JPS6226638Y2 - - Google Patents

Info

Publication number
JPS6226638Y2
JPS6226638Y2 JP17207182U JP17207182U JPS6226638Y2 JP S6226638 Y2 JPS6226638 Y2 JP S6226638Y2 JP 17207182 U JP17207182 U JP 17207182U JP 17207182 U JP17207182 U JP 17207182U JP S6226638 Y2 JPS6226638 Y2 JP S6226638Y2
Authority
JP
Japan
Prior art keywords
stator
blades
rotor
slit
spacer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17207182U
Other languages
Japanese (ja)
Other versions
JPS5975596U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17207182U priority Critical patent/JPS5975596U/en
Publication of JPS5975596U publication Critical patent/JPS5975596U/en
Application granted granted Critical
Publication of JPS6226638Y2 publication Critical patent/JPS6226638Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Non-Positive Displacement Air Blowers (AREA)

Description

【考案の詳細な説明】 A 産業上の利用分野 本考案はターボ分子ポンプに関し、特に腐蝕性
ガス雰囲気中でも使用可能なターボ分子ポンプの
改良に関する。
[Detailed Description of the Invention] A. Field of Industrial Application The present invention relates to a turbo-molecular pump, and particularly relates to an improvement of a turbo-molecular pump that can be used even in a corrosive gas atmosphere.

B 従来の技術 近年、半導体製造分野などで腐蝕性のガスを真
空排気する用途が増えて来ており、耐腐蝕ポンプ
として油回転真空ポンプが従来から用いられてい
る。一方、超高真空領域まで排気できるターボ分
子ポンプは通常、動翼などにアルミニウム材が使
われていた。また、静翼はアルミニウムの薄板円
環の内周から半径方向外方へ切断スリツトの多数
を等間隔に設け、2つのスリツト間に残された部
分を捩り曲げて製作されていた。
B. Prior Art In recent years, applications for evacuation of corrosive gases have been increasing in the semiconductor manufacturing field, etc., and oil rotary vacuum pumps have been used as corrosion-resistant pumps. On the other hand, turbomolecular pumps that can pump up to ultra-high vacuum ranges usually use aluminum for their moving blades and other parts. Furthermore, the stator vane was manufactured by providing a large number of cutting slits at equal intervals radially outward from the inner circumference of a thin aluminum plate ring, and twisting the portion left between the two slits.

C 考案が解決しようとする問題点 しかし、上記油回転真空ポンプは到達し得る真
空度が低く排気が充分でなかつた。これに対して
高真空を得るためターボ分子ポンプの利用が考え
られるが、その場合はアルミニウム動翼は腐蝕性
ガスの使用に耐えない欠点を有する。あわせて前
記の如く静翼が製作されていたので、固定子全体
がよじれて変形するなど加工が難かしいという問
題も有している。加工を容易にするためスリツト
幅を広くすると圧縮性能が低下し、品質の安定性
を欠く原因となる等の問題があつた。
C. Problems to be solved by the invention However, the degree of vacuum that the oil rotary vacuum pump can reach is low, and exhaustion is not sufficient. In order to obtain a high vacuum, it is possible to use a turbo-molecular pump, but in that case, the aluminum rotor blades have the disadvantage of not being able to withstand the use of corrosive gases. In addition, since the stator blades are manufactured as described above, there are also problems in that the entire stator is twisted and deformed, making it difficult to process. When the slit width was widened to facilitate processing, compression performance deteriorated, causing problems such as a lack of quality stability.

本考案は上記問題点を解決するものであつて、
高度の真空排気を行なうため腐蝕性ガスに堪え、
しかも更に圧縮性能を高め、品質を安定させると
ともに製作容易なターボ分子ポンプを提供するこ
とを目的とする。
The present invention solves the above problems, and
Due to high-level vacuum evacuation, it can withstand corrosive gases,
Moreover, it is an object of the present invention to provide a turbo-molecular pump that further improves compression performance, stabilizes quality, and is easy to manufacture.

