JPS62265661A - Material sensitive to electromagnetic wave - Google Patents

Material sensitive to electromagnetic wave

Info

Publication number
JPS62265661A
JPS62265661A JP10756786A JP10756786A JPS62265661A JP S62265661 A JPS62265661 A JP S62265661A JP 10756786 A JP10756786 A JP 10756786A JP 10756786 A JP10756786 A JP 10756786A JP S62265661 A JPS62265661 A JP S62265661A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
synthetic lipid
electromagnetic waves
sensitive material
acyl chain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10756786A
Other languages
Japanese (ja)
Other versions
JPH0453418B2 (en
Inventor
Hiroshi Yoshioka
浩 吉岡
Kazuhiko Suzuki
鈴木 一比好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP10756786A priority Critical patent/JPS62265661A/en
Priority to EP19870106719 priority patent/EP0245799B1/en
Priority to DE8787106719T priority patent/DE3773989D1/en
Publication of JPS62265661A publication Critical patent/JPS62265661A/en
Publication of JPH0453418B2 publication Critical patent/JPH0453418B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/10Phosphatides, e.g. lecithin

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)

Abstract

PURPOSE:To obtain a material sensitive to electromagnetic waves and causing easy gelatinization by polymn. with high sensitivity on being irradiated with electromagnetic waves at a low cost in large quantities by using a specified synthetic lipid monomer as the principal constituent of a material sensitive to electromagnetic waves. CONSTITUTION:A synthetic lipid monomer having at least one acyl chain derived from eleostearic acid and represented by the formula as a hydrophobic acyl chain is used as the principal constituent of a material sensitive to electromagnetic waves. The skeleton of the monomer is phospholipid, sphingolipid, glucolipid, glyceride, glycerol ether, dialkyl phosphate, dialkyl phosphonate, alkyl phosphinate monoalkyl ester, phosphonolipid or other prescribed compound. The material sensitive to electromagnetic waves contains an auxiliary coating agent, a stabilizer, a buffer, a chelating agent, a hydrophilic binder and a diluent besides the synthetic lipid monomer as required.

Description

【発明の詳細な説明】 ■1発明の背景 (技術分野) 本発明は、電磁波感応性材料に関するものである。詳し
く述べると、本発明は重合性官能基を持つ疎水鎖を脂質
分子内に組込んだ電磁波感応性材料に関するものである
Detailed Description of the Invention (1) Background of the Invention (Technical Field) The present invention relates to an electromagnetic wave sensitive material. Specifically, the present invention relates to an electromagnetic wave-sensitive material in which a hydrophobic chain having a polymerizable functional group is incorporated into a lipid molecule.

(従来技術) 近年、紫外線感応性材料、電子線感応性材料等の電磁波
感応性材料が、電磁波エネルギー基盤材料、センサー材
料、フォトレジスト材料、画像記録要素材料等として注
目を集めている。従来、この電磁波感応性材料としては
、分子内にエポキシ構造、炭素−炭素二重結合あるいは
アジド基等の感応基を導入したポリマー、またはビス7
ジド等の電磁波反応性化合物をOH?3、C0OH基、
NH2基あるいは不飽和結合を有する電磁波に対してほ
とんどあるいは全く反応性を示さないポリマーに混合し
たもの、あるいは、ビニルモノマー、エチレン状オリゴ
マー等の感応性七ツマ−またはオリゴマーを重合開始剤
と共に用いるものなどが知られている。しかしながら、
これらの電磁波感応性材料の場合、電磁波に対する感応
性が低く増感材を併用しなければ実用的ではない場合が
多い(特公昭46−42,363号等)。また、例えば
フォトレジストの分野においてはパターン寸法の微細化
が望まれるところとなり、高解像度のフォトレジスト材
料が必要とされている。このためにレジスト膜厚を薄く
して解像性を向上させる、電磁波退色層をレジスト上に
設はコントラストを改善して解像性を向上させる等が試
みられているが、上記のごとき電磁波感応性材料におい
ては、レジスト膜厚を薄くする方法においてもピンホー
ルなどを生じることなくレジスト膜を得るためにはあま
り膜厚を薄くすることもできず、また退色層を用いる場
合には、退色層を介して電磁波を照射するため、照射時
間が長くなってしまうという欠点が生じてしまう。この
ように上記のごとき電磁波感応性材料において、その感
度、コントラスト、解像性等の性能の満足できるものを
得ることは困難であった。
(Prior Art) In recent years, electromagnetic wave-sensitive materials such as ultraviolet-sensitive materials and electron beam-sensitive materials have attracted attention as electromagnetic energy base materials, sensor materials, photoresist materials, image recording element materials, and the like. Conventionally, this electromagnetic wave-sensitive material is a polymer with an epoxy structure, a carbon-carbon double bond, or a sensitive group such as an azide group introduced into the molecule, or a bis7
OH? Electromagnetic reactive compounds such as dido? 3, C0OH group,
Those mixed with polymers that have NH2 groups or unsaturated bonds and show little or no reactivity to electromagnetic waves, or those that use sensitive polymers or oligomers such as vinyl monomers and ethylene oligomers together with polymerization initiators. etc. are known. however,
These electromagnetic wave sensitive materials have low sensitivity to electromagnetic waves and are often impractical unless a sensitizer is used in combination (Japanese Patent Publication No. 46-42,363, etc.). Furthermore, in the field of photoresists, for example, miniaturization of pattern dimensions is desired, and photoresist materials with high resolution are required. To this end, attempts have been made to reduce the resist film thickness to improve resolution, and to improve contrast and improve resolution by installing an electromagnetic wave fading layer on the resist. Even with the method of reducing the resist film thickness, it is not possible to reduce the resist film thickness very much in order to obtain a resist film without producing pinholes, and when a fading layer is used, the fading layer Since the electromagnetic waves are irradiated through the , the irradiation time becomes long. As described above, it has been difficult to obtain satisfactory performance in terms of sensitivity, contrast, resolution, etc. in the electromagnetic wave-sensitive materials described above.

最近、新しいN磁波感応性材料として重合性脂質が提唱
され、また種々のポリアセチレン型脂質が合成され数多
くの研究がなされている。ポリアセチレン型脂質の製法
に関しては、米国特許第2゜816.149号、同第2
.941.o14@および同3,065.283号など
に、紫外線照射によるゲル化挙動に関してはリングスド
ルフ[H。
Recently, polymerizable lipids have been proposed as new N-magnetic wave sensitive materials, and various polyacetylene type lipids have been synthesized and numerous studies have been conducted. Regarding the manufacturing method of polyacetylene type lipids, U.S. Pat.
.. 941. o14@ and No. 3,065.283, etc., and Ringsdorff [H.

Ringsdorr ]ら(マクロモレキュール ケミ
ストリー [Hakromol、Chem、、コ 18
0. 1059  (1979))などに、ざらに画像
形成素材としての応用に関しては米国特許第4,314
,021号などの文献に述べられている。このような重
合性脂質の場合、従来の電磁波感応性材料と異なり、脂
質上ツマ−による均質かつ非常に薄く緻密な分子層膜を
形成できるために、非常に高い解像度が得られるもので
あり、またその感度も高く重合開始剤、増感材あるいは
還元剤等の使用も不要である。しかしながら、現在開発
されているポリアセチレン型脂質の場合、分子内の共役
三重結合は極めて綿密な分子設計に基づいて純有別化学
的に多数の反応段階を経て合成されるため、実用的な而
での大量合成が困難であるばかりで、なく、最終生成物
である電磁波感応性材料が極めて高価となってしまう。
Macromolecule Chemistry [Hakromol, Chem, Co. 18
0. 1059 (1979)), and U.S. Patent No. 4,314 regarding its application as a rough image forming material.
, No. 021. In the case of such polymerizable lipids, unlike conventional electromagnetic wave-sensitive materials, extremely high resolution can be obtained because a homogeneous, extremely thin, and dense molecular layer can be formed by polymers on the lipid. Furthermore, the sensitivity is high and the use of polymerization initiators, sensitizers, reducing agents, etc. is unnecessary. However, in the case of polyacetylene-type lipids currently being developed, the conjugated triple bond within the molecule is synthesized through numerous reaction steps in a purely chemical manner based on extremely detailed molecular design, making it impractical. Not only is it difficult to synthesize on a large scale, but the final product, an electromagnetic wave-sensitive material, is extremely expensive.

ざらに、ポリアセチレン型脂質は分子内に共役三重結合
を二つ以上有し、直線的で剛直な構造のため、相転移温
度以下のゲル法相、すなわち結晶状態でしか電磁波によ
る重合を起さないという欠点があり、反応系を低温とす
るのに、かなりの費用を要した。
In general, polyacetylene-type lipids have two or more conjugated triple bonds in their molecules, and because they have a linear and rigid structure, they can only be polymerized by electromagnetic waves in the gel phase below the phase transition temperature, that is, in the crystalline state. It had the disadvantage that it required considerable expense to lower the temperature of the reaction system.

II 、発明の目的 従って、本発明は、新規な電磁波感応性材料を提供覆る
ことを目的とする。本発明はまた、光、紫外線、β線、
γ線、X線などの電磁波の照射により容易に重合、ゲル
化する感度の高い電磁波感応性材料を提供することを目
的とする。本発明はざらに合成が容易であり、かつ安価
で多量に提供できる重合性脂質を主成分とする電磁波感
応性材料を提供することを目的とする。
II. OBJECTS OF THE INVENTION Accordingly, the present invention aims to provide novel electromagnetic radiation sensitive materials. The present invention also provides light, ultraviolet light, β-rays,
The object of the present invention is to provide a highly sensitive electromagnetic wave-sensitive material that is easily polymerized and gelled by irradiation with electromagnetic waves such as γ-rays and X-rays. An object of the present invention is to provide an electromagnetic wave-sensitive material whose main component is a polymerizable lipid that is easy to synthesize and can be provided in large quantities at low cost.

上記諸口的は、疎水性アシル鎖として、一般式CH3(
CH2)3 CH=CHCH=CHCH=CH(CH2
)7 C−(I )で表わされるエレオステアリン酸由
来のアシル鎖を少なくとも一つ有する合成脂質モノマー
を主構成成分とする電磁波感応性材料により達成される
In the above terms, the hydrophobic acyl chain has the general formula CH3 (
CH2)3 CH=CHCH=CHCH=CH(CH2
)7 C-(I) This is achieved using an electromagnetic wave-sensitive material whose main component is a synthetic lipid monomer having at least one acyl chain derived from eleostearic acid.

本発明はまた、合成脂質上ツマ−が、ホスフオリピド、
スフィンゴリピド、グリコリピド、グリセリド、グリセ
ロールエーテル、ジアルキルホスフェート、ジアルキル
ホスフェ−ト ホスフィネートモノアルキルエステル、ホスフオノリピ
ド、N、N −二置換ジメチルアンモニウムハライド、
トリアルキルメチルアンモニウムハライド、テトラアル
キルアンモニウムハライド、ジアルキルスルホサクシン
酸エステルおよび2,3−シアシロキシスクシン酸から
なる群から選ばれたいずれかのものの骨格を有するもの
である電磁波感応性材料を示すものである。
The present invention also provides that the synthetic lipid polymer is a phospholipid,
Sphingolipid, glycolipid, glyceride, glycerol ether, dialkyl phosphate, dialkyl phosphate phosphinate monoalkyl ester, phosphonolipid, N,N-disubstituted dimethylammonium halide,
An electromagnetic wave-sensitive material having a skeleton selected from the group consisting of trialkylmethylammonium halide, tetraalkylammonium halide, dialkylsulfosuccinic acid ester, and 2,3-cyasyloxysuccinic acid. It is.

本発明はさらに、合成脂質上ツマ−が一般式[ただし式
中Rは十〇H2±2 N” (CH3)3、+CH2÷
2N0H3または一〇H20H(N0ト13)−Coo
oである。]で表わされるエレオステアリン酸ホスフオ
リピドで電磁波感応性材料を示すものである。本発明は
さらにまた一般式%式%) る電磁波感応性材料を示すものである。
The present invention further provides that the synthetic lipid compound has the general formula [wherein R is 10H2±2N'' (CH3)3, +CH2÷
2N0H3 or 10H20H (N0 to 13) -Coo
It is o. ] This is an eleostearic acid phospholipid, which is an electromagnetic wave-sensitive material. The present invention further provides an electromagnetic wave sensitive material having the general formula %.

IIl、発明の詳細な説明 以下本発明を実施例に基づきより詳細に説明する。IIl. Detailed Description of the Invention The present invention will be explained in more detail below based on examples.

本発明の電磁波感応性JtAお1は、疎水性アシル鎖と
して、一般式(I) CH3(CH2)3 CH=CHCH=CHCH=CH
(CH2)7C−(I )で表わされるエレオステアリ
ン酸由来のアシル鎖を少なくとも一つ有する合成脂質上
ツマ−を主構成成分とするものである。
The electromagnetic wave-sensitive JtA 1 of the present invention has the general formula (I) CH3(CH2)3 CH=CHCH=CHCH=CH as a hydrophobic acyl chain.
The main component is a synthetic lipid polymer having at least one acyl chain derived from eleostearic acid represented by (CH2)7C-(I).

本明細門において、「脂質モノマー」とは、親水性の極
性部と少なくとも一つの長鎖脂肪族アシル鎖からなる疎
水性の非極性部を有する両親媒性化合物で、例えば、ホ
スファチジルコリン、ボスフ7チジルエタノールアミン
、ホスファチジルセリンおよびホスファチジルグリセロ
ールなどのようなホスフオリピド類、スフィンゴミエリ
ンなどのようなスフィンゴリピド類、セレブドシド、植
物グリコリピドおよびガングリオシドのようなグリコリ
ピド類、ホスフォノグリセリドなどのようなグリセリド
類、グリセロールエーテル類、ジアルキルホスフェート
類、ジアルキルホスフォネート類、アルキルホスフィネ
ートモノアルキルエステル類、セラミド−2−7ミノエ
チルホスフオン酸およびホスフォノグリセリドなどのよ
うなホスフォノリピド、N、N −2−二置換ジメチル
アンモニウムハライド、トリアルキルメチルアンモニウ
ムハライドおよびテトラアルキルアンモニウムハライド
のようなアルキルアンモニウムハライド類、ジアルキル
スルホサクシジ酸エステル類、2,3−シアシロキシス
クシン酸類等の脂質ないし脂質類縁化合物の骨格を有す
るものをさす。なおこれらのうらアルキルアンモニウム
ハライド類などの骨格を有するものとは、その骨格とな
る化合物のアルキル鎖の端部あるいは側部にエステル結
合によリアシル鎖が結合しているような横這のものであ
る。また上記脂質ないし脂質類縁化合物群の名称は、脂
質上ツマ−の骨格となる溝造を示すためのものであり、
従ってその置換体および類似化合物を含む広い意味で解
釈されるべきで、例えば該名称において「アルキル」で
表わした部分がアルケニル、アルカジェニル、アルカジ
ェニル、アルキニルなどの不飽和炭化水素基である化合
物も含まれる。
As used herein, the term "lipid monomer" refers to an amphiphilic compound having a hydrophilic polar part and a hydrophobic non-polar part consisting of at least one long-chain aliphatic acyl chain, such as phosphatidylcholine, bosph-7-thiol, etc. Phospholipids such as diethanolamine, phosphatidylserine and phosphatidylglycerol, sphingolipids such as sphingomyelin, glycolipids such as ceredoside, plant glycolipids and gangliosides, glycerides such as phosphonoglycerides, glycerol ethers N,N-2-disubstituted dimethylammonium Those having a skeleton of lipids or lipid-related compounds such as halides, alkyl ammonium halides such as trialkylmethylammonium halides and tetraalkylammonium halides, dialkyl sulfosuccinates, and 2,3-cyasyloxysuccinic acids. As expected. These uraalkylammonium halides and other compounds that have a skeleton are those that have a horizontal structure in which a lyacyl chain is bonded to the end or side of the alkyl chain of the compound that serves as the skeleton through an ester bond. be. In addition, the names of the above lipids or lipid-related compound groups are used to indicate the groove structure that forms the skeleton of the lipid epidermis.
Therefore, it should be interpreted in a broad sense to include its substituted products and similar compounds, and includes, for example, compounds in which the moiety represented by "alkyl" in the name is an unsaturated hydrocarbon group such as alkenyl, alcadenyl, alcadenyl, alkynyl, etc. .

本発明の電磁波感応性材料の主h1成成分である一般式
(I)で表わされる疎水性アシル鎖を少なくとも一つ有
する合成脂質上ツマ−は、上記のごとき[脂質上ツマ−
Jの一種であってその疎水性アシル鎖が合成的に導入さ
れたものである。この合成脂質上ツマ−としては、特に
、一般式(III )[ただし式中、Rは十〇H2±2
 No(CH3)3 (ホスファチジルコリン)、+C
H2±2 N”R3(ケファリン)または−CH2CH
(N”R3>−Coo(ホスファデジルセリン)であり
、またR+ 、R2は飽和または不飽和炭化水素基であ
る。]で表わされる生体脂質としても代表的なホスフォ
リピド、ざらに好ましくはホスファチジルコリンの骨格
を有するものが望まれる。
The synthetic lipid-based polymer having at least one hydrophobic acyl chain represented by the general formula (I), which is the main h1 component of the electromagnetic wave-sensitive material of the present invention, can be used as the above-mentioned [lipid-based polymer].
It is a type of J and its hydrophobic acyl chain has been synthetically introduced. In particular, the synthetic lipid compound has the general formula (III) [wherein R is 10H2±2
No(CH3)3 (phosphatidylcholine), +C
H2±2 N”R3 (cephalin) or -CH2CH
(N''R3>-Coo (phosphadecylserine), and R+ and R2 are saturated or unsaturated hydrocarbon groups.) Typical biological lipids are phospholipids, preferably phosphatidylcholine. One with a skeleton is desired.

一般式(1)で表わされる疎水性アシル基の、上記のよ
うな骨格構造を有する脂質モノマーへの導入は、エレオ
ステアリン酸を出発物質として公知の方法により容易に
行なうことができる。このエレオステアリン酸は一般式
(IN CH3(CH2)3 CH=CliCH:CHCH=C
H(CH2)y C00N (I −)で表わされる第
9.11.13位に共役二重結合を有する天然の不飽和
脂肪酸であり、桐油中から容易に抽出でき、混合脂肪酸
の80〜95重量%を占めている。この桐油を加水分解
して得られる桐油脂肪酸中にはエレオステアリン酸が6
0重量%以上、好ましくは80重量%以上含有され、残
余成分としては飽和酸、オレイン酸、リノール酸等が含
まれている。本発明の電磁波感応性樹脂を調製するため
に、この桐油脂肪酸をそのまま天然不飽和脂肪酸として
用いてもよく、また必要によりカラムクロマトグラフィ
ーおよび/または再結晶等で精製してエレオステアリン
酸のみを取り出して用いてもよい。
The hydrophobic acyl group represented by general formula (1) can be easily introduced into a lipid monomer having the above-described skeleton structure by a known method using eleostearic acid as a starting material. This eleostearic acid has the general formula (IN CH3(CH2)3 CH=CliCH:CHCH=C
It is a natural unsaturated fatty acid with a conjugated double bond at the 9th, 11th, and 13th position represented by H(CH2)y C00N (I -), and it can be easily extracted from tung oil and contains 80 to 95% by weight of mixed fatty acids. %. The tung oil fatty acid obtained by hydrolyzing this tung oil contains 6 eleostearic acids.
It is contained in an amount of 0% by weight or more, preferably 80% by weight or more, and the remaining components include saturated acid, oleic acid, linoleic acid, etc. In order to prepare the electromagnetic wave-sensitive resin of the present invention, this tung oil fatty acid may be used as it is as a natural unsaturated fatty acid, or if necessary, it may be purified by column chromatography and/or recrystallization to obtain only eleostearic acid. You may take it out and use it.

例えば、ホスフtリピドの骨格ヘエレオステアリン酸よ
り一般式(I>で表わされるアシル鎖を導入するには、
以下のようにして行われる。もう一つの出発物質となる
脂質の親水性極性部は、天然のホスフォリピド(その多
くは、飽和脂肪族アシル鎖の疎水性非極性部を有する。
For example, to introduce an acyl chain represented by the general formula (I>) from the backbone of phosphat lipid,
This is done as follows. Another starting material, the hydrophilic polar portion of a lipid, is a natural phospholipid, many of which have a hydrophobic nonpolar portion of a saturated aliphatic acyl chain.

)より容易にかつ大量に得ることができる。天然のホス
フォリピドは加水分解されて、特にその金属錯体、例え
ばカドミウム等の金属の錯体としてエレオステアリン酸
とのエステル化反応に供される。エステル化反応は、天
然のホスフォリピドの加水分解物ないしその金属錯体を
クロロホルム、四塩化炭素、塩化メチレン等の媒体中に
加えて撹拌−ドに懸濁させ、この懸濁液中にエレオステ
アリン酸の酸無水物誘導体をホスフォリピド加水分解物
100重量部あたり200〜400重量部、好ましくは
300〜370手量部および触媒を適当量加え、反応系
内をアルゴン、窒素、ヘリウム等の不活性ガスで置換し
た債、5〜40″C1好ましくは15〜25°Cの温度
で暗所にて24〜90時間、好ましくは40〜72時間
反応させることで行なわれる。
) can be obtained more easily and in large quantities. Natural phospholipids are hydrolyzed and subjected to an esterification reaction with eleostearic acid, especially as their metal complexes, such as cadmium. In the esterification reaction, a natural phospholipid hydrolyzate or its metal complex is added to a medium such as chloroform, carbon tetrachloride, or methylene chloride and suspended in a stirred solution, and eleostearic acid is added to this suspension. 200 to 400 parts by weight, preferably 300 to 370 parts by weight, and an appropriate amount of a catalyst per 100 parts by weight of the phospholipid hydrolyzate are added, and the reaction system is heated with an inert gas such as argon, nitrogen, or helium. The reaction is preferably carried out at a temperature of 15-25°C in the dark for 24-90 hours, preferably 40-72 hours.

触媒としては4−ジメチルアミノピリジンなどがあり、
ボスフオリピド加水分解物100重量部あたり50〜1
00重量部、好ましくは80〜85重量部使用される。
Catalysts include 4-dimethylaminopyridine,
50 to 1 per 100 parts by weight of bospholipid hydrolyzate
00 parts by weight, preferably 80 to 85 parts by weight.

反応後、白色の不溶物が析出するので濾去し、)d媒を
空温で減圧留去後、クロロホルム/メタノール/水の混
合溶媒(容量比=415/1 )に再溶解してイオン交
換樹脂と接触させ、ついで洗い落す。混合溶媒を減圧留
去後、少量のクロロホルムに溶解し、シリカゲルカラム
等によりクロロホルム、メタノール混合溶媒で精製し、
一般式(II ) [ただし式中Rは十〇H2±2 No (CH3)3、
Φ + CH2±2NH3または一〇82 CH(N”R3
)−Co00などである。]で表わされるエレオステア
リン酸ホスフォリビドを得る。
After the reaction, white insoluble matter precipitates, which is filtered off, and the medium d is distilled off under reduced pressure at air temperature, and then redissolved in a mixed solvent of chloroform/methanol/water (volume ratio = 415/1) for ion exchange. Contact with resin and then wash off. After distilling off the mixed solvent under reduced pressure, it was dissolved in a small amount of chloroform and purified using a chloroform and methanol mixed solvent using a silica gel column, etc.
General formula (II) [wherein R is 10H2±2 No (CH3)3,
Φ + CH2±2NH3 or 1082 CH(N”R3
)-Co00, etc. ] Eleostearic acid phosphoribide is obtained.

得られる電磁波感応性材料は、使用する出発原料によっ
て異なり、例えば卵黄レシチンを使用する場合には、一
般式(Iv)で示されるエレオステアリン酸ホスファチ
ジルコリン、またケファリンやホスファチジルセリン等
を使用した場合にはこれらに対応する電磁波感応性材料
が得られる。
The electromagnetic wave-sensitive material obtained varies depending on the starting material used. For example, when using egg yolk lecithin, phosphatidylcholine eleostearate represented by general formula (Iv), or when using cephalin or phosphatidylserine, etc. Electromagnetic wave sensitive materials corresponding to these can be obtained.

また、本発明の電磁波感応性材料中には、上記のごとき
合成脂質モノマーの他に、コーティング助剤、安定剤、
緩衝剤、キレート化剤などの添加剤、あるいは例えばゼ
ラチン、ポリビニルアルコール、ポリ(N−ビニル−2
−ごロリドン)、ポリアクリルアミドおよびアクリルア
ミド系共重合体、ならびにアクリル系重合体およびアク
リル系共重合体などの親水性バインダー、あるいは希釈
剤などが含まれ得る。
In addition to the above-mentioned synthetic lipid monomers, the electromagnetic wave-sensitive material of the present invention also contains coating aids, stabilizers,
Additives such as buffers, chelating agents, or e.g. gelatin, polyvinyl alcohol, poly(N-vinyl-2
hydrophilic binders such as polyacrylamide and acrylamide copolymers, acrylic polymers and copolymers, or diluents.

このようにして得られる本発明の電磁波感応性材料は、
アシル鎖として一般式(I>で表わされるような鎖中に
3個の共役二重結合を有するエレオステアリン酸由来の
アシル鎖を有する合成脂質上ツマ−を主構成成分とする
ので、光、紫外線、β線、γ線、X線などの電磁波、特
に紫外線を照射することによりこの疎水性アシル鎖中の
3個の共役二重結合が容易に架橋反応を起し合成脂質上
ツマー同士が重合してゲル化する。この共役トリエン型
の合成脂質上ツマ−は、その吸光スペクトルの極大波長
が2701m以上の比較的低エネルギー位置にあり(第
2図参照)、それ自身が光エネルギーによる重合を行う
ため重合開始剤や増感剤、還元剤などは必要としない。
The electromagnetic wave sensitive material of the present invention obtained in this way is
Since the main component is a synthetic lipid having an acyl chain derived from eleostearic acid and having three conjugated double bonds in the chain as represented by the general formula (I>), it By irradiating electromagnetic waves such as ultraviolet rays, β rays, γ rays, and X-rays, especially ultraviolet rays, the three conjugated double bonds in this hydrophobic acyl chain easily cause a crosslinking reaction, and the polymers on the synthetic lipid polymerize together. This conjugated triene-type synthetic lipid polymer has a maximum wavelength of 2701 m or more in its absorption spectrum, which is a relatively low energy position (see Figure 2), and it itself cannot be polymerized by light energy. Because this process is carried out, polymerization initiators, sensitizers, reducing agents, etc. are not required.

さらに従来のポリアセチレン型脂質がゲル−液晶相転移
温度以下の結晶状態でしか重合しないのに対し、この共
役トリエン型の合成脂質モノマーは、疎水性アシル鎖が
比較的柔軟な溝造であるため、相転移温度以上必るいは
以下のいかなる状態でも電磁波による重合反応が生起す
る。
Furthermore, while conventional polyacetylene-type lipids polymerize only in a crystalline state below the gel-liquid crystal phase transition temperature, this conjugated triene-type synthetic lipid monomer has a relatively flexible grooved hydrophobic acyl chain. Polymerization reactions caused by electromagnetic waves occur in any state above or below the phase transition temperature.

本発明の電磁波感応性vI利は、電磁波照射を受ける前
には、クロロホルム、エーテル、メタノール、ジメヂル
ホルムアミド等に可溶であるが、照射を受は重合しゲル
化した部分は、これらの溶媒に対して全く不溶となり、
電磁波照射によって著しい溶解度の差が生じるものであ
る。
The electromagnetic wave sensitivity of the present invention is that before being irradiated with electromagnetic waves, it is soluble in chloroform, ether, methanol, dimethylformamide, etc.; completely insoluble in
A significant difference in solubility occurs due to electromagnetic irradiation.

本発明の電磁波感応性材料は、種々の用途に用いられ得
るが、例えば画像形成要素として用いる場合には、電磁
波感応性材料を構成する合成脂質上ツマ−を種々の基体
、例えばガラス質月利、合成樹脂月利、繊維材料あるい
はゴム質材料等の表面に担持させることにより得られる
。担持方法としては種々あるが、簡単には合成脂質上ツ
マ−を適当な溶媒に溶解した溶液を基体上に被覆し、溶
媒を蒸発させ−ることで行なうことができる。この画像
形成要素に写真ネガ等を通して、紫外線などの電磁波を
照射後、溶媒で七ツマ−を洗い落せば、露光部分のみが
架橋ポリマーとして基体上に残る。
The electromagnetic wave-sensitive material of the present invention can be used for various purposes. For example, when it is used as an image forming element, the synthetic lipid material constituting the electromagnetic wave-sensitive material can be coated on various substrates, such as glass material. It can be obtained by supporting it on the surface of synthetic resin, fibrous material, rubber material, etc. Although there are various methods for supporting the support, a simple method is to coat the substrate with a solution in which a synthetic lipid-based polymer is dissolved in a suitable solvent, and then evaporate the solvent. When this image forming element is exposed to electromagnetic waves such as ultraviolet rays through a photographic negative or the like, and the 7-mer is washed off with a solvent, only the exposed portion remains on the substrate as a crosslinked polymer.

基体として疎水性表面材ト1を用いれば、合成脂質上ツ
マ−の疎水性の非極性85が基体表面へ配向し、親水性
の極性部が外側に向いているので、露光部分は、そのま
ま親水性をとどめており、直接水溶性インクをつけて紙
面等に画像を写し取ることも可能となる。
If the hydrophobic surface material 1 is used as a substrate, the hydrophobic non-polar part 85 of the synthetic lipid layer will be oriented toward the substrate surface, and the hydrophilic polar part will face outward, so the exposed area will remain hydrophilic. This makes it possible to directly apply water-soluble ink and transfer images onto paper, etc.

本発明の電磁波感応性材料は、また水面上に展開するこ
とで単分子層膜を形成させることができる。この状態で
紫外線を照射すれば単分子層膜状態で重合反応が進行し
、高分子超薄膜を得ることができる。ざらに必要により
ラングミュアー−プロージェット法(Langmuir
−Blodgett  method。
The electromagnetic wave-sensitive material of the present invention can also be spread on a water surface to form a monolayer film. If ultraviolet rays are irradiated in this state, the polymerization reaction will proceed in a monomolecular layer state, and an ultra-thin polymer film can be obtained. If necessary, the Langmuir-Ploget method may be used.
-Blodgett method.

LB法)により単分子層が規則正しく累積された累積膜
とすることもできる。このような超薄膜は非常にその解
像性が良好なことからもIC−FLSIの絶縁膜をはじ
めとするエレクトロニクス分野、さらには分子デバイス
への応用も期待される。
It is also possible to form a cumulative film in which monomolecular layers are regularly accumulated using the LB method. Since such ultra-thin films have very good resolution, they are expected to be applied to the electronics field, including IC-FLSI insulating films, and even to molecular devices.

さらに本発明の電磁波感応性材料を構成する合成脂71
七ツマ−は、水性溶媒中に超音波処理等で分散させると
、自動的に脂質二組層構造よりなる小胞体、いわゆるリ
ポソームを形成する。このリポソーム状態でも電磁波照
射により重合反応が生起する。従ってこのようなリポソ
ームを多数含有する親水性バインダー等を電磁波感応性
材料として用いることができる。この場合、リポソーム
懸濁液の紫外吸収スペクトルを観測し、共役トリエンに
基づく紫外吸収バンドにおける吸光度の減少より重合反
応の進行を追跡することができる。
Furthermore, synthetic resin 71 constituting the electromagnetic wave sensitive material of the present invention
When Nanatsumar is dispersed in an aqueous solvent by ultrasonication or the like, it automatically forms a so-called liposome, which is an endoplasmic reticulum consisting of a lipid bilayer structure. Even in this liposome state, a polymerization reaction occurs upon irradiation with electromagnetic waves. Therefore, a hydrophilic binder containing a large number of such liposomes can be used as an electromagnetic wave-sensitive material. In this case, the progress of the polymerization reaction can be monitored by observing the ultraviolet absorption spectrum of the liposome suspension and observing the decrease in absorbance in the ultraviolet absorption band based on conjugated triene.

つぎに実施例に基づき本発明をより具体的に調製する。Next, the present invention will be more specifically prepared based on Examples.

実施例 エレオステアリン酸の無水物の製造 エレオステアリン180(lに相当する桐油脂肪酸を脱
水蒸留直後の四塩化炭素600dに溶解した。この溶液
にジシクロへキシルカルボジイミド32.6Gを加え、
容器内をアルゴンガスで置換して密封し、そのまま25
℃で24時間放置く時々撹拌)した。不溶成分を濾別し
、蒸留乾固した。
Example Preparation of anhydride of eleostearic acid Tung oil fatty acid corresponding to 180 (l) of eleostearin was dissolved in 600 d of carbon tetrachloride immediately after dehydration distillation. 32.6 G of dicyclohexylcarbodiimide was added to this solution.
Purge the inside of the container with argon gas, seal it, and leave it for 25 minutes.
The mixture was allowed to stand at ℃ for 24 hours (with occasional stirring). Insoluble components were filtered off and distilled to dryness.

これをジクロロメタンを展開溶媒としてシリカゲルで精
製したところ、29%の収率でエレオステアリン酸無水
物が得られた。
When this was purified with silica gel using dichloromethane as a developing solvent, eleostearic anhydride was obtained in a yield of 29%.

卵黄レシチン(キューピーPL−100>45gを1悦
水エーテル450IIJiに溶解し、不溶物を濾別後、
10%濃度のテトラブチルアンモニウムヒドロキシドの
メタノール溶液50IIIIを加え、25°Cの温度で
激しく振とうした。反応の進行に伴なって溶液は白濁し
、次第に層分離してくるので、これを静置し、褐色油状
物を充分沈澱させ、上澄をデカンテーションした。褐色
油状物を脱水エーテル100IIJlで3回洗浄したの
ら、脱水メタノール125dk:加熱溶解させ、沸点還
流下に脱色剤1gを加えて熱時濾過した。冷却後、濾液
に脱水エーテル250mを加え、析出沈澱を残してデカ
ンテーションし、沈澱を熱140mに溶解させた。
Egg yolk lecithin (Kewpie PL-100 > 45g was dissolved in 1 Yuesui Ether 450IIJi, and after filtering off the insoluble matter,
A 10% strength methanol solution of tetrabutylammonium hydroxide 50III was added and vigorously shaken at a temperature of 25°C. As the reaction progressed, the solution became cloudy and the layers gradually separated, so the solution was allowed to stand, a brown oil was sufficiently precipitated, and the supernatant was decanted. The brown oil was washed three times with 100 II Jl of dehydrated ether, then heated and dissolved in 125 dK of dehydrated methanol, 1 g of decolorizer was added under reflux at the boiling point, and the mixture was filtered while hot. After cooling, 250 ml of dehydrated ether was added to the filtrate, the precipitate was left behind and decanted, and the precipitate was dissolved in 140 ml of hot water.

これに塩化カドミウム5/2水和物8gを純水20dに
溶解したものを加え、さらに活性炭2.5gおよび脱色
剤2gを加えて沸点還流後、濾紙および0.25μmミ
リポアフィルタ−にて濾過した。これにエタノール10
0〜150IIIlを加えたところ、着色沈澱が生成し
たので、これを除去して白濁溶液のみを採取し、ざらに
エタノール100〜150mを加えて激しく振とうした
ところ、白色結晶が析出してきた。0〜5℃の温度で一
夜静置債、析出結晶を濾集し、脱水メタノール、脱水エ
ーテルおよび1悦水ベンゼンの順で結晶を洗浄し、ざら
に五酸化リン上で80℃の温度で終夜真空乾燥したとこ
ろ、56%の収率でホスファチジルコリン加水分解物の
カドミウム錯体が得られた。
To this was added 8 g of cadmium chloride hemihydrate dissolved in 20 d of pure water, and then 2.5 g of activated carbon and 2 g of a decolorizing agent were added, and after refluxing to the boiling point, the mixture was filtered using filter paper and a 0.25 μm Millipore filter. . Add 10 ethanol to this
When 0 to 150 m of III was added, a colored precipitate was formed, which was removed and only a cloudy white solution was collected. When 100 to 150 m of ethanol was added to a colander and shaken vigorously, white crystals were precipitated. Leave to stand overnight at a temperature of 0 to 5°C, collect the precipitated crystals by filtration, wash the crystals in the order of dehydrated methanol, dehydrated ether and 100% benzene, and rinse over phosphorus pentoxide overnight at a temperature of 80°C. When dried under vacuum, a cadmium complex of phosphatidylcholine hydrolyzate was obtained with a yield of 56%.

エステル化による合成脂質上ツマ−の製造卵黄レシチン
加水分解物カドミウム錯体6.74gに、蒸留直後のク
ロロホルム160IIdlを加えて撹拌下に懸濁させた
。これに桐油脂肪酸無水物24.70gおよび触媒であ
る4−ジメチルアミノピリジン5.61gを加え、容器
内をアルゴンガスで置換したのち、密栓し、暗所で25
°Cの温度で60時間攪拌しながら反応させた。このと
き、白色不溶物が析出したので、これを濾別し、溶媒を
室温下減圧留去後、メタノール/クロロホルム/水=5
/4/11合溶IR1ooIdに再溶解させる。この溶
液を再度濾過して濾液をイオン交換樹脂ΔG−501−
X8 (D>  (Bio −Rad )カラムに注入
し、先の混合溶tR500mで洗い落した。
Preparation of synthetic lipid supernatant by esterification To 6.74 g of egg yolk lecithin hydrolyzate cadmium complex was added 160 II dl of chloroform immediately after distillation and suspended under stirring. To this, 24.70 g of tung oil fatty acid anhydride and 5.61 g of 4-dimethylaminopyridine as a catalyst were added, and after replacing the inside of the container with argon gas, the container was tightly stoppered and kept in the dark for 25 minutes.
The reaction was allowed to proceed for 60 hours with stirring at a temperature of .degree. At this time, a white insoluble material was precipitated, so this was filtered off, the solvent was distilled off under reduced pressure at room temperature, and methanol/chloroform/water = 5.
/4/11 Redissolve in combined IR1ooId. This solution was filtered again and the filtrate was collected using ion exchange resin ΔG-501-
It was injected into a X8 (D> (Bio-Rad) column and washed off with the previously mixed solution tR500m.

この溶媒を25℃の温度で減圧留去したのら、クロロホ
ルムに再溶解してシリカゲルカラムによる精製を行なっ
たところ、30%の収率でエレオステアリン酸ホスフ1
チジルコリンが得られた。その赤外線吸収スペク1〜ル
は、第1図のとおりであった。
After distilling off this solvent under reduced pressure at a temperature of 25°C, it was redissolved in chloroform and purified using a silica gel column.
Tidylcholine was obtained. Its infrared absorption spectrum was as shown in FIG.

画像形成要素の製造例 上記実施例で得られたエレオステアリン酸ホスフ1ジル
コリン100fIIIJをメタノール10−に溶解して
1重量%のエレオステアリン酸ホスファジルコリンのメ
タノール溶液を調製した。この溶液をポリスチレン仮に
塗布して窒素雰囲気上暗所にて乾燥した。このポリスチ
レン板に直径2cmの丸穴を開けたポール紙を重ねて7
5W水銀灯に窒素雰囲気下30’Cで6時間露光した。
Preparation Example of Imaging Element 100fIIIJ of phosphazylcholine eleostearate obtained in the above example was dissolved in 10-methanol to prepare a 1% by weight methanol solution of phosphazylcholine eleostearate. This solution was temporarily coated with polystyrene and dried in a dark place under a nitrogen atmosphere. Layer pole paper with a round hole of 2 cm in diameter on this polystyrene plate.
It was exposed to a 5W mercury lamp for 6 hours at 30'C in a nitrogen atmosphere.

