JP2001188037A - Gas analyzer - Google Patents

Gas analyzer

Info

Publication number
JP2001188037A
JP2001188037A JP37543399A JP37543399A JP2001188037A JP 2001188037 A JP2001188037 A JP 2001188037A JP 37543399 A JP37543399 A JP 37543399A JP 37543399 A JP37543399 A JP 37543399A JP 2001188037 A JP2001188037 A JP 2001188037A
Authority
JP
Japan
Prior art keywords
light
reflection mirror
gas
optical system
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP37543399A
Other languages
Japanese (ja)
Inventor
Yoshihiro Ueno
良弘 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP37543399A priority Critical patent/JP2001188037A/en
Publication of JP2001188037A publication Critical patent/JP2001188037A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a gas analyzer miniaturized for requiring a long optical path length and measuring light intensity by time series and having an optical system condensing a laser beam. SOLUTION: Light from a light source 1 transmits a gas correlative filter 9 and a chopper 3 to be condensed by a lens 11, and introduced in a closed track optical system window 2 provided in a sample gas cell 10. The introduced light repeats reflection in order of a reflection mirror 1R, a reflection mirror 2R, a reflection mirror 3R, a reflection mirror 4R and a reflection mirror 5R in the inside, partially transmits in the window 2 of the reflection mirror 6 to be detected with a sensor 8. The remaining light is reflected, the reflection is repeated in the order from the reflection mirror 1, the same action as the above-mentioned is performed, and the light is detected by the time series. Each reflection mirror 1R, 2R, 3R, 4R, 5R, 6R of the inside has condensing action, beam size does not change from the beginning, and quantitative measurement is possible.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光の強度を測定す
ることによって分析を行なうガス分析装置に係わり、特
に、長い光路長を必要とし時系列で光の強度を測定する
光学系に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas analyzer for performing analysis by measuring light intensity, and more particularly to an optical system which requires a long optical path length and measures light intensity in time series.

【0002】[0002]

【従来の技術】大気中の一酸化炭素と浮遊粒子状物質
は、二酸化硫黄、二酸化窒素、光化学オキシダントとな
らんで、大気を汚染するものである。発生源が多様で大
気中の挙動がきわめて複雑であるため、汚染機構の解
明、汚染予測手法の開発が行なわれている。従来の測定
法として、一酸化炭素については、赤外線吸収法、浮遊
粒子状物質については、光散乱、圧電天秤、ベータ線吸
収法などが用いられている。一酸化炭素計測に使用され
る赤外線吸収方式のバリエーションの中でもガス相関フ
ィルタを使用することを特長とする、非分散赤外線式ガ
スフィルタ相関法が主流である。図2に、非分散赤外線
式ガスフィルタ相関法を採用した一酸化炭素計の検出部
の基本構成を示す。光源1からの光はガス相関フィルタ
9を透過しチョッパー3を通りレンズ11で収束され、
多重反射セル4(試料ガスセル)に入り、内部のミラー
12で反射し、オブジェクトミラー5で反射し、フィー
ルドミラー7で反射し、再びオブジェクトミラー5で反
射し、出力ミラー6で反射して、多重反射セル4の外に
設けられたセンサ8に到達して検出される。多重反射セ
ル4(試料ガスセル)には、大気中の一酸化炭素を検出
するのに十分な光路長を確保するために、多重反射セル
4内で光を複数回反射させる多重反射の試料セルを採用
している。ガス相関フィルタ9は、内部が二室に区切ら
れており、目的成分ガスと目的成分に対して吸収の重な
りの無いガス(不活性ガス)がそれぞれ封入されてい
る。この一酸化炭素計の場合には一方の部屋に十分な濃
度の一酸化炭素ガスが、他の部屋には窒素ガスが封入さ
れている。この相関フィルタ9が回転することにより、
センサ8にはガス相関フィルタ9の一酸化炭素ガス室を
透過した光と、窒素ガス室を透過した光が交互に入射す
ることになる。光源1からの入射光はランバート・ベー
ルの法則に基づき各部を透過反射してセンサ8に入る。
ガス相関フィルタ中の目的成分濃度が十分濃く、なおか
つ、ガス相関フィルタ9自体の厚みが十分あれば、十分
な試料ガスの濃度信号が得られる。
2. Description of the Related Art Carbon monoxide and suspended particulate matter in the atmosphere, along with sulfur dioxide, nitrogen dioxide and photochemical oxidants, pollute the atmosphere. Since the sources are diverse and the behavior in the atmosphere is extremely complex, the elucidation of pollution mechanisms and the development of pollution prediction methods are being carried out. As a conventional measurement method, an infrared absorption method is used for carbon monoxide, and a light scattering, a piezoelectric balance, a beta ray absorption method, and the like are used for suspended particulate matter. Among the variations of the infrared absorption method used for carbon monoxide measurement, a non-dispersive infrared gas filter correlation method characterized by using a gas correlation filter is mainstream. FIG. 2 shows a basic configuration of a detection unit of a carbon monoxide meter employing a non-dispersive infrared gas filter correlation method. Light from the light source 1 passes through the gas correlation filter 9, passes through the chopper 3, and is converged by the lens 11,
The light enters the multiple reflection cell 4 (sample gas cell), is reflected by the internal mirror 12, reflected by the object mirror 5, reflected by the field mirror 7, reflected again by the object mirror 5, reflected by the output mirror 6, and multiplexed. The light reaches the sensor 8 provided outside the reflection cell 4 and is detected. The multiple-reflection cell 4 (sample gas cell) includes a multiple-reflection sample cell that reflects light a plurality of times in the multiple reflection cell 4 in order to secure an optical path length sufficient to detect carbon monoxide in the atmosphere. Has adopted. The interior of the gas correlation filter 9 is divided into two chambers, and a target component gas and a gas (inert gas) having no absorption overlap with the target component are sealed therein. In the case of this carbon monoxide meter, one room is filled with a sufficient concentration of carbon monoxide gas, and the other room is filled with a nitrogen gas. By rotating the correlation filter 9,
The light transmitted through the carbon monoxide gas chamber and the light transmitted through the nitrogen gas chamber enter the sensor 8 alternately. The incident light from the light source 1 is transmitted and reflected by each part based on Lambert-Beer's law and enters the sensor 8.
If the concentration of the target component in the gas correlation filter is sufficiently high and the thickness of the gas correlation filter 9 itself is sufficient, a sufficient sample gas concentration signal can be obtained.

【0003】[0003]

【発明が解決しようとする課題】従来の長光路長を必要
とし時系列で、光強度を測定するガス分析装置の光学系
は、以上のように構成されているが、直線上を往復して
光路長を稼ぐため、長いボックスの試料室が必要になる
という問題がある。また、試料室ボックス内に設けられ
た反射鏡は、収束作用が小さいか、もしくは無いものが
多く使われ、そのため光路長が長くなると、光ビームの
大きさが大きくなり、検出エリアからはみ出すこともあ
り、定量的な測定が出来なくなるという問題がある。
The optical system of a conventional gas analyzer for measuring light intensity in a time series requiring a long optical path length is constructed as described above, but reciprocates on a straight line. There is a problem that a long box sample chamber is required to increase the optical path length. In addition, many of the mirrors provided in the sample chamber box have a small or no convergence effect, so if the optical path length is long, the size of the light beam becomes large, and it may protrude from the detection area. There is a problem that quantitative measurement cannot be performed.

【0004】本発明は、このような事情に鑑みてなされ
たものであって、長光路長を必要とし時系列で光強度を
測定するガス分析装置の光学系として、長いボックスの
試料室を必要としない小型のもので、光ビームの大きさ
が収束された光学系を提供することを目的とする。
The present invention has been made in view of such circumstances, and requires a long box sample chamber as an optical system of a gas analyzer which requires a long optical path length and measures light intensity in time series. It is an object of the present invention to provide a small optical system in which the size of a light beam is converged.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
め、本発明のガス分析装置は、長い光路長を必要とし時
系列で光の強度を測定する分析装置の光学系において、
円周上に配置された収束作用のある反射面を持ち、k回
反射してn周したときの近軸特性を表すマトリックスM
が単位行列もしくは負の単位行列となる光学系の配置お
よび形状を備えた閉軌道光学系を有するものである。
In order to achieve the above object, a gas analyzer according to the present invention requires a long optical path length, and is used in an optical system of an analyzer for measuring light intensity in time series.
A matrix M having a reflecting surface having a converging action arranged on the circumference and representing paraxial characteristics when reflected n times and reflected k times
Has a closed orbit optical system having an arrangement and shape of an optical system that is a unit matrix or a negative unit matrix.

