals throughout the drawings, and their repeated explanation will be omitted.

第2図は本発明の測定ガスの吸収スペクトルを示す。図
において、実線で示す基準ガスセル13に封入されたア
ンモニアガス(Ni13)の吸収スペクトルは波長4に
おいて透過率が最小となる特性を有し、かつ被測定ガス
4の二酸化窒素ガス(NOりの吸収スペクトルに現れる
二つの透過率のピーク点メ1.A3と一つの最小点にと
は前記波長ムと近イ以した既知の関係にある。
FIG. 2 shows the absorption spectrum of the measurement gas of the present invention. In the figure, the absorption spectrum of ammonia gas (Ni13) sealed in the reference gas cell 13 shown by the solid line has the characteristic that the transmittance is minimum at wavelength 4, and the absorption spectrum of nitrogen dioxide gas (NO The two transmittance peak points A3 and one minimum point that appear in the spectrum have a known relationship that is close to the wavelength.

従って、被測定ガスの存在の有無は波長4を基r1こと
して同調をとることにより判定可能となる。
Therefore, the presence or absence of the gas to be measured can be determined by tuning based on wavelength 4 and r1.

その存在が判定できるときには第5図にて説明したよう
に、各波長での透過率の差りから大気中の被測定ガス濃
度を求めることができる。
When its presence can be determined, the concentration of the gas to be measured in the atmosphere can be determined from the difference in transmittance at each wavelength, as explained with reference to FIG.

第3図は本発明実施例のブロック図を示す。図において
、半導体レーザ1はlie循環式冷凍n、14にて冷却
される。半導体レーザ1の出射光はレンズ2を介して平
行光にされ、ハーフミラ−3によって2方向に分りられ
る。その1方向はミラー8a。
FIG. 3 shows a block diagram of an embodiment of the invention. In the figure, a semiconductor laser 1 is cooled by a 14-circuit refrigeration system. The light emitted from the semiconductor laser 1 is made into parallel light through a lens 2, and is split into two directions by a half mirror 3. One direction is the mirror 8a.

8bを介して基準ガスセル13を通過し、レンズ10を
介して赤外センサ1)に受光される。基準ガスセル13
には既知濃度(CPPMとする)のアンモニアガス(N
 I+ 3 )を封入する。
The light passes through the reference gas cell 13 via the light source 8b, and is received by the infrared sensor 1) via the lens 10. Reference gas cell 13
is ammonia gas (N
I+3) is enclosed.

アンモニアガス(N1)3)は化学的に安定したガス体
であるから基準ガスセル13に封入してもその内壁に対
して反応せず、ガス濃度を安定に推持できろ。
Since ammonia gas (N1) 3) is a chemically stable gas, even if it is sealed in the reference gas cell 13, it does not react with the inner wall of the reference gas cell 13, and the gas concentration can be maintained stably.

ハーフミラ−3によって分けられた他の1方向の測定側
の光学系は、152〜15eのミラー、16a〜16c
の球面ミラーおよび5a、 5bのレンズからなる長光
路セルを構成し、赤外センサ6に入射される。この長光
路を通過する際に大気中の被測定ガス4により吸収を受
けた光を赤外センサ6で受光する。
The optical system on the measurement side in the other direction separated by the half mirror 3 includes mirrors 152 to 15e and mirrors 16a to 16c.
A long optical path cell is composed of a spherical mirror 5a and a lens 5b, and is incident on an infrared sensor 6. The infrared sensor 6 receives the light that is absorbed by the gas to be measured 4 in the atmosphere while passing through this long optical path.

本発明による測定手段を基準ガスセル13に適用するこ
とにより、セル内面への吸着のないアンモニアガス(N
i13’)をレーザ発振波長同調用に用いるので、セル
に対する再充填の手間のかからない二酸化窒素ガス検出
装置が実現する。
By applying the measuring means according to the present invention to the reference gas cell 13, ammonia gas (N
Since i13') is used for laser oscillation wavelength tuning, a nitrogen dioxide gas detection device that does not require the trouble of refilling the cell can be realized.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明のガス検出装置によれ
ば、基準ガスセル13は長寿命化され、かつ大気中にお
ける被測定ガスの濃度測定も可能となる。
As described in detail above, according to the gas detection device of the present invention, the life of the reference gas cell 13 is extended, and the concentration of the gas to be measured in the atmosphere can be measured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理図、 第2図は本発明の測定ガスの吸収スペクトル。 第3図は本発明実施例のブロック図、 第4図は従来のガス検出装置の原理図、第5図は測定ガ
スの吸収スベクI・ルを示す。 図において、4は被測定ガス、13は基準ガスセルをそ
れぞれ示す。 4 冬U淀γズ(No’z) 不発gi(〜1Y2 第1図 羊成≦4.+刃U束Lケiψ気”/Z:zr;B−ル1
)景2b萼しT
Fig. 1 is a diagram of the principle of the present invention, and Fig. 2 is an absorption spectrum of a measurement gas of the present invention. FIG. 3 is a block diagram of an embodiment of the present invention, FIG. 4 is a principle diagram of a conventional gas detection device, and FIG. 5 is a diagram showing the absorption spectrum of a measurement gas. In the figure, 4 indicates a gas to be measured, and 13 indicates a reference gas cell. 4 Winter U yodo γzu (No'z) Unexploded gi (~1Y2 Fig. 1 Hitsuji ≦ 4. + Blade U bundle L Keiψ Ki”/Z: zr; B-ru 1
) View 2b Calyx T

Claims (2)

【特許請求の範囲】[Claims] (1)大気中の吸収スペクトルの測定を行うことにより
、大気中に含まれる被測定ガス(4)の濃度を測定する
赤外レーザ方式のガス検出装置において、前記被測定ガ
ス(4)の吸収スペクトルに近似した波長のスペクトル
を有し、かつ化学的に安定なガスを封入した基準ガスセ
ル(13)の吸収スペクトルを用いて前記レーザ発振波
長の同調を行うことを特徴とするガス検出装置。
(1) In an infrared laser gas detection device that measures the concentration of a gas to be measured (4) contained in the atmosphere by measuring the absorption spectrum in the atmosphere, the absorption of the gas to be measured (4) A gas detection device characterized in that the laser oscillation wavelength is tuned using the absorption spectrum of a reference gas cell (13) which has a wavelength spectrum similar to the spectrum and which is filled with a chemically stable gas.
(2)大気中の二酸化窒素ガス(NO_2)の濃度を検
出するに際し、該二酸化窒素ガス(NO_2)に近似波
長の吸収スペクトルを有し、かつ化学的に安定なアンモ
ニアガス(NH_3)を、前記基準ガスセル(13)に
封入したことを特徴とする特許請求の範囲第(1)項記
載のガス検出装置。
(2) When detecting the concentration of nitrogen dioxide gas (NO_2) in the atmosphere, ammonia gas (NH_3), which has an absorption spectrum at a wavelength similar to that of the nitrogen dioxide gas (NO_2) and is chemically stable, is used as described above. The gas detection device according to claim 1, characterized in that the gas detection device is sealed in a reference gas cell (13).
JP11170486A 1986-05-14 1986-05-14 Gas detector Pending JPS62266440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11170486A JPS62266440A (en) 1986-05-14 1986-05-14 Gas detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11170486A JPS62266440A (en) 1986-05-14 1986-05-14 Gas detector

Publications (1)

Publication Number Publication Date
JPS62266440A true JPS62266440A (en) 1987-11-19

Family

ID=14568039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11170486A Pending JPS62266440A (en) 1986-05-14 1986-05-14 Gas detector

Country Status (1)

Country Link
JP (1) JPS62266440A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009522541A (en) * 2005-12-29 2009-06-11 ビーエーエスエフ ソシエタス・ヨーロピア Method for determining homology and non-homology and concentration of chemical compounds in a medium
JPWO2021182279A1 (en) * 2020-03-13 2021-09-16

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009522541A (en) * 2005-12-29 2009-06-11 ビーエーエスエフ ソシエタス・ヨーロピア Method for determining homology and non-homology and concentration of chemical compounds in a medium
JPWO2021182279A1 (en) * 2020-03-13 2021-09-16

Similar Documents

Publication Publication Date Title
EP2948761B1 (en) Miniature tunable laser spectrometer for detection of a trace gas
Auble et al. An open path, fast response infrared absorption gas analyzer for H 2 O and CO 2
US6097555A (en) High-finesse optical resonator for cavity ring-down spectroscopy based upon Brewster&#39;s angle prism retroreflectors
US3805074A (en) Spectral scan air monitor
US5544186A (en) Gas laser for emitting light modulated at two different wavelengths and an arrangement incorporating the gas laser to detect a gaseous substance
CN105651703B (en) A kind of optical cavity ring-down gas measurement of extinction coefficient method changed based on chamber length
JP3059262B2 (en) Analyzer for trace moisture in gas
US5202570A (en) Gas detection device
US6172823B1 (en) Mode matching for cavity ring-down spectroscopy based upon Brewster&#39;s angle prism retroreflectors
JPH01280272A (en) Laser diode
US6172824B1 (en) Low loss prism retroreflectors for relative index of refraction less than the square root of 2
JPS62266440A (en) Gas detector
JPS60140141A (en) Optical gas sensor
US3756726A (en) Spectral analysis utilizing a beam-switching optical system
JPS639843A (en) Gas detection device
JP3059661B2 (en) Gas concentration measurement device
JPS62261032A (en) Gas detector
JP2001188037A (en) Gas analyzer
JPH01254841A (en) Signal processing method for gas sensor
JPS6189527A (en) Apparatus for detecting wavelength
JPS62265553A (en) Gas detector
JPS639844A (en) Gas detecting device
JPH07218427A (en) Gas concentration measuring instrument
JPS63113346A (en) Gas sensor
JPS63290947A (en) Instrument for measuring air pollution