この後ポリスチレンをメタノールで洗浄し、未重合部分
を除去し乾燥した。残ったうきぼり状の部分に水溶性イ
ンキをつけて紙面に圧着したところ、直径2cmの円形
像が紙面上に得られた。
Thereafter, the polystyrene was washed with methanol, unpolymerized portions were removed, and the polystyrene was dried. When water-soluble ink was applied to the remaining ridge-shaped portion and pressed onto the paper surface, a circular image with a diameter of 2 cm was obtained on the paper surface.

合成脂質モノマーからのリポソームの′IEJ造エレオ
ステアリン酸ホスファチジルコリン200mgをクロロ
ホルム6dに溶解した。このようにして得られた脂質溶
液をナス型フラスコに入れ、エバポレータで溶媒を完全
に除去してナス型フラスコ底面に脂質膜を形成させた。
IEJ construction of liposomes from synthetic lipid monomers 200 mg of phosphatidylcholine eleostearate was dissolved in chloroform 6d. The lipid solution thus obtained was placed in an eggplant-shaped flask, and the solvent was completely removed using an evaporator to form a lipid film on the bottom of the eggplant-shaped flask.

これにヘベスバツフ?(Hepes buffer) 
 (10mM、 pH8,0> 10yt)を添加して
ポルテックスミキサーで振とうした後、チップ型超音波
照射機(40〜50W>でアルゴン気流下に10分間処
理した。処理液は白濁状態から透明分散液となり、リポ
ソームの形成が確認された。また、走査型電子顕微鏡に
より直径0.2〜0.5μmの球状粒子が観察され、リ
ポソームの形成が確認された。
Hebesbatshu on this? (Hepes buffer)
(10mM, pH 8,0 > 10yt) was added and shaken with a portex mixer, and then treated with a chip-type ultrasonic irradiation machine (40-50W) for 10 minutes under an argon stream.The treated solution changed from a cloudy state to a clear state. A dispersion liquid was formed, and the formation of liposomes was confirmed. Furthermore, spherical particles with a diameter of 0.2 to 0.5 μm were observed using a scanning electron microscope, and the formation of liposomes was confirmed.

リポソームの重合例 75Wの水銀ランプを光源として照射路1i112CI
111サンプルtie 10mc+/mとし、脱気下に
おいて、水温25°Cの水浴中で紫外線を照射したとこ
ろ、第2図に示すようにトリエンに基づく272nmに
おける吸光度が照射時間の経過とともに減少しているこ
とから重合が退行していることが確認された。
Polymerization example of liposomes Irradiation path 1i112CI using a 75W mercury lamp as a light source
When sample 111 was irradiated with ultraviolet rays in a water bath with a water temperature of 25°C under deaerated conditions with a tie of 10 mc+/m, the absorbance at 272 nm based on triene decreased with the passage of irradiation time, as shown in Figure 2. This confirmed that the polymerization had regressed.

TV、発明の効果 以上述べたように本発明は、疎水性アシル鎖として一般
式(I>で表わされるエレオステアリン酸由来のアシル
鎖を少なくとも一つ有する合成脂質上ツマ−を主構成成
分とする電磁波感応性材料であるから、その感度が高く
、光、紫外線、β線、γ線、X線などの電磁波の照射に
より容易に重合、ゲル化するものであり、電磁波エネル
ギー基盤材料、セン丈−U料、〕tトレジスト材料、画
像記録要素v1利として好適に用いられるものであり、
また天然に多量に存在する出発物質より容易に合成でき
価格的にも安価でかつ人足に提供できるものである。ざ
らに本発明の電磁波感応性材料を構成する合成脂質上ツ
マ−の感応部位は、共役トリエン構造を有し、従来のポ
リアセチレン型脂質モノマーと比較してその分子構造が
より柔軟なこともあって、該合成脂質モノマーは相転移
温度以上あるいは以下のいかなる状態にあっても電磁波
照射により重合反応を開始するため、ポリアセチレン型
脂質モノマーの場合のように反応系を相転移温度以下の
低温に保つ必要もない。また該合成脂質上ツマ−は、例
えば水面上に展開することで非常に薄い単分子層膜を形
成させることができ解像性を非常に高くすることが可能
である。
TV, Effects of the Invention As described above, the present invention provides a synthetic lipid-based polymer having at least one acyl chain derived from eleostearic acid represented by the general formula (I>) as a hydrophobic acyl chain as a main component. Because it is an electromagnetic wave-sensitive material, it has high sensitivity and easily polymerizes and gels when irradiated with electromagnetic waves such as light, ultraviolet rays, β-rays, gamma-rays, and X-rays. - It is suitably used as a U material, a resist material, an image recording element v1,
Furthermore, it can be easily synthesized from starting materials that exist in large amounts in nature, is inexpensive, and can be provided to humans. Roughly speaking, the sensitive site on the synthetic lipid that constitutes the electromagnetic wave-sensitive material of the present invention has a conjugated triene structure, and its molecular structure is more flexible than that of conventional polyacetylene-type lipid monomers. Since the synthetic lipid monomer starts a polymerization reaction by electromagnetic irradiation even if it is in any state above or below the phase transition temperature, it is necessary to keep the reaction system at a low temperature below the phase transition temperature, as in the case of polyacetylene type lipid monomers. Nor. In addition, the synthetic lipid membrane can be spread on, for example, a water surface to form a very thin monolayer film and can provide very high resolution.

上記の効果は、合成脂質上ツマ−がホスフォリピド、ス
フィンゴリピド、グリコリピド、グリセリド、グリセロ
ールエーテル、ジアルキルホスフェート、ジアルキルホ
スフォネート、アルキルホスフィネートモノアルキルエ
ステル、ボスフオノリピド、N、N −二置換ジメチル
アンモニウムハライド、トリアルキルメチルアンモニウ
ムハライド、テトラアルキルアンモニウムハライド、ジ
アルキルスルホサクシン酸エステルおよび2,3−シア
シロキシスクシン酸からなる群から選ばれたいずれかの
ものの骨格を有するものである場合、さらには合成脂質
モノマーが一般式(II)で表わされるエレオステアリ
ン酸ホスフォリピド、特にエレオステアリン酸ホスフ?
チジルコリンである場合にさらに優れたものとなる。
The above-mentioned effects can be obtained when synthetic lipids such as phospholipids, sphingolipids, glycolipids, glycerides, glycerol ethers, dialkyl phosphates, dialkyl phosphonates, alkyl phosphinate monoalkyl esters, bosphonolipids, N,N-disubstituted dimethylammonium halides, When the monomer has a skeleton selected from the group consisting of trialkylmethylammonium halide, tetraalkylammonium halide, dialkylsulfosuccinic acid ester, and 2,3-cyasyloxysuccinic acid, and furthermore, a synthetic lipid monomer. Eleostearic acid phospholipid represented by the general formula (II), especially eleostearic acid phospholipid?
It is even better when it is tidylcholine.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の電磁波感応性材料の一実施例の赤外吸
収スペクトルチャートであり、また第2図は本発明の電
磁波感応性材料から形成されるリポソームの紫外線照射
による重合の程度を示す紫外線吸収スペクトルの一例を
示すチャートである。
Fig. 1 is an infrared absorption spectrum chart of an example of the electromagnetic wave-sensitive material of the present invention, and Fig. 2 shows the degree of polymerization of liposomes formed from the electromagnetic wave-sensitive material of the present invention by ultraviolet irradiation. It is a chart showing an example of an ultraviolet absorption spectrum.

Claims (4)

【特許請求の範囲】[Claims] (1)疎水性アシル鎖として、一般式( I )▲数式、
化学式、表等があります▼( I ) で表わされるエレオステアリン酸由来のアシル鎖を少な
くとも一つ有する合成脂質モノマーを主構成成分とする
電磁波感応性材料。
(1) As a hydrophobic acyl chain, general formula (I)▲mathematical formula,
Chemical formulas, tables, etc. are available ▼ (I) An electromagnetic wave-sensitive material whose main component is a synthetic lipid monomer having at least one acyl chain derived from eleostearic acid.
(2)合成脂質モノマーが、ホスフォリピド、スフィン
ゴリピド、グリコリピド、グリセリド、グリセロールエ
ーテル、ジアルキルホスフェート、ジアルキルホスフォ
ネート、アルキルホスフィネートモノアルキルエステル
、ホスフォノリピド、N,N−二置換ジメチルアンモニ
ウムハライド、トリアルキルメチルアンモニウムハライ
ド、テトラアルキルアンモニウムハライド、ジアルキル
スルホサクシン酸エステルおよび2,3−ジアシロキシ
スクシン酸からなる群から選ばれたいずれかのものの骨
格を有するものである特許請求の範囲第1項に記載の電
磁波感応性材料。
(2) The synthetic lipid monomer is phospholipid, sphingolipid, glycolipid, glyceride, glycerol ether, dialkyl phosphate, dialkyl phosphonate, alkyl phosphinate monoalkyl ester, phosphonolipid, N,N-disubstituted dimethylammonium halide, trialkylmethyl Claim 1, which has a skeleton selected from the group consisting of ammonium halide, tetraalkylammonium halide, dialkyl sulfosuccinic acid ester, and 2,3-diacyloxysuccinic acid. Electromagnetic sensitive material.
(3)合成脂質モノマーが一般式(II) ▲数式、化学式、表等があります▼(II) [ただし式中Rは−(CH_2)−_2N^■(CH_
3)_3、−(CH_2)−_2N^■H_3または−
CH_2CH(N^■H_3)−COO^■である。]
で表わされるエレオステアリン酸ホスフォリピドである
特許請求の範囲第1項または第2項に記載の電磁波感応
性材料。
(3) The synthetic lipid monomer has the general formula (II) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(II) [However, R in the formula is -(CH_2)-_2N^■(CH_
3)_3, -(CH_2)-_2N^■H_3 or -
CH_2CH(N^■H_3)-COO^■. ]
The electromagnetic wave-sensitive material according to claim 1 or 2, which is eleostearic acid phospholipid represented by:
(4)一般式(II)のRが−(CH_2)−_2N^■
(CH_3)_3である特許請求の範囲第3項に記載の
電磁波感応性材料。
(4) R in general formula (II) is -(CH_2)-_2N^■
The electromagnetic wave-sensitive material according to claim 3, which is (CH_3)_3.
JP10756786A 1986-05-13 1986-05-13 Material sensitive to electromagnetic wave Granted JPS62265661A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP10756786A JPS62265661A (en) 1986-05-13 1986-05-13 Material sensitive to electromagnetic wave
EP19870106719 EP0245799B1 (en) 1986-05-13 1987-05-08 Electromagnetic wave-sensitive material and bio-adaptable surface treating agent
DE8787106719T DE3773989D1 (en) 1986-05-13 1987-05-08 SENSITIVE MATERIAL AND BIOCOMPATIBLE SURFACE TREATMENT AGENT FOR ELECTROMAGNETIC SHAFTS.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10756786A JPS62265661A (en) 1986-05-13 1986-05-13 Material sensitive to electromagnetic wave

Publications (2)

Publication Number Publication Date
JPS62265661A true JPS62265661A (en) 1987-11-18
JPH0453418B2 JPH0453418B2 (en) 1992-08-26

Family

ID=14462441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10756786A Granted JPS62265661A (en) 1986-05-13 1986-05-13 Material sensitive to electromagnetic wave

Country Status (1)

Country Link
JP (1) JPS62265661A (en)

Also Published As

Publication number Publication date
JPH0453418B2 (en) 1992-08-26

Similar Documents

Publication Publication Date Title
CA1222254A (en) Polymerized vesicles and compounds for their preparation
Elbert et al. Hydrophilic spacer groups in polymerizable lipids: formation of biomembrane models from bulk polymerized lipids
EP1100770B1 (en) Monomers and network polymers obtained therefrom
CA1167838A (en) Polymerizable phospholipids and a process for their preparation, polymeric phospholipids and a process for their preparation, and the use of the polymeric phospholipids
CA1243038A (en) Polymerizable liposome-forming lipid, method for production thereof, and use thereof
EP0057207B1 (en) Photographic elements
US4830952A (en) Langmuir-Blodgett film assembly
US4587055A (en) Polymerized vesicles and compounds for their preparation
EP0245799B1 (en) Electromagnetic wave-sensitive material and bio-adaptable surface treating agent
US4933114A (en) Polyacetylenic lipids, radiation-sensitive compositions, photographic elements and processes relating to same
JPS62265661A (en) Material sensitive to electromagnetic wave
JPH03160086A (en) Thin polypeptide film
JPS638391A (en) Polymerizable beta-glycerophospholipid and production thereof
JPH0756354A (en) Silicon-containing high molecular compound and resist material using the same
EP0284314A1 (en) Langmuir-blodgett film aggregates
JPH0710874B2 (en) Polymerizable phospholipid
Ohkatsu et al. Synthesis and polymerization of a macromonomer derived from phosphatidylcholine
JPS62142190A (en) Allyl type polymerizable phospholipid compound
JPS62266066A (en) Living body compatible surface treatment agent
JPH0148777B2 (en)
JPS63221184A (en) Cumurative film and cumurative polymerized film and manufacture thereof
Hupfer et al. Polymeric oriented monolayers and multilayers as model surfaces
JPH01139620A (en) Production of novel thin filmy polymer
JPH068302B2 (en) Polymerizable phospholipid compound
GB2179660A (en) Phosphoric esters