【0006】本発明のガス分析装置の光学系は上記のよ
うに構成されており、複数個の収束作用を有する反射面
を円周上に配置し、外部から窓を通して内部に光を導入
し、k回反射してn周したとき、その光学的の近軸特性
を表すマトリックスMが単位行列もしくは負の単位行列
となるように構成しているので、前記光導入窓からn周
した光が収束した状態で射出する。したがって、複数個
の反射面で形成される閉軌道光学系の内部に、測定すべ
きガス試料を介在させれば、n周する長光路を通過して
時系列で光の強度を測定することができる。即ち、円周
上に配置した反射鏡により光路長を長くすることがで
き、試料セルボックスの形状を球状もしくは円筒状にし
て、コンパクトな閉軌道光学系とすることができる。そ
して、検出時に近軸特性が常に同一になるように収束作
用のある反射鏡を導入することで、測定光を収束しなが
らセンサまで導き、ビームサイズも初めと変わることな
く、定量的な測定が可能となる。
The optical system of the gas analyzer according to the present invention is configured as described above. A plurality of reflecting surfaces having a converging function are arranged on the circumference, and light is introduced from the outside to the inside through the window. Since the matrix M representing the optical paraxial characteristic is configured to be a unit matrix or a negative unit matrix when the light is reflected k times and makes n turns, the light that has made n turns from the light introduction window converges. Inject in the state. Therefore, if a gas sample to be measured is interposed inside a closed orbit optical system formed by a plurality of reflecting surfaces, it is possible to measure the light intensity in a time series through a long optical path for n rounds. it can. That is, the optical path length can be lengthened by the reflecting mirrors arranged on the circumference, and the shape of the sample cell box can be made spherical or cylindrical, and a compact closed orbit optical system can be obtained. Then, by introducing a reflecting mirror with a converging function so that the paraxial characteristics are always the same at the time of detection, the measurement light is guided to the sensor while converging, and the quantitative measurement can be performed without changing the beam size from the beginning. It becomes possible.

【0007】[0007]

【発明の実施の形態】本発明のガス分析装置の一実施例
を図1を参照しながら説明する。図1は本発明のガス分
析装置の閉軌道光学系の断面の光路を示す。本光学系
は、赤外光源1と、測定光を閉軌道光学系内に導入及び
射出するために、反射鏡の一部に設けられた半透明の窓
2と、測定するガスを導入する試料ガスセル10と、そ
の内部の円周上に設けられ収束作用を有し、多重反射を
させる反射鏡1R、2R、3R、4R、5R、6Rと、
測定光が試料ガスセル10内で多重反射し窓2から射出
する信号を検出するセンサ8とから構成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the gas analyzer of the present invention will be described with reference to FIG. FIG. 1 shows an optical path of a cross section of a closed orbit optical system of a gas analyzer according to the present invention. The optical system includes an infrared light source 1, a translucent window 2 provided in a part of a reflecting mirror for introducing and emitting measurement light into a closed orbit optical system, and a sample for introducing a gas to be measured. A gas cell 10 and reflecting mirrors 1R, 2R, 3R, 4R, 5R, and 6R that are provided on the inner circumference of the cell and have a converging function and perform multiple reflections;
A sensor 8 detects a signal from which the measurement light is reflected multiple times in the sample gas cell 10 and exits from the window 2.

