JPS62265747A - Cooler for semiconductor - Google Patents

Cooler for semiconductor

Info

Publication number
JPS62265747A
JPS62265747A JP10846086A JP10846086A JPS62265747A JP S62265747 A JPS62265747 A JP S62265747A JP 10846086 A JP10846086 A JP 10846086A JP 10846086 A JP10846086 A JP 10846086A JP S62265747 A JPS62265747 A JP S62265747A
Authority
JP
Japan
Prior art keywords
semiconductor
bellows
refrigerant
pressure
irregular load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10846086A
Other languages
Japanese (ja)
Other versions
JPH0644597B2 (en
Inventor
Hiroshi Itahana
板鼻 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10846086A priority Critical patent/JPH0644597B2/en
Publication of JPS62265747A publication Critical patent/JPS62265747A/en
Publication of JPH0644597B2 publication Critical patent/JPH0644597B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To use refrigerant at high temperature in a cooler for a semiconductor while suppressing an irregular load to be applied to a semiconductor to a low value by performing the original performance of the semiconductor while suppressing the irregular load to restrict the elongation of bellows. CONSTITUTION:When the vapor pressure of refrigerant becomes high, a tensile strength is applied to a link 21 to suppress the elongation of bellows 12, thereby eliminating a force acting leftward to a vessel 2. Thus, the irregular load of the contacting surface of the semiconductor produced by the vapor pressure is eliminated to apply a uniform pressure to the semiconductor. Since a linkage is provided rotatably, the bellows 12 are tiltable, and no defect occurs at the time of exchanging the semiconductor. Since the linkage 21 is further contained in the bellows 12 to simplify the structure, the size of the cooler can be reduced. Thus, the irregular load of the semiconductor pressure can be suppressed to sufficiently exhibit the performance of the semiconductor.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体冷却装置に係り、特に、半導体の均一加
圧に好適な半導体冷却装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor cooling device, and particularly to an improvement of a semiconductor cooling device suitable for uniformly pressurizing a semiconductor.

〔従来の技術〕[Conventional technology]

従来の装置は、特開昭58−36173号公報に記載の
ように、容器の外壁面に半導体を接触させて、半導体の
発熱によって容器内の冷媒を沸騰させ、この沸騰した冷
却をベローズを介して凝縮器に導き、冷却、液化する構
造となっていた。
As described in Japanese Patent Application Laid-Open No. 58-36173, a conventional device brings a semiconductor into contact with the outer wall of a container, causes the heat generated by the semiconductor to boil the refrigerant in the container, and cools the boiled water through a bellows. The structure was such that it was guided to a condenser, cooled, and liquefied.

しかし、容器内冷媒の蒸気圧が、半導体の加圧力に偏荷
重として影響を及ぼす点については考慮されていなかっ
た。
However, no consideration was given to the fact that the vapor pressure of the refrigerant in the container affects the pressing force on the semiconductor as an uneven load.

従来装置の一例を第3図ないし第6図に断面で示す。第
3図は冷却装置の全体を第4図は第3図、の■部を拡大
して示しており、第5図は第4図の断面■−■である。
An example of a conventional device is shown in cross section in FIGS. 3 to 6. FIG. 3 shows the entire cooling device, and FIG. 4 is an enlarged view of section 2 in FIG. 3, and FIG.

又、第6図は第3図の■矢視図を示している。半導体素
子1は放熱面を沸騰容器2の外壁面に接触させて冷却を
行なっており。
Further, FIG. 6 shows a view taken in the direction of the arrow ■ in FIG. The semiconductor element 1 is cooled by bringing its heat radiation surface into contact with the outer wall surface of the boiling vessel 2.

沸騰容器2の内部ではボスト3、フィン4に熱が伝わり
、更に、フィン4から冷媒5〜と伝えられる。冷媒5は
フィン4から得た熱で沸騰し、その蒸気はrl縮器6の
内部へ導かれる。′I5縮管7.フィン8とで構成され
ており、凝縮管7は外部の空気8.フィン9によって冷
却されている。このため、凝縮管7へ入った蒸気は凝縮
し液化し、重力によって沸騰容器2へと′Q流する。冷
媒の液面はIOであり、又、半導体1はアノード、カソ
ード側で電位が異なり、更に、複数の半導体を使用する
場合には、半導体相互間を絶縁する必要があり、沸騰容
器2と凝縮器6間を絶縁継手11で接続している。又、
半導体に不具合があった場合、交換が便利なようにベロ
ーズ12が接続されている。
Inside the boiling vessel 2, heat is transmitted to the boss 3 and fins 4, and further from the fins 4 to the refrigerant 5. The refrigerant 5 is boiled by the heat obtained from the fins 4, and its vapor is led into the RL condenser 6. 'I5 contraction7. The condensing pipe 7 is composed of external air 8. It is cooled by fins 9. Therefore, the steam entering the condensing pipe 7 is condensed and liquefied, and flows into the boiling vessel 2 by gravity. The liquid level of the refrigerant is IO, and the potential of the semiconductor 1 is different between the anode and cathode sides.Furthermore, when using multiple semiconductors, it is necessary to insulate the semiconductors from each other, and the boiling container 2 and condensation The devices 6 are connected by an insulating joint 11. or,
A bellows 12 is connected for convenient replacement in the event of a defect in the semiconductor.

13はフランジ。13 is a flange.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は容器内冷媒の蒸気圧が半導体の加圧力に
影響を及ぼす点について配慮がされておらず、半導体の
加圧力に偏荷重が加わる問題があった。
The above-mentioned conventional technology does not take into consideration the fact that the vapor pressure of the refrigerant in the container affects the pressing force of the semiconductor, and there is a problem in that an uneven load is applied to the pressing force of the semiconductor.

第7図に半導体の冷却に使用される冷媒フロン113 
(トリクロロ、トリフルオロエタン)の蒸気圧線図を示
す、冷媒の蒸気圧は温度によって変り、47.6℃で大
気圧、これより温度が低い場合には容器内が負圧、47
.6°Cより温度が高い場合には正圧となる。今80℃
の場合を考えるとゲージ圧力で約2 kg / cJと
なり、第6図ではPの圧力、すなわち、2 kg / 
alが夫々の容器に加わることになる。ベローズ12の
内径が2.5cmである場合には、その断面積が約5d
となり、圧力P=2kg/cofの場合には約10kg
の力が夫々の容器に加わり、第6図のように容器2が四
個の場合には40kgが加わることになる。
Figure 7 shows refrigerant Freon 113 used for cooling semiconductors.
(trichloro, trifluoroethane). The vapor pressure of the refrigerant changes depending on the temperature. At 47.6°C, it is atmospheric pressure, and when the temperature is lower than this, the inside of the container is under negative pressure.
.. If the temperature is higher than 6°C, there will be positive pressure. 80℃ now
Considering the case of , the gauge pressure is approximately 2 kg/cJ, and in Figure 6, the pressure of P, that is, 2 kg/cJ.
al will be added to each container. When the inner diameter of the bellows 12 is 2.5 cm, its cross-sectional area is approximately 5 d.
Therefore, when the pressure P = 2 kg/cof, it is approximately 10 kg
A force of 40 kg is applied to each container, and when there are four containers 2 as shown in FIG.

一方、半導体は冷却のため沸騰容器2にはさまれ両側か
らFの力で加圧、接触している。力Fは半導体の接触面
全面に均一に分散して加えられることが望ましいが、前
述の蒸気圧によって、第6図の紙面の下方に力が加えら
れているため半導体の接触面での加圧力はf□> f 
2となり、加圧力がアンバランスになる。すなわち、偏
荷重が加わることになる。この偏荷重は半導体にとって
耐え得る範囲内であれば問題は生じないが、冷媒を高い
温度で使用しようとすると偏荷重が半導体に許容値を超
えるため、冷媒温度を低く迎えなければならない欠点が
あった。
On the other hand, the semiconductor is sandwiched between the boiling containers 2 for cooling and is pressed and contacted by the force of F from both sides. It is desirable that the force F be applied in a uniformly distributed manner over the entire contact surface of the semiconductor, but due to the aforementioned vapor pressure, the force is applied below the plane of the paper in Figure 6, so the pressing force on the contact surface of the semiconductor is is f□>f
2, and the pressurizing force becomes unbalanced. In other words, an unbalanced load will be applied. This unbalanced load does not pose a problem as long as it is within a range that the semiconductor can withstand, but if you try to use the refrigerant at a high temperature, the unbalanced load will exceed the allowable value for the semiconductor, so there is a drawback that the refrigerant temperature must be kept low. Ta.

本発明の目的は半導体に与える偏荷重を低く迎えながら
冷媒温度を高い状態で使用可能な半導体冷却装置を提供
することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor cooling device that can be used at a high refrigerant temperature while receiving a low uneven load on the semiconductor.

〔問題点を解決するための手段〕[Means for solving problems]

上記圧力Pが容器2に力を及ぼすのはベローズ12が伸
びるからであり、この伸びを拘束することにより容器2
への力は抑制される。すなわち、圧力Pによる力はこの
拘束する構造物にかかることになる。
The pressure P exerts a force on the container 2 because the bellows 12 expands, and by restraining this expansion, the container 2
The power to is suppressed. That is, the force due to the pressure P is applied to this restraining structure.

本発明の目的は偏荷重を抑制し、半導体に本来の性能を
発揮させ、ベローズの伸びを拘束することにより達成さ
れる。
The object of the present invention is achieved by suppressing unbalanced loads, allowing the semiconductor to exhibit its original performance, and restraining the elongation of the bellows.

冷媒温度が47.6°Cより低い場合には蒸気圧は負圧
となるので、ベローズの収縮を拘束しなければならない
。このため、ベローズは伸縮の抑来が必要となる。
When the refrigerant temperature is lower than 47.6°C, the vapor pressure becomes negative, so contraction of the bellows must be restrained. For this reason, the bellows must be restrained from expanding and contracting.

〔作用〕[Effect]

ベローズの伸縮を拘束することはベローズの機能を全く
殺すことではなく、軸方向の伸縮のみを拘束し、左右方
向の首振りは自由にさせておくことを意味している。こ
のため、半導体を交換する時には、第6図で左右方向に
ベローズ12の頁を振らして半導体1と容器2の間隔を
空けて半導体を交換することができる。
Restricting the expansion and contraction of the bellows does not mean killing the function of the bellows at all, but means restricting only the expansion and contraction in the axial direction and leaving the oscillation in the left and right directions free. Therefore, when replacing the semiconductor, the bellows 12 can be swung horizontally in FIG. 6 to create a space between the semiconductor 1 and the container 2, and the semiconductor can be replaced.

このような機構にするための一方法はベローズ12の近
傍にリンク機構を設けることであり、又、冷却装置を大
形化させないためにはベローズ内部にリンク機構を取付
けることにより、これらを解決することができる。
One way to create such a mechanism is to provide a link mechanism near the bellows 12, and in order to avoid increasing the size of the cooling device, these problems can be solved by installing a link mechanism inside the bellows. be able to.

〔実施例〕〔Example〕

11以下1本発明の実施例を第1図、第2図により説明
する。図において21はベローズ12内に取付けたリン
クであり、ピン22は両端がベローズ12に固定されて
おり、中央部はリンクと係合している。このリンク21
.ピン22によりベローズ12は軸方向の伸縮が拘束さ
れる。又、ベローズの左右動はリンク21がピン22と
の係合部で回動できるため可能である。
11 Below, an embodiment of the present invention will be described with reference to FIGS. 1 and 2. In the figure, reference numeral 21 indicates a link installed within the bellows 12, and both ends of the pin 22 are fixed to the bellows 12, and the center portion engages with the link. This link 21
.. The pin 22 restricts expansion and contraction of the bellows 12 in the axial direction. Further, the bellows can be moved laterally because the link 21 can rotate at the engagement portion with the pin 22.

このリンク機構により、冷媒の蒸気圧が高くなった場合
には、リンク21に引張力が作用してベローズ21の伸
びを迎え、容器2に対し左方(第1図、第2図について
)に作用する力を無くすることが可能となる。このため
、蒸気圧によって生じる半導体接触面の偏荷重を無くし
、半導体1には均一な加圧力を与えることが可能となる
。又、リンク機構であり1回転が可能であることからベ
ローズ12の首振りは可能で、半導体交換時には何等支
障は生じない。
Due to this link mechanism, when the vapor pressure of the refrigerant becomes high, a tensile force is applied to the link 21, causing the bellows 21 to elongate and move to the left with respect to the container 2 (see Figs. 1 and 2). It becomes possible to eliminate the acting force. Therefore, it is possible to eliminate uneven load on the semiconductor contact surface caused by vapor pressure, and to apply a uniform pressing force to the semiconductor 1. Further, since it is a link mechanism and can rotate once, the bellows 12 can be oscillated, and no problem will occur when replacing semiconductors.

更に、第1図、第2図では、リンク機構をベローズ12
の内部に収納しており構造が簡単で、装置の大型化を押
えることができる。
Furthermore, in FIGS. 1 and 2, the link mechanism is a bellows 12.
The structure is simple, and it is possible to prevent the device from becoming larger.

本実施例によれば、半導体加圧力の偏荷重を抑制するこ
とができ、半導体の性能を十分にJ8揮させることがで
きる。
According to this embodiment, it is possible to suppress the unbalanced load of the semiconductor pressurizing force, and it is possible to fully demonstrate the performance of the semiconductor J8.

又、半導体交換時には半導体の加圧力を解放するが、従
来構造のリンク機構が無く、温度が低い場合にはベロー
ズの収縮量が不揃いとなり、半導体の交換に労を要した
が1本発明によれば、これも解決されることになり、作
業上の効果もある。
In addition, when replacing a semiconductor, the pressing force on the semiconductor is released, but there is no link mechanism in the conventional structure, and when the temperature is low, the amount of contraction of the bellows becomes uneven, making it laborious to replace the semiconductor. If so, this problem will also be resolved, and there will be some operational benefits.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、半導体加圧力の偏荷重を抑制すること
ができ、半導体の性能を十分に発揮させることができる
According to the present invention, it is possible to suppress the unbalanced load of the semiconductor pressing force, and the performance of the semiconductor can be fully exhibited.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の半導体冷却装置の部分断面
図、第2図は第1図の■−■矢視断面図。 第3図は従来の冷却装置の断面図、第4図は第3図の■
部拡大図、第5図は第4図のV部所面図、第6図は第3
図の■矢視図、第7図は冷媒の蒸気圧線図を示す。 ゝ、  2
FIG. 1 is a partial cross-sectional view of a semiconductor cooling device according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along the line ■-■ in FIG. Figure 3 is a cross-sectional view of a conventional cooling device, and Figure 4 is
Figure 5 is an enlarged view of the V section in Figure 4, Figure 6 is a view of the V section in Figure 4, and Figure 6 is an enlarged view of the
Figure 7 shows the vapor pressure diagram of the refrigerant.ゝ, 2

Claims (1)

【特許請求の範囲】 1、容器の外壁面に半導体を接触させ、前記半導体の発
熱によつて前記容器の内部の冷媒を沸騰させ、前記冷媒
をベローズを介して凝縮器に導き、冷却、液化する半導
体冷却装置において、前記ベローズの軸方向の伸縮を拘
束する機構を備えたことを特徴とする半導体冷却装置。 2、前記ベローズ内にリンク機構を備え、前記ベローズ
の軸方向の伸縮を拘束したことを特徴とする特許請求の
範囲第1項記載の半導体冷却装置。
[Claims] 1. A semiconductor is brought into contact with the outer wall surface of a container, a refrigerant inside the container is boiled by the heat generated by the semiconductor, and the refrigerant is led to a condenser through a bellows to be cooled and liquefied. What is claimed is: 1. A semiconductor cooling device comprising: a mechanism for restricting expansion and contraction of the bellows in the axial direction; 2. The semiconductor cooling device according to claim 1, wherein a link mechanism is provided in the bellows to restrict expansion and contraction of the bellows in the axial direction.
JP10846086A 1986-05-14 1986-05-14 Semiconductor cooling device Expired - Lifetime JPH0644597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10846086A JPH0644597B2 (en) 1986-05-14 1986-05-14 Semiconductor cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10846086A JPH0644597B2 (en) 1986-05-14 1986-05-14 Semiconductor cooling device

Publications (2)

Publication Number Publication Date
JPS62265747A true JPS62265747A (en) 1987-11-18
JPH0644597B2 JPH0644597B2 (en) 1994-06-08

Family

ID=14485327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10846086A Expired - Lifetime JPH0644597B2 (en) 1986-05-14 1986-05-14 Semiconductor cooling device

Country Status (1)

Country Link
JP (1) JPH0644597B2 (en)

Also Published As

Publication number Publication date
JPH0644597B2 (en) 1994-06-08

Similar Documents

Publication Publication Date Title
US4005297A (en) Vacuum-type circuit interrupters having heat-dissipating devices associated with the contact structures thereof
JP2014074568A (en) Loop type thermo-siphon and electronic apparatus
JPS62265747A (en) Cooler for semiconductor
CN104303293A (en) Structure for connecting cooling apparatus, cooling apparatus, and method for connecting cooling apparatus
JP2008286480A (en) Cooling system of power converter
JP6891980B2 (en) Cooling device, control method, and control program
JP3853601B2 (en) Semiconductor modules and coolers
JPS59217346A (en) Vapor cooling device
JP2006012875A (en) Cooling device of semiconductor element
JPH0621279A (en) Heat-transmitting device
JP2713008B2 (en) Cooking vessel
JPS5852153B2 (en) Cooling system
JPH0517917Y2 (en)
JP2757893B2 (en) Flat semiconductor device
JPH04196154A (en) Semiconductor cooling device
JPS5856978B2 (en) Handout Taino Reiki Yaxouchi
JP2856729B2 (en) Flat semiconductor element
SU1182693A1 (en) Sealed casing for electronic equipment
JPH0155720B2 (en)
JPS6125570Y2 (en)
JP2006317403A (en) Burn-in method and burn-in apparatus
GB2046990A (en) Mounting arrangements for high power electronic components
Doi et al. Liquid Hydrogen Target Utilizing a Small Mechanical Refrigerator
JP2606491B2 (en) Gas insulated electrical equipment
JP4375124B2 (en) Boiling cooler for semiconductor devices