D 問題点を解決するための手段 上記目的を達成するため本考案の構成は次の通
りとする。即ち、円周方向に多数の動翼をもつ回
転子の複数段が同心に配列され、各段の中間に円
周方向へ多数の静翼をもつ固定子がスペーサを介
して配置されてなるターボ分子ポンプにおいて、
前記回転子の動翼はその表面に耐蝕性処理膜が被
覆されたアルミニウムで構成するとともに、前記
固定子の静翼は不銹鋼からなる薄板円環の同一円
周上の等間隔位置にI字状スリツトが設けられ、
かつ、該スリツトに挟まれた部分を捩曲させて形
成し、前記スペーサは、前記スリツトの頂辺間に
形成された静翼のくびれ部に接近するとともに、
該くびれ部および前記スリツト頂辺に覆いかぶさ
る高さで半径方向内方へ突出する円周突条が設け
られたことである。
D. Means for solving the problems In order to achieve the above object, the structure of the present invention is as follows. In other words, a turbo consists of multiple stages of rotors having a large number of moving blades in the circumferential direction arranged concentrically, and a stator having a large number of stator blades in the circumferential direction being arranged between each stage via a spacer. In molecular pumps,
The moving blades of the rotor are made of aluminum whose surface is coated with a corrosion-resistant treatment film, and the stationary blades of the stator are formed in an I-shape at equal intervals on the same circumference of a thin plate ring made of stainless steel. A slit is provided,
and the spacer is formed by twisting a portion sandwiched between the slits, and the spacer approaches the constriction of the stator blade formed between the top sides of the slit, and
A circumferential protrusion is provided that protrudes radially inward at a height that covers the constricted portion and the top side of the slit.

E 作 用 動翼は耐蝕性被膜によりまた静翼は不銹鋼の採
用により腐蝕ガスで腐蝕されることはない。
E Function The rotor blades are coated with a corrosion-resistant coating, and the stator blades are made of stainless steel, so they will not be corroded by corrosive gases.

F 実施例 以下、本考案を図面に示す一実施例にもとづき
説明する。
F. Embodiment Hereinafter, the present invention will be explained based on an embodiment shown in the drawings.

第1図および第2図において、ターボ分子ポン
プは円周方向に多数の動翼11をもつ回転子1の
複数段が同心に配列され、各段の中間に円周方向
へ多数の静翼22をもつ固定子2がスペーサ4を
介して配置されている。前記固定子2は、SUS
(不銹鋼)からなる薄板円環20の同一円周上の
等間隔位置にI字状のスリツト21が設けられ
る。そして、隣接スリツト21間に位置する各部
分が、前記回転子1の動翼11の傾斜角度に沿う
一定傾斜角度を形成する如く捩られ、静翼22と
される。従つて、静翼22は隣接するI字状スリ
ツト21の頂辺21a、下辺21bに挟まれる部
分がくびれ部23となる。また、前記頂辺21a
のスリツト幅tによつて生ずるギヤツプを覆うた
め、スペーサ4は前記くびれ部23に接近し、か
つ該くびれ部およびスリツト頂辺21aに覆いか
ぶさる高さで半径方向内方に突出する円周突条4
1が設けられている。これにより、前記スリツト
幅tにもとづくギヤツプを通して逆流する気体分
子の量が大幅に減少した。実験によると、本考案
のポンプの水素圧縮性能は約4倍に増強できた。
In FIGS. 1 and 2, the turbomolecular pump has multiple stages of a rotor 1 having a large number of moving blades 11 in the circumferential direction arranged concentrically, and a large number of stator blades 22 in the circumferential direction between each stage. A stator 2 having a shape is arranged with a spacer 4 interposed therebetween. The stator 2 is made of SUS
I-shaped slits 21 are provided at equally spaced positions on the same circumference of a thin plate ring 20 made of stainless steel. Then, each portion located between adjacent slits 21 is twisted so as to form a constant inclination angle along the inclination angle of the rotor blade 11 of the rotor 1, forming a stationary blade 22. Therefore, the portion of the stationary blade 22 sandwiched between the top side 21a and the bottom side 21b of the adjacent I-shaped slits 21 becomes the constricted portion 23. Further, the top side 21a
In order to cover the gap caused by the slit width t, the spacer 4 has a circumferential protrusion that approaches the constriction 23 and protrudes radially inward at a height that covers the constriction and the slit top 21a. 4
1 is provided. This significantly reduced the amount of gas molecules flowing back through the gap based on the slit width t. According to experiments, the hydrogen compression performance of the pump of the present invention could be increased approximately four times.

