JPS62265787A - Manufacture of semiconductor laser - Google Patents

Manufacture of semiconductor laser

Info

Publication number
JPS62265787A
JPS62265787A JP10865286A JP10865286A JPS62265787A JP S62265787 A JPS62265787 A JP S62265787A JP 10865286 A JP10865286 A JP 10865286A JP 10865286 A JP10865286 A JP 10865286A JP S62265787 A JPS62265787 A JP S62265787A
Authority
JP
Japan
Prior art keywords
gaas
type
layer
groove
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10865286A
Other languages
Japanese (ja)
Other versions
JPH07112092B2 (en
Inventor
Koichi Imanaka
今仲 行一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Tateisi Electronics Co filed Critical Omron Tateisi Electronics Co
Priority to JP61108652A priority Critical patent/JPH07112092B2/en
Priority to US07/048,616 priority patent/US4839307A/en
Publication of JPS62265787A publication Critical patent/JPS62265787A/en
Priority to US07/297,025 priority patent/US5010556A/en
Publication of JPH07112092B2 publication Critical patent/JPH07112092B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/24Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a grooved structure, e.g. V-grooved, crescent active layer in groove, VSIS laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2231Buried stripe structure with inner confining structure only between the active layer and the upper electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2237Buried stripe structure with a non-planar active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2238Buried stripe structure with a terraced structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • H01S5/3077Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure plane dependent doping
    • H01S5/3081Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure plane dependent doping using amphoteric doping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To produce an inner current stricture type semiconductor laser by a method wherein a striped groove or oblique lined part is processed on a P-type GaAs substrate in the (100) surface direction to grow Si-doped GaAs or Al GaAs by molecular beam epitaxial growth on the groove. CONSTITUTION:An Si, S2 groove is made on a P-type GaAs substrate 7 in the (100) surface direction by etching process. Next, an Si-doped Al GaAs layers 6, a Be-doped Al GaAs layer 5, an Al GaAs base active layer 4, an Si-doped Al GaAs layer 3 and an N-type GaAs layer 2 are successively grown and finally electrodes 1 and 8 are provided by molecular beam epitaxial growth (MBE). The layer 6 becomes P type inside the groove formed by etching process while becoming N type on the flat parts outside the groove resultantly the interface between the layer 6 and 5 becomes an inverse biased current stopping layer in the flat parts to flow current inside the groove only (region displayed by oblique lines in the P type part). Through these procedures, an inner current stricture type semiconductor laser is produced by one time crystal growth by properly selecting dopant.

Description

【発明の詳細な説明】 発明の要約 n−1〜5とする(nil)A面を斜面とする溝加工ま
たは段差加工を施した(100)面方位p型GaAs基
1上に、AfGaAs : S i層、AfGaAs 
: Beクラッド層、Aj!GaAs活性層、Aj:G
aAs : Snクラッド層を成長させる。Slは(1
00)面上ではn型、  (nil)面上ではp型とし
て働くためAλGaAs : S i層は溝部分でのみ
p型となり、ここに電流路かできる。
DETAILED DESCRIPTION OF THE INVENTION Summary of the Invention AfGaAs: S i-layer, AfGaAs
: Be cladding layer, Aj! GaAs active layer, Aj:G
aAs: Grow Sn cladding layer. Sl is (1
Since it acts as an n-type on the 00) plane and a p-type on the (nil) plane, the AλGaAs:Si layer becomes p-type only in the groove portion, and a current path is created here.

このような内部電流狭搾型半導体レーザを1回の分子線
エピタキシャル成長により作製することかできる。
Such an internal current narrowing type semiconductor laser can be manufactured by one-time molecular beam epitaxial growth.

発明の背景 この発明は、半導体レーザの製造方法に関し。Background of the invention The present invention relates to a method for manufacturing a semiconductor laser.

とくに、たとえば分子線エピタキシャル成長法を用いて
内部電流狭搾部をもつ半導体レーザを装造する方法に関
する。
In particular, the present invention relates to a method of fabricating a semiconductor laser having an internal current constriction section using, for example, molecular beam epitaxial growth.

従来の内部電流狭搾機(14を有するA、gGaAs/
 Ga A s半導体レーザは、まず1回口の結晶成長
で基板上にそれとは逆の導電型の層を成長させ、その一
部をストライブ状にエツチングによって除去し、ここに
電流経路を設けることができるようにし、2回目の結晶
成長においてそのJ!成板上二重異種接合構造を成長さ
せていた。
Conventional internal current narrower (with 14 A, gGaAs/
GaAs semiconductor lasers are made by first growing a layer of the opposite conductivity type on a substrate in a single crystal growth process, and then removing a portion of it by etching in a stripe pattern to create a current path there. , and in the second crystal growth, that J! A double heterojunction structure was grown on the plate.