【0008】光源1は、一酸化炭素計測においては、赤
外線光源が用いられる。光源1からの光はガス相関フィ
ルタ9とチョッパー3を通り、レンズ11で収束され
て、閉軌道光学系に導入される。光源1からの入射光は
ランバート・ベールの法則に基づき各部を透過反射して
センサ8に入る。相関フィルタ9は、内部が2室に区切
られて、目的成分ガス(一酸化炭素)と目的成分に対し
て吸収の重なりの無いガス(不活性ガス:窒素)がそれ
ぞれ封入されている。この相関フィルタ9が回転するこ
とにより、センサ8にはガス相関フィルタ9の一酸化炭
素ガス室を透過した光と、窒素ガス室を透過した光が交
互に入射することになる。チョッパー3は、センサ8に
検出される検出光を直流で検出するのでなく、交流化し
て検出するためのものである。窓2は、測定光の導入と
射出するための窓で、ここでは反射鏡6Rの中央に設け
られ、赤外光に対して半透明な材料で出来ている。反射
鏡1R〜6Rは、6枚の反射鏡で閉軌道光学系を形成
し、試料ガスが導入された試料ガスセル10内の円周上
に配置され、収束作用のある反射面で、測定光がk回反
射してn周したときの近軸特性を表すマトリックスM
が、単位行列もしくは負の単位行列となる配置及び形状
をもつものである。反射面から反射面までの光学距離を
L、反射における焦点距離をfとすると、一つの光学距
離と一回の反射における近軸特性を表すマトリックスM
s、およびk回反射後のマトリックスMは、下記の
(a)式及び(b)式となる。
The light source 1 uses an infrared light source for measuring carbon monoxide. Light from the light source 1 passes through the gas correlation filter 9 and the chopper 3, is converged by the lens 11, and is introduced into the closed orbit optical system. The incident light from the light source 1 is transmitted and reflected by each part based on Lambert-Beer's law and enters the sensor 8. The interior of the correlation filter 9 is divided into two chambers, and a target component gas (carbon monoxide) and a gas (inert gas: nitrogen) that does not overlap the absorption of the target component are sealed therein. As the correlation filter 9 rotates, light transmitted through the carbon monoxide gas chamber and light transmitted through the nitrogen gas chamber alternately enter the sensor 8. The chopper 3 detects the detection light detected by the sensor 8 by converting the detection light into an alternating current instead of a direct current. The window 2 is a window through which measurement light is introduced and emitted. The window 2 is provided at the center of the reflecting mirror 6R, and is made of a material that is translucent to infrared light. The reflecting mirrors 1R to 6R form a closed orbit optical system with six reflecting mirrors, are arranged on a circumference in the sample gas cell 10 into which the sample gas is introduced, and have a reflecting surface having a converging action. Matrix M representing paraxial characteristics when reflected n times and reflected n times
Has an arrangement and a shape that become a unit matrix or a negative unit matrix. Assuming that the optical distance from the reflecting surface to the reflecting surface is L and the focal length in the reflection is f, a matrix M representing one optical distance and paraxial characteristics in one reflection.
The matrix M after s and k reflections is given by the following equations (a) and (b).

【数1】 センサ8は、窓2から射出する試料ガス中を多重反射し
た測定光を検出するものである。
(Equation 1) The sensor 8 detects measurement light that is reflected multiple times in the sample gas emitted from the window 2.

【0009】次に、本光学系の近軸特性のマトリックス
表示について説明する。反射鏡を円周上に置くときの曲
率半径をRm、反射鏡の曲率半径をRとし、反射鏡への
入射角をθとし、反射における焦点距離fと反射面から
反射面までの光学距離LがともにPに等しい場合は、一
つの光学距離と一回の反射における近軸特性を表すマト
リックスMsは、焦点距離Pによる反射面のマトリック
スと、光学距離Pの自由空間のマトリックスとの積とし
て表すことができる。したがって、マトリックスMsは
下記の(c)式となる。そして、2回の反射における近
軸特性を表すマトリックス(Ms)は(d)式とな
る。さらに、3回の反射における近軸特性を表すマトリ
ックス(Ms)は(e)式となる。
Next, a matrix display of paraxial characteristics of the optical system will be described. The radius of curvature when the reflecting mirror is placed on the circumference is Rm, the radius of curvature of the reflecting mirror is R, the angle of incidence on the reflecting mirror is θ, the focal length f in reflection and the optical distance L from the reflecting surface to the reflecting surface. Are equal to P, the matrix Ms representing the paraxial characteristic in one optical distance and one reflection is represented as the product of the matrix of the reflecting surface by the focal length P and the matrix of the free space of the optical distance P. be able to. Therefore, the matrix Ms is represented by the following equation (c). Then, a matrix (Ms) 2 representing paraxial characteristics in the two reflections is given by equation (d). Further, a matrix (Ms) 3 representing paraxial characteristics in the three reflections is given by equation (e).

【数2】 3回反射する毎に単位マトリックスとなることから、こ
こでk=3mとおき、k回反射してn周する場合、m、
n、θの満たすべき関係式は、次ぎのようになる。k
(π−2θ)=2nπ、3m(π−2θ)=2nπ、θ
=(3m−2n)π/6mここで、m=2、n=1(6
回反射して1周)とすると、θ=60度である。
(Equation 2) Since a unit matrix is formed every three reflections, k = 3m is set here.
The relational expression to be satisfied by n and θ is as follows. k
(Π-2θ) = 2nπ, 3m (π-2θ) = 2nπ, θ
= (3m-2n) π / 6m where m = 2, n = 1 (6
(One round after reflection), θ = 60 degrees.

【0010】次に、光線のメリジオナル方向と、サジタ
ル方向について説明する。メリジオナル方向の焦点距離
fmと、光学距離Lを等しくするには、Rm=4Rと置
けば自動的にいかなる角度θにおいても次式が成り立
つ。 fm=Rm・COSθ/2=2RCOSθ=L=P また、サジタル方向の焦点距離fsは、次式のようにな
る。 fs=Rs/2COSθ このfsがPに等しくなるようにサジタル方向の曲率半
径Rsを決めれば良い。θ=60°の場合、P=L=R
=0.25Rm=fm=fs=Rsとなる。
Next, the meridional direction and the sagittal direction of the light beam will be described. In order to make the focal length fm in the meridional direction equal to the optical distance L, if Rm = 4R, the following equation is automatically established at any angle θ. fm = Rm · COS θ / 2 = 2RCOS θ = L = P The focal length fs in the sagittal direction is expressed by the following equation. fs = Rs / 2COSθ The radius of curvature Rs in the sagittal direction may be determined so that this fs becomes equal to P. When θ = 60 °, P = L = R
= 0.25Rm = fm = fs = Rs

【0011】次に、本光学系の光路について説明する。
光源1からの赤外光は、ガス相関フィルタ9を透過しチ
ョッパー3を通りレンズ11で収束され、閉軌道光学系
の窓2を通って、試料ガスセル10内部に導入される。
内部の反射鏡1R、反射鏡2R、反射鏡3R、反射鏡4
R、反射鏡5Rの順で反射を繰り返し、反射鏡6の窓2
で一部透過してセンサ8に検出される。残りの光は反射
されて、また反射鏡1から順に反射を繰り返し前記と同
じ作用を行ない、時系列で光の検出が行なわれる。上記
のように、本ガス分析装置の光学系は、試料ガスセル1
0内に6枚の反射鏡1R〜6Rが設けられ、大気中の一
酸化炭素が導入され、それを検出するのに十分な光路長
がこの閉軌道光学系で確保されている。そして、測定原
理は従来の非分散赤外線式ガスフィルタ相関法によるも
のである。
Next, the optical path of the present optical system will be described.
The infrared light from the light source 1 passes through the gas correlation filter 9, passes through the chopper 3, is converged by the lens 11, passes through the window 2 of the closed orbit optical system, and is introduced into the sample gas cell 10.
Internal reflector 1R, reflector 2R, reflector 3R, reflector 4
R, the reflection is repeated in the order of the reflector 5R, and the window 2 of the reflector 6
Are partially transmitted and detected by the sensor 8. The remaining light is reflected, and the reflection is repeated in order from the reflecting mirror 1 to perform the same operation as described above, and the light is detected in time series. As described above, the optical system of the present gas analyzer includes the sample gas cell 1
Six reflecting mirrors 1R to 6R are provided in 0, carbon monoxide in the atmosphere is introduced, and an optical path length sufficient to detect the carbon monoxide is secured by this closed orbit optical system. The measurement principle is based on the conventional non-dispersive infrared gas filter correlation method.

【0012】上記の実施例では、m=2、n=1の場合
について説明したが、m=1、n=1(3回反射して1
周)とすると、θ=30度である。
In the above embodiment, the case where m = 2 and n = 1 has been described. However, m = 1 and n = 1
Θ) = 30 degrees.

【0013】また、サジタル方向においてセンサ8(検
出器)の大きさが、ビームの大きさに比べて非常に大き
い場合は、サジタル方向の曲率半径Rsを無限大とする
ことができる。
When the size of the sensor 8 (detector) in the sagittal direction is much larger than the size of the beam, the radius of curvature Rs in the sagittal direction can be made infinite.