しかして、本考案は上記実施例において少なく
とも動翼11は軽量材たるアルミニウムからな
り、該アルミニウム材は、各段毎に表面を陽極酸
化被膜とテフロン含浸による耐蝕性被覆でコーテ
イングされている。なお、回転子1全体にアルミ
ニウムが使われているものでは該回転子1にも上
記に準じて耐蝕性被覆が行なわれる。
Therefore, in the present invention, in the above embodiment, at least the rotor blade 11 is made of aluminum, which is a lightweight material, and the surface of the aluminum material is coated at each stage with a corrosion-resistant coating made of an anodized film and Teflon impregnation. If the rotor 1 is entirely made of aluminum, the rotor 1 is also coated with a corrosion-resistant coating in the same manner as described above.

これら、アルミニウム動翼と不銹鋼静翼との相
互関係を調査するため行なつた実験結果による
と、250/secの容量で36000rpmの回転中、大
気導入により動翼と静翼に歪を生じて接触事故が
起つた。従来のアルミニウム相互の接触事故の場
合には互いに摩擦熱により融着してポンプ破壊に
至るところ、本考案の組合せでは不銹鋼静翼によ
り削られながらアルミニウム動翼が回転を続け、
破壊が避けられるという大きな成果を収めた。
According to the results of experiments conducted to investigate the interaction between aluminum rotor blades and stainless steel stator blades, during rotation at 36,000 rpm at a capacity of 250/sec, the rotor blades and stator blades were distorted and came into contact due to the introduction of air. An accident occurred. In the case of a conventional contact accident between aluminum blades, they fuse together due to frictional heat, leading to pump destruction, but with the combination of the present invention, the aluminum rotor blades continue to rotate while being scraped by the stainless steel stationary blades.
This was a major success in avoiding destruction.

上記の他、動翼11は前記被膜に代えて、耐蝕
性塗料やメツキ、その他の被膜が付される。
In addition to the above, the rotor blade 11 is coated with a corrosion-resistant paint, plating, or other coating instead of the coating described above.

G 考案の効果 本考案は以上の如く、回転子の動翼は、その表
面に耐蝕性処理膜が被覆されたアルミニウムで構
成されるので、腐蝕性ガスの超高真空領域で充分
その使用に耐え、軽量にして動力費が少なく品質
の安定性と安全面にすぐれるほか、製作が容易と
なつた。また、固定子の静翼は、不銹鋼からなる
薄板円環の同一円周上の等間隔位置にI字状スリ
ツトが設けられ、かつ該スリツトに挟まれた部分
を捩曲させて形成されるので、従来スリツト頂辺
および下辺が設けられていないために起り易かつ
た固定子全体のよじれや変形が生ずることがなく
なり、固定子および静翼の製作が容易になるとと
もに耐蝕性にもすぐれている。更に、スペーサに
は、静翼のくびれ部に接近するとともに、該くび
れ部とスリツト頂辺に覆いかぶさる高さで半径方
向内方へ突出する円周突条が設けられるので、ス
リツト頂辺のスリツト幅によつて生ずるギヤツプ
を通して逆流する気体分子の量が大幅に減少して
ポンプの圧縮性能が高められる。このように本考
案のターボ分子ポンプは、腐蝕性雰囲気中で使用
可能となり、かつ加工容易にしてしかも強力な真
空排気効果を発揮することとなつた。
G. Effects of the invention As described above, the rotor blades of the present invention are made of aluminum whose surface is coated with a corrosion-resistant treatment film, so they can withstand use in ultra-high vacuum regions with corrosive gases. It is lightweight, has low power costs, has stable quality, is excellent in safety, and is easy to manufacture. Furthermore, the stationary vanes of the stator are formed by providing I-shaped slits at equally spaced positions on the same circumference of a thin plate ring made of stainless steel, and by twisting the portion sandwiched between the slits. This eliminates twisting and deformation of the entire stator, which could easily occur due to the absence of the top and bottom sides of the slits, making it easier to manufacture the stator and stator vanes, and also offering excellent corrosion resistance. . Furthermore, the spacer is provided with a circumferential protrusion that protrudes radially inward at a height that approaches the constriction of the stationary blade and covers the constriction and the top of the slit. The amount of gas molecules flowing back through the gap caused by the width is greatly reduced, increasing the compression performance of the pump. As described above, the turbomolecular pump of the present invention can be used in a corrosive atmosphere, is easy to process, and has a powerful evacuation effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案のターボ分子ポンプの固定子お
よび静翼の一実施例における製造過程を示す要部
平面図、第2図は本考案のポンプの要部拡大断面
図である。 1……回転子、11……動翼、2……固定子、
21……スリツト、21a……スリツト頂辺、2
……静翼、23……くびれ部、4……スペーサ、
41……円周突条。
FIG. 1 is a plan view of a main part showing the manufacturing process of an embodiment of the stator and stationary vane of a turbomolecular pump of the present invention, and FIG. 2 is an enlarged sectional view of the main part of the pump of the present invention. 1... Rotor, 11... Moving blade, 2... Stator,
21...Slit, 21a...Slit top, 2
... Stator blade, 23 ... Neck part, 4 ... Spacer,
41... Circumferential protrusion.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 円周方向に多数の動翼をもつ回転子の複数段が
同心に配列され、各段の中間に円周方向へ多数の
静翼をもつ固定子がスペーサを介して配置されて
なるターボ分子ポンプにおいて、前記回転子の動
翼はその表面に耐蝕性処理膜が被覆されたアルミ
ニウムで構成するとともに前記固定子の静翼は不
銹鋼からなる薄板円環の同一円周上の等間隔位置
にI字状スリツトが設けられ、かつ該スリツトに
挟まれた部分を捩曲させて形成し、前記スペーサ
は、前記スリツトの頂辺間に形成された静翼のく
びれ部に接近するとともに、該くびれ部および前
記スリツト頂辺に覆いかぶさる高さで半径方向内
方へ突出する円周突条が設けられたことを特徴と
するターボ分子ポンプ。
A turbomolecular pump in which multiple stages of rotors with a large number of rotor blades in the circumferential direction are arranged concentrically, and a stator with a large number of stator blades in the circumferential direction is placed between each stage via a spacer. In the rotor, the moving blades of the rotor are made of aluminum whose surface is coated with a corrosion-resistant treatment film, and the stationary blades of the stator are I-shaped at equal intervals on the same circumference of a thin plate ring made of stainless steel. A shaped slit is provided, and the portion sandwiched between the slits is formed by twisting, and the spacer approaches the constriction of the stationary blade formed between the top sides of the slit, and A turbo molecular pump characterized in that a circumferential protrusion is provided that protrudes radially inward at a height that covers the top side of the slit.
JP17207182U 1982-11-12 1982-11-12 turbo molecular pump Granted JPS5975596U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17207182U JPS5975596U (en) 1982-11-12 1982-11-12 turbo molecular pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17207182U JPS5975596U (en) 1982-11-12 1982-11-12 turbo molecular pump