しかしながらこのような従来の半導体レーザの製造方法
においては、2回の結晶成長工程を必要とする。20目
の成長時に基板かl”I温にさらされるため逆バイアス
電流阻止層となるべき1回口と2回目の成長の界面に欠
陥を導入しやすいという問題点がある。
However, such a conventional semiconductor laser manufacturing method requires two crystal growth steps. Since the substrate is exposed to l''I temperature during the 20th growth, there is a problem that defects are likely to be introduced at the interface between the first growth and the second growth, which should serve as a reverse bias current blocking layer.

発明の概要 この発明は、結晶成長工程を2回に分ける必要のない半
導体レーザ、とくに内部電流挟片型の半導体レーザを製
造する方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor laser, particularly an internal current sandwich type semiconductor laser, which does not require dividing the crystal growth process into two steps.

この発明による半導体レーザの製造方法は。A method of manufacturing a semiconductor laser according to the present invention is as follows.

(+00)面方位のp型GaAsJJ板上に(nil)
(n−1〜5)A面を露出させるストライブ状の溝また
は傾斜加工を施し、その上に分子線エピタキシャル成長
法によりStドープのGaAsまたはAj2GaAsを
成長させることを特徴とする。
(nil) on a p-type GaAs JJ plate with (+00) plane orientation.
(n-1 to 5) It is characterized in that a striped groove or slope process is performed to expose the A-plane, and St-doped GaAs or Aj2GaAs is grown thereon by molecular beam epitaxial growth.

これによって、A面部のみがp型、他の平坦部はn型と
なり、1回の結晶成長で内部電流挟片型半導体レーザを
つくることができ、上記問題点が解決される。
As a result, only the A-plane portion becomes p-type and the other flat portions become n-type, making it possible to produce an internal current sandwich type semiconductor laser with one crystal growth, thus solving the above-mentioned problem.

実施例の説明 第1図は、この発明の製造方法によって製造された半導
体レーザの概念図を共振器に垂直な断面として示すもの
である。
DESCRIPTION OF EMBODIMENTS FIG. 1 shows a conceptual diagram of a semiconductor laser manufactured by the manufacturing method of the present invention as a cross section perpendicular to a resonator.

ここで、1はn側電極、2はn  −GaAsコンタク
ト層、3はスズ(Sn)をドーパントとしたn−AJG
aAsクラッド層、4は活X   I−x 外層、5はベリリウム(Be)をドーパントとしたp−
Aj!  Ga   Asクラッド層、6はシリt−y コン(Si) ドープのAj!  Ga   As電流
秋z   l−z 搾層、7は(100)面方位p型GaAs基板、8はp
側電極である。
Here, 1 is an n-side electrode, 2 is an n-GaAs contact layer, and 3 is an n-AJG doped with tin (Sn).
aAs cladding layer, 4 is active X I-x outer layer, 5 is p- with beryllium (Be) dopant.
Aj! GaAs cladding layer, 6 is Si-doped Aj! 7 is a (100) plane orientation p-type GaAs substrate, 8 is a p-type GaAs substrate.
This is the side electrode.

この半導体レーザは次のようにして作製される。まず(
100)面方位のp型GaAs、、M板上7に(011
)方向にストライブ状の窓をあけたエツチング・マスク
を設け、硫酸−過酸化水索一水等を用いたウェット・ケ
ミカル・エツチングやドライ・エツチングによりS 、
S で示すような(nil)n−1〜511jが露出す
るような溝加工を施す。
This semiconductor laser is manufactured as follows. first(
100) p-type GaAs with plane orientation (011
), and wet chemical etching using sulfuric acid-peroxide solution or dry etching is performed to remove S.
Groove processing is performed so that (nil)n-1 to 511j, as shown by S, are exposed.

エツチング・マスクを除去したのち次に1分子線エピタ
キシャル成長(MBE)法により、SiドープAj!G
aAs層6.BeドープAJGaAs層5.Aj!Ga
As系活性層4.SnドープAlGaAs層3およびn
型GaAs層2を連続的に成長させる。最後に、電極1
.8を設ける。
After removing the etching mask, Si-doped Aj! G
aAs layer6. Be-doped AJGaAs layer5. Aj! Ga
As-based active layer 4. Sn-doped AlGaAs layer 3 and n
A type GaAs layer 2 is grown continuously. Finally, electrode 1
.. 8 will be provided.