【0014】さらに、図1の形状において、入射ビーム
を図の平面に対して少し傾けて入射させれば、ビームは
螺旋状に進行し、センサ8(検出器)を複数配置するこ
とで測定することもできる。
Further, in the shape of FIG. 1, if the incident beam is made to enter with a slight inclination with respect to the plane of the drawing, the beam travels spirally, and measurement is performed by disposing a plurality of sensors 8 (detectors). You can also.

【0015】また、測定を時系列でなく、1回きりの単
発による測定をすることもできる。
In addition, the measurement can be performed not once in a time series but by one time only.

【0016】[0016]

【発明の効果】本発明のガス分析装置は上記のように構
成されており、測定すべきガス試料を介在させる試料セ
ルボックス内に、円周上に配置した複数個の収束作用を
有する反射鏡が設けられ、外部から窓を通して内部に測
定光が導入され、複数回反射してn周する光学系の長光
路を通過して、時系列で光の強度を測定することができ
る。そのため、外形をコンパクトな形状にし、小型化す
ることができる。また、反射鏡の反射効率が高くなるほ
ど一層小型化することができる。さらに、検出時に近軸
特性が常に同一になるように、収束作用のある反射鏡を
導入することで、ビームサイズも初めと変わることな
く、定量的な測定が可能となる。
The gas analyzer of the present invention is constructed as described above, and has a plurality of converging reflecting mirrors arranged on a circumference in a sample cell box in which a gas sample to be measured is interposed. Is provided, measurement light is introduced into the inside from the outside through a window, and the light is reflected a plurality of times, passes through a long optical path of an optical system that makes n rounds, and the light intensity can be measured in time series. Therefore, the external shape can be made compact and the size can be reduced. In addition, the higher the reflection efficiency of the reflector, the more the size can be reduced. Further, by introducing a reflecting mirror having a converging function so that paraxial characteristics are always the same at the time of detection, quantitative measurement can be performed without changing the beam size from the beginning.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のガス分析装置の閉軌道光学系の一実
施例を示す図である。
FIG. 1 is a view showing one embodiment of a closed orbit optical system of a gas analyzer according to the present invention.

【図2】 従来の光学系を示す図である。 1…光源 2…窓 3…チョッパー 4…多重反射セ
ル 5…オブジェクトミラー 6…出力ミラー 7…フィールドミラー 8…センサ 9…ガス相関フィルタ 10…試料ガスセ
ル 11…レンズ 12…ミラー 1R…反射鏡 2R…反射鏡 3R…反射鏡 4R…反射鏡 5R…反射鏡 6R…反射鏡 R…内接円曲率半径 Rm…反射面曲率
半径 θ…反射角
FIG. 2 is a diagram showing a conventional optical system. DESCRIPTION OF SYMBOLS 1 ... Light source 2 ... Window 3 ... Chopper 4 ... Multiple reflection cell 5 ... Object mirror 6 ... Output mirror 7 ... Field mirror 8 ... Sensor 9 ... Gas correlation filter 10 ... Sample gas cell 11 ... Lens 12 ... Mirror 1R ... Reflection mirror 2R ... Reflector 3R Reflector 4R Reflector 5R Reflector 6R Reflector R Inscribed radius of curvature Rm Reflective surface radius of curvature θ Reflection angle

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】長い光路長を必要とし、時系列で光の強度
を測定するガス分析装置において、円周上に配置された
収束作用のある反射面を持ち、k回反射してn周したと
きの近軸特性を表すマトリックスMが単位行列もしくは
負の単位行列となる光学系の配置および形状を備えた閉
軌道光学系を有することを特徴とするガス分析装置。
1. A gas analyzer which requires a long optical path length and measures light intensity in time series, has a reflecting surface having a convergence function disposed on a circumference, and performs n rounds after reflecting k times. A gas analyzer having a closed orbit optical system having an arrangement and a shape of an optical system in which a matrix M representing paraxial characteristics at the time becomes a unit matrix or a negative unit matrix.
JP37543399A 1999-12-28 1999-12-28 Gas analyzer Pending JP2001188037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37543399A JP2001188037A (en) 1999-12-28 1999-12-28 Gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37543399A JP2001188037A (en) 1999-12-28 1999-12-28 Gas analyzer

Publications (1)

Publication Number Publication Date
JP2001188037A true JP2001188037A (en) 2001-07-10

Family

ID=18505517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37543399A Pending JP2001188037A (en) 1999-12-28 1999-12-28 Gas analyzer

Country Status (1)

Country Link
JP (1) JP2001188037A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145292A (en) * 2006-12-11 2008-06-26 Riken Keiki Co Ltd Infrared type gas detector
CN106442380A (en) * 2016-08-30 2017-02-22 北京千安哲信息技术有限公司 Methane detection device and method
CN107478173A (en) * 2017-06-26 2017-12-15 合肥工业大学 A kind of particulate samples pond and microparticle particle shape coaxial digital holography measurement apparatus
CN109655445A (en) * 2019-01-22 2019-04-19 重庆大学 A kind of multistage circle multi-pass gas chamber improving gas Raman detection sensitivity
WO2021212931A1 (en) * 2020-04-23 2021-10-28 山东省科学院激光研究所 Two-dimensional, multi-point-reflection, long-optical-distance gas sensor probe, and gas sensor
US20220236174A1 (en) * 2019-07-10 2022-07-28 Osram Opto Semiconductors Gmbh Optical Measuring Assembly and Gas Sensor Comprising Same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145292A (en) * 2006-12-11 2008-06-26 Riken Keiki Co Ltd Infrared type gas detector
CN106442380A (en) * 2016-08-30 2017-02-22 北京千安哲信息技术有限公司 Methane detection device and method
CN107478173A (en) * 2017-06-26 2017-12-15 合肥工业大学 A kind of particulate samples pond and microparticle particle shape coaxial digital holography measurement apparatus
CN109655445A (en) * 2019-01-22 2019-04-19 重庆大学 A kind of multistage circle multi-pass gas chamber improving gas Raman detection sensitivity
CN109655445B (en) * 2019-01-22 2021-08-24 重庆大学 Multi-section circular multi-pass air chamber for improving gas Raman detection sensitivity
US20220236174A1 (en) * 2019-07-10 2022-07-28 Osram Opto Semiconductors Gmbh Optical Measuring Assembly and Gas Sensor Comprising Same
WO2021212931A1 (en) * 2020-04-23 2021-10-28 山东省科学院激光研究所 Two-dimensional, multi-point-reflection, long-optical-distance gas sensor probe, and gas sensor

Similar Documents

Publication Publication Date Title
CN111465828B (en) Spectrometer apparatus and system
US5170064A (en) Infrared-based gas detector using a cavity having elliptical reflecting surface
US6469303B1 (en) Non-dispersive infrared gas sensor
JP5695302B2 (en) Combined multipass cell and gas meter
US4945250A (en) Optical read head for immunoassay instrument
WO2019115596A1 (en) Spectrometer device and system
JPS6214769B2 (en)
US5428222A (en) Spectral analyzer with new high efficiency collection optics and method of using same
US7034304B2 (en) Chamber for gas detector
JP2010536042A (en) Long-path atmospheric monitoring and measuring device
JP5695301B2 (en) Multipass cell and gas meter
JP2015500492A (en) Apparatus for testing samples with Raman radiation
CN102495010A (en) High sensitivity optical system of DOAS analyzer
JP2001188037A (en) Gas analyzer
KR20110057651A (en) Ndir gas sensor
US3394253A (en) Infra-red gas analysis apparatus having a cylindrical sample chamber with a smooth reflecting inner surface
USRE36489E (en) Spectral analyzer with new high efficiency collection optics and method of using same
CN116297200A (en) Helicobacter pylori carbon 13 isotope optical detection system and detection method
JP2010243172A (en) Multilayer type multi-path cell and gas measuring instrument
JP5515102B2 (en) Gas sensor
CN211478058U (en) Gas spectrum analyzer
US3669547A (en) Optical spectrometer with transparent refracting chopper
JPH03239950A (en) Laser breakdown analyzing apparatus
JP2004309392A (en) Multiple reflection type cell and infrared-type gas detector
KR101714651B1 (en) Plate type NDIR gas analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071023