Publications (2)

Publication Number Publication Date
JPS5975596U JPS5975596U (en) 1984-05-22
JPS6226638Y2 true JPS6226638Y2 (en) 1987-07-08

Family

ID=30375182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17207182U Granted JPS5975596U (en) 1982-11-12 1982-11-12 turbo molecular pump

Country Status (1)

Country Link
JP (1) JPS5975596U (en)

Also Published As

Publication number Publication date
JPS5975596U (en) 1984-05-22

Similar Documents

Publication Publication Date Title
JP3993666B2 (en) Improved vacuum pump
US4395197A (en) Centrifugal fluid machine
US20170051755A1 (en) Fan, Diffuser, and Vacuum Cleaner having the same
WO2011024261A1 (en) Turbo-molecular pump and method of manufacturing rotor
JP5369591B2 (en) Turbo molecular pump
JP2009002233A (en) Method for manufacturing fixed blade and turbo molecular pump provided with fixed blade
US20190010955A1 (en) Fan Impeller and Fan Using Fan Impeller
JPS6226638Y2 (en)
US6409468B1 (en) Turbo-molecular pump
WO2018066471A1 (en) Vacuum pump, helical plate for vacuum pump, spacer, and rotating cylindrical body
JPS6361799A (en) Turbo molecular pump
JPS60204997A (en) Composite vacuum pump
JP2008530433A (en) Baffle structure for molecular drag vacuum pump
JPH04330397A (en) Turbo molecular pump
JPH0119080B2 (en)
KR102539951B1 (en) Sealing washer for a rotor, and rotor with such a washer
CN211778196U (en) Fan and electric product
JPS61283794A (en) Turbo molecular pump
US20140356171A1 (en) Rotor for a centrifugal fan, particularly for the forced circulation of air in convention cooking ovens
JPS6332957Y2 (en)
JP4661378B2 (en) Turbo molecular pump
JP2009209827A (en) Vacuum pump and its manufacturing method
JP3175680U (en) Stator blade stage of turbo molecular pump
JPS647234B2 (en)
US965025A (en) Vacuum-producing apparatus.