電流挟片層6の成長時にSiをドーピング祠として用い
ると、良く知られているようにStは(100)面上で
はn型、  (nil)面上ではp型として働くため、
この層5は、エツチングによって形成された溝の内部で
はp型、構外の平坦部ではn型となる。その結果平坦部
では層6と5の界面が逆バイアス電流阻止層となり、溝
の内部のみに電流が流れる(p型部を斜線で示す、領域
R)。
When Si is used as a doping source during the growth of the current sandwich layer 6, as is well known, St acts as an n-type on the (100) plane and a p-type on the (nil) plane.
This layer 5 becomes p-type inside the groove formed by etching, and becomes n-type in the flat area outside the structure. As a result, in the flat part, the interface between layers 6 and 5 becomes a reverse bias current blocking layer, and current flows only inside the groove (region R, where the p-type part is indicated by diagonal lines).

n型クラッド層3では逆にこの導電性の反転効果を避け
るt:めn型ドーパントとしてたとえばSn等を用いる
In the n-type cladding layer 3, on the other hand, Sn or the like is used as an n-type dopant to avoid this conductivity inversion effect.

以上の構成において、p(t11l電極8からn側電極
1に向って電流を流すと、この電流は上述の溝部Rを通
って活性層4の中央部へ効率よく集中し。
In the above configuration, when a current flows from the p(t11l electrode 8 to the n-side electrode 1), this current passes through the groove R described above and is efficiently concentrated in the center of the active layer 4.

内部電流挟片型半導体レーザとして動作する。Operates as an internal current sandwich type semiconductor laser.

第2図は、エツチングによって溝加工ではなく斜面加工
を施す方法によって製造された半導体レーザを示してい
る。いわゆるテラス型半導体レーザである。第1図に示
すものと同一物には同一符号が付けられている。
FIG. 2 shows a semiconductor laser manufactured by etching to form a slope instead of a groove. This is a so-called terrace type semiconductor laser. Components that are the same as those shown in FIG. 1 are given the same reference numerals.

ここでは(100)面方位p形GaAs基板7上に(n
11)A面(n−1〜5)を斜面とするテラス状のエツ
チング加工を施し、その後その上に各層6.5,4,3
.2を成長させている。
Here, (n
11) Perform a terrace-like etching process with the A side (n-1 to 5) as the slope, and then apply each layer 6.5, 4, 3 on top of it.
.. 2 is growing.

以上のようにしてこの発明によると、ドーパントを適宜
選択することにより、10の結晶成長で内部電流挟片型
半導体レーザを作製することかできる。
As described above, according to the present invention, by appropriately selecting a dopant, an internal current sandwich type semiconductor laser can be manufactured by growing 10 crystals.

」二足では活性層について特記しなかったか、活性層は
、単なるAj7  Ga   As単一層でも。
``Nippo didn't mention anything about the active layer, and the active layer was just a single layer of Aj7 GaAs.

v   L−w 多重量子井戸構造でも、いわゆるG RI N−5CH
(Graded Index 5eparate Co
nrincmcntlfeterostructure
)構造でもよい。
v L-w Even in a multiple quantum well structure, the so-called G RI N-5CH
(Graded Index 5 separate Co.
nrincmcntlfeterostructure
) structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明による製造方法によって作製された半
導体レーザを示す断面図であり、第2図はこ“の発明に
よる他の製造方法によって作製された半導体レーザを示
す断面図である。 6・・・S1ド一プ電流狭搾層。 7・・・p型GaAs基板。 以  1゜ 特許出願人  立石電機株式会社 代 理 人  弁理士 牛久部用 (外1名) 1 、nザ11t極 2:n”−GaAsコ/yクト9 3:n−AIGoAs  (スズトープ)クラット層4
 活性層 5+I)−At!GaAs  (へリリウムトーブ)6
、/ソコ/トープA/GaAs層 7、p型GaAs基板 S+ 、 S2 : (nil)  A面Rap型部 第1図 第2図 −1丁、続辛甫1E書(自発) 昭和61年10月2S口 特許′[庁長官黒1)明雄殿 l 事件の表示 昭和61年特許願第108652号 2 発明の名称 半導体レーザの製造方法 3 補止をする者 ′1を件との関係  特許出願人 住所  京都市右京区?E園土堂町10番地名称  (
294)立石電機株式会社 4 代理人 住所  〒105東京都港区西新橋1丁口12番8号西
新橋中ビル5階 電話(03) 508−0295 補正の内容 (1)明細書の特許請求の範囲の欄の記載を別紙の通り
補正する。 (2)同書第3頁第8行から第13行の「この発明によ
る・・・特徴とする。」を次のように訂正する。 「 この発明による半導体レーザの製造方法は。 (100)面方位のp型G a A s 、!!成板上
たはp型CaAs層を表面層とするGaAs基板上に(
nil)(n −1〜5)A面を露出させるストライブ
状の溝または傾斜加工を施し、その上に分子線エピタキ
シャル成長法によりSiドープのGaAsまたはAfG
aAsを成長させ、かつその上にn型クラッド層をスズ
トープAj2GaAsとする二組異種接合を設けたこと
を特徴とする。」(3)回書第5頁第工2行から第13
行の「たとえばSn等を用いる。」を、rSnを用いる
。」と訂正する。 以 −」ニ 特許請求の範囲 (+00)面ツノ°位のp型GaAs基板上またはp型
GaAs層を表面層とするGaAs基板上に。 nを1〜5とする(n11) A面を露出させる溝加工
または段刀加上を施し、その上にSiドープAβ流狭挟
片をもつ半導体レーザの製造方法。
FIG. 1 is a cross-sectional view showing a semiconductor laser manufactured by a manufacturing method according to the present invention, and FIG. 2 is a cross-sectional view showing a semiconductor laser manufactured by another manufacturing method according to this invention. 6. ... S1 doped current constriction layer. 7... P-type GaAs substrate. 1゜ Patent applicant: Tateishi Electric Co., Ltd. Agent: Patent attorney: For Ushikube (1 other person) 1, n the 11t pole 2 :n”-GaAs Co/y-Cot 9 3:n-AIGoAs (tin tope) crack layer 4
Active layer 5+I)-At! GaAs (helylium torch) 6
, /Soko/Tope A/GaAs layer 7, p-type GaAs substrate S+, S2: (nil) A-side Rap type part Figure 1 Figure 2-1, Zoku Shinbo 1E book (self-proposal) October 1985 2S Mouth Patent' [Office Commissioner Black 1] Mr. Akio l Indication of the case 1986 Patent Application No. 108652 2 Name of the invention Method for manufacturing a semiconductor laser 3 Relationship with the case regarding the person making the supplement' 1 Address of the patent applicant Ukyo Ward, Kyoto City? E Endodocho 10 name (
294) Tateishi Electric Co., Ltd. 4 Agent address: 5th floor, Nishi-Shinbashi Naka Building, 1-12-8 Nishi-Shinbashi 1-chome, Minato-ku, Tokyo 105 Telephone: (03) 508-0295 Contents of amendment (1) Regarding the patent claims in the specification The description in the range column will be corrected as shown in the attached sheet. (2) The phrase "This invention is characterized by..." in lines 8 to 13 of page 3 of the same book is corrected as follows. "The method for manufacturing a semiconductor laser according to the present invention is to produce a p-type GaAs with a (100) plane orientation on a plate or a GaAs substrate having a p-type CaAs layer as a surface layer (
nil) (n -1 to 5) A striped groove or inclined processing is performed to expose the A-plane, and Si-doped GaAs or AfG is formed thereon by molecular beam epitaxial growth.
It is characterized by growing aAs and providing two sets of heterojunctions on which the n-type cladding layer is tin-topped Aj2GaAs. (3) Circular, page 5, lines 2 to 13
In the line "For example, use Sn, etc.", rSn is used. ” he corrected. Claims 2. On a p-type GaAs substrate with a (+00) plane angle or on a GaAs substrate having a p-type GaAs layer as a surface layer. n is 1 to 5 (n11) A method for manufacturing a semiconductor laser which is subjected to groove machining or step machining to expose the A-plane and has a Si-doped Aβ flow narrowing piece thereon.

Claims (1)

【特許請求の範囲】[Claims] (100)面方位のp型GaAs基板上に、nを1〜5
とする(n11)A面を露出させる溝加工または段差加
工を施し、その上にSiドープAlGaAsまたはGa
Asを成長させたことを特徴とする内部電流狭搾部をも
つ半導体レーザの製造方法。
On a p-type GaAs substrate with (100) plane orientation, n is 1 to 5.
(n11) Perform groove processing or step processing to expose the A side, and then Si-doped AlGaAs or Ga
A method for manufacturing a semiconductor laser having an internal current constriction part characterized by growing As.
JP61108652A 1986-05-14 1986-05-14 Semiconductor laser and manufacturing method thereof Expired - Lifetime JPH07112092B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP61108652A JPH07112092B2 (en) 1986-05-14 1986-05-14 Semiconductor laser and manufacturing method thereof
US07/048,616 US4839307A (en) 1986-05-14 1987-05-11 Method of manufacturing a stripe-shaped heterojunction laser with unique current confinement
US07/297,025 US5010556A (en) 1986-05-14 1989-01-13 A stripe-shaped heterojunction laser with unique current confinement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61108652A JPH07112092B2 (en) 1986-05-14 1986-05-14 Semiconductor laser and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS62265787A true JPS62265787A (en) 1987-11-18
JPH07112092B2 JPH07112092B2 (en) 1995-11-29

Family

ID=14490238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61108652A Expired - Lifetime JPH07112092B2 (en) 1986-05-14 1986-05-14 Semiconductor laser and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH07112092B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239980A (en) * 1988-03-22 1989-09-25 Canon Inc Semiconductor laser device
JPH0215689A (en) * 1988-07-01 1990-01-19 Sharp Corp Manufacture of semiconductor laser element
JPH0279487A (en) * 1988-09-14 1990-03-20 Sharp Corp Semiconductor laser element
JP2001244572A (en) * 2000-03-02 2001-09-07 Sony Corp Method of manufacturing semiconductor laser light emitting device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832482A (en) * 1981-08-20 1983-02-25 Nec Corp Semiconductor laser
JPS6175586A (en) * 1984-09-20 1986-04-17 Rohm Co Ltd Laser diode and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832482A (en) * 1981-08-20 1983-02-25 Nec Corp Semiconductor laser
JPS6175586A (en) * 1984-09-20 1986-04-17 Rohm Co Ltd Laser diode and manufacture thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239980A (en) * 1988-03-22 1989-09-25 Canon Inc Semiconductor laser device
US5115443A (en) * 1988-03-22 1992-05-19 Canon Kabushiki Kaisha Semiconductor laser apparatus
WO1993013578A1 (en) * 1988-03-22 1993-07-08 Seiichi Miyazawa Semiconductor laser device
JPH0215689A (en) * 1988-07-01 1990-01-19 Sharp Corp Manufacture of semiconductor laser element
JPH0279487A (en) * 1988-09-14 1990-03-20 Sharp Corp Semiconductor laser element
JP2001244572A (en) * 2000-03-02 2001-09-07 Sony Corp Method of manufacturing semiconductor laser light emitting device
JP4696332B2 (en) * 2000-03-02 2011-06-08 ソニー株式会社 Manufacturing method of semiconductor laser light emitting device

Also Published As

Publication number Publication date
JPH07112092B2 (en) 1995-11-29

Similar Documents

Publication Publication Date Title
US4839307A (en) Method of manufacturing a stripe-shaped heterojunction laser with unique current confinement
JPS62265787A (en) Manufacture of semiconductor laser
JPS62257783A (en) Semiconductor laser element
JPH09186396A (en) Fabrication of semiconductor laser element
JPS63202985A (en) Manufacture of semiconductor laser device
JPH0851250A (en) Semiconductor laser
JPH03129892A (en) Semiconductor light emitting element
JPS6373691A (en) Semiconductor laser device
JPH05145182A (en) Manufacture of semiconductor laser device with end plane window construction
JPS63220587A (en) Manufacture of semiconductor laser
JPH0682883B2 (en) Semiconductor laser manufacturing method
JPH0245986A (en) Manufacture of semiconductor laser device
JPS61182293A (en) Manufacture of semiconductor laser
JPH0247886A (en) Manufacture of surface emission type semiconductor laser
JPS6021587A (en) Semiconductor laser device
JPH04253389A (en) Semiconductor light emitting element and manufacture thereof
JPS63152192A (en) Semiconductor laser device and manufacture thereof
JPS58213489A (en) Semiconductor laser
JPH01184896A (en) Semiconductor laser device
JPS6023519B2 (en) Semiconductor laser device and its manufacturing method
JPH01313989A (en) Manufacture of semiconductor laser
JPH08264906A (en) Semiconductor laser and its manufacture
JPH01268082A (en) Semiconductor element and semiconductor laser element
JPH0722703A (en) Growth method for compound semiconsductor
JPS6344790A (en) Semiconductor laser