JPH0148777B2 - - Google Patents

Info

Publication number
JPH0148777B2
JPH0148777B2 JP61107569A JP10756986A JPH0148777B2 JP H0148777 B2 JPH0148777 B2 JP H0148777B2 JP 61107569 A JP61107569 A JP 61107569A JP 10756986 A JP10756986 A JP 10756986A JP H0148777 B2 JPH0148777 B2 JP H0148777B2
Authority
JP
Japan
Prior art keywords
medical device
polymerizable
lipid
general formula
polymerizable lipid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP61107569A
Other languages
Japanese (ja)
Other versions
JPS62266067A (en
Inventor
Hiroshi Yoshioka
Kazuhiko Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP61107569A priority Critical patent/JPS62266067A/en
Priority to EP19870106719 priority patent/EP0245799B1/en
Priority to DE8787106719T priority patent/DE3773989D1/en
Publication of JPS62266067A publication Critical patent/JPS62266067A/en
Publication of JPH0148777B2 publication Critical patent/JPH0148777B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)

Description

【発明の詳现な説明】 発明の背景 技術分野 本発明は、医療甚具に関するものである。詳し
く述べるず本発明は生䜓適合性の高い芪氎性衚面
を有する医療甚具に関するものである。
BACKGROUND OF THE INVENTION (Technical Field) The present invention relates to medical devices. Specifically, the present invention relates to a medical device having a highly biocompatible hydrophilic surface.

先行技術 人工臓噚、人工血管、コンタクトレンズ、血液
回路、血液バツグ、血挿分離噚、血液チナヌブ、
組織ないし现胞培逊甚シダヌレなどの医療甚具に
おいおは、これらの衚面が盎接生䜓組織たたは䜓
液ず接觊するために、これら衚面が接觊する生䜓
組織たたは䜓液ず盞互䜜甚を起こすこずなく医療
甚具本来の機胜を生䜓ず接觊する条件䞋で十分に
発揮しうるこず、いわゆる生䜓適合性を有するこ
ずが芁求される。
(Prior art) Artificial organs, artificial blood vessels, contact lenses, blood circuits, blood bags, plasma separators, blood tubes,
In medical devices such as tissue or cell culture shears, the surfaces of these devices come into direct contact with living tissue or body fluids, so the original functions of the medical device can be performed without causing any interaction with the living tissues or fluids that these surfaces come into contact with. It is required to be able to perform satisfactorily under conditions of contact with living organisms, that is, to have so-called biocompatibility.

埓来より、このような医療甚具の生䜓適合性を
良奜なものずするために、医療甚具を構成する材
質および性質、特にその衚面郚を構成する材質お
よび性質に関しお数倚くの研究がなされ実甚化さ
れおいる。䟋えば、アニオン性重合䜓たたは適圓
に配向した゚レクトレツト重合䜓の劂く、負に垯
電した衚面、倩然の抗凝固剀ヘパリンたたは合成
ヘパリン類䌌䜓を被芆した衚面、固有に䜎い衚面
自由゚ネルギヌを有するに荷電した衚面、アルブ
ミンを被芆した衚面などが挙げられる。しかしな
がら、これらによ぀おは十分に満足できる生䜓適
合性ずいうものは埗られず、生䜓ずこれらの接觊
衚面ずの反応は問題を残すものである。最近、生
䜓膜がリン脂質二重局のマトリツクスから構成さ
れおいるずいうこずから、医療甚具衚面に生䜓適
合性を付䞎するあるいは芪氎化ずいうこずに脂
質、特にその安定性の面から重合性の脂質を利甚
するこずが泚目されおいる゚ス゚ルリヌゞ
゚ン、マクロモレキナヌル16 3351983S.L.
Regen、Macromol.16 3351983、特開昭56−
135、492号参照。。このような重合性脂質ずしお
は、疎氎性アシル鎖に重合性官胜基ずしお共圹ゞ
むンを有するポリアセチレン型脂質が合成され数
倚くの研究がなされおいる。ポリアセチレン型脂
質の補法に関しおは、米囜特蚱第2816149号、同
第2941041号及び同第3065283号などに、玫倖線照
射によるゲル化挙動に関しおは、リングスドルフ
H.Ringsdorfらマクロモレキナヌル ケミ
ストリヌMacromol、Chem.、180、1059
1979などの文献に詳しい。しかしながら、珟
圚開発されおいるポリアセチレン型脂質の堎合、
分子内䞭の共圹ゞむンは、極めお綿密な分子蚭蚈
に基づいお玔有機化孊的に倚数の反応段階を経お
合成されその収率も䜎いものであるため、実甚的
な面での倧量合成が困難であるばかりでなく、該
ポリスチレン型脂質を非垞に高䟡なものずしおし
たうため、その衚面にこれらのポリスチレン型脂
質の重合被膜を有する医療甚具は、数量的にもた
た経枈的にもかなりの制玄を受けおしたう。たた
このポリスチレン型脂質の重合被膜は、化孊的開
始剀や皮々の電磁波、特に玫倖線の照射によ぀お
重合を行な぀お圢成しおいるが、化孊的開始剀を
甚いるず、これが最終補品䞭に残存するこずによ
り毒性の問題が生じ、たた玫倖線照射では、䟋え
ば医療甚具がカテヌテルである堎合、その内面に
は玫倖線が到達しないために、重合被膜を圢成す
るこずは䞍可胜であ぀た。
In order to improve the biocompatibility of such medical devices, many studies have been conducted and put into practical use regarding the materials and properties of medical devices, especially the materials and properties of their surfaces. There is. For example, negatively charged surfaces such as anionic polymers or suitably oriented electret polymers, surfaces coated with the natural anticoagulant heparin or synthetic heparin analogs, charged surfaces with an inherently low surface free energy. surface coated with albumin, etc. However, these do not provide fully satisfactory biocompatibility, and the reaction between living organisms and these contact surfaces remains problematic. Recently, since biological membranes are composed of a matrix of phospholipid bilayers, lipids, especially polymerizable lipids, have been used to impart biocompatibility or hydrophilicity to the surfaces of medical devices, especially from the viewpoint of stability. (S.L. Risien, Macromolecules 16 335 (1983) [SL
Regen, Macromol. 16 335 (1983)], Japanese Patent Application Publication No. 1986-
See No. 135, 492. ). As such polymerizable lipids, polyacetylene type lipids having a conjugated diyne as a polymerizable functional group in a hydrophobic acyl chain have been synthesized and numerous studies have been conducted. Regarding the manufacturing method of polyacetylene type lipids, see US Pat. No. 2,816,149, US Pat. No. 2,941,041, and US Pat. Macromol, Chem.,] 180 , 1059
(1979)]. However, in the case of currently developed polyacetylene type lipids,
The conjugated diyne in the molecule is synthesized through numerous reaction steps using pure organic chemistry based on extremely detailed molecular design, and the yield is low, making it difficult to synthesize in large quantities from a practical standpoint. Not only that, but the polystyrene type lipids are very expensive, so medical devices having a polymer coating of these polystyrene type lipids on their surfaces are subject to considerable quantitative and economical constraints. I end up. In addition, this polymerized film of polystyrene-type lipids is formed by polymerization using a chemical initiator or various electromagnetic waves, especially irradiation with ultraviolet rays. If they remain, toxicity problems arise, and with ultraviolet irradiation, for example, when the medical device is a catheter, it has been impossible to form a polymeric film because the ultraviolet rays do not reach the inner surface of the catheter.

発明の目的 埓぀お本発明は、新芏な医療甚具を提䟛するこ
ずを目的ずする。本発明は、たた生䜓適合性の高
い医療甚具を提䟛するずを目的ずする。
OBJECTS OF THE INVENTION It is therefore an object of the present invention to provide a novel medical device. Another object of the present invention is to provide a medical device with high biocompatibility.

本発明はさらに、新芏な重合性脂質を利甚した
医療甚具を提䟛するこずを目的ずする。
A further object of the present invention is to provide a medical device that utilizes a novel polymerizable lipid.

䞊蚘諞目的は、少なくずも生䜓ず接觊する郚䜍
の衚面に、疎氎性アシル鎖ずしお、䞀般匏 で衚される゚レオステアリン酞由来のアシル鎖を
少なくずも䞀぀有する重合性脂質の重合被膜を圢
成しおなる芪氎性衚面を有するこずを特城ずする
医療甚具により達成される。
The above objectives are achieved by applying the general formula () as a hydrophobic acyl chain on the surface of at least the part that contacts the living body This is achieved by a medical device characterized by having a hydrophilic surface formed by forming a polymerized film of a polymerizable lipid having at least one acyl chain derived from eleostearic acid represented by:

本発明はたた、重合性脂質が、䞀般匏 ただし、匏䞭は−CH2−2N CH33、−
CH2−2N H3たたは−CH2−CH H3−
COO である。で衚されるホスフオリピドから
なるものである医療甚具を瀺すものである。本発
明はさらに、䞀般匏のが−CH2−2N
CH33である医療甚具を瀺すものである。本発
明はさらに、重合被膜は重合性脂質を電磁波照射
により架橋重合圢成されたものである医療甚具を
瀺すものである。本発明はたた重合被膜は重合性
脂質を酞玠ず接觊させるこずにより架橋重合させ
お圢成されたものである医療甚具を瀺すものであ
る。本発明はさらにたた、重合被膜は、重合性脂
質を電磁波照射および酞玠接觊させるこずにより
架橋重合させお圢成されたものである医療甚具を
瀺すものである。
The present invention also provides that the polymerizable lipid has the general formula () [However, in the formula, R is -(CH 2 -) 2 N (CH 3 ) 3 , -(
CH 2 −) 2 N H 3 or −CH 2 −CH(NH 3 )−
He is the COO. ] This indicates a medical device consisting of a phospholipid represented by the following. The present invention further provides that R in the general formula () is -(CH 2 -) 2 N
(CH 3 ) 3 indicates a medical device. The present invention further provides a medical device in which the polymer coating is formed by cross-linking and polymerizing a polymerizable lipid by irradiating electromagnetic waves. The present invention also provides a medical device in which the polymer coating is formed by crosslinking and polymerizing a polymerizable lipid by contacting it with oxygen. The present invention further provides a medical device in which the polymeric coating is formed by crosslinking and polymerizing a polymerizable lipid by exposing it to electromagnetic waves and contacting it with oxygen.

発明の具䜓的説明 以䞋、本発明を実斜態様に基づきより詳现に説
明する。
DETAILED DESCRIPTION OF THE INVENTION The present invention will now be described in more detail based on embodiments.

本発明の医療甚具ずしおは、生䜓、すなわち、
組織ないし䜓液等ず接觊する可胜性のある、䟋え
ば、人工臓噚、人工血管、コンタクトレンズ、血
液回路、血液バツグ、血挿分離噚、血液チナヌ
ブ、カテヌテル、組織ないし现胞培逊甚シダヌレ
などのものが含たれ埗るが、もちろんこれらに限
定されるものではない。たた、これらを構成する
材質も、合成暹脂、倩然ないし合成ゎム、倩然な
いし合成繊維、ガラス、金属、セラミツクス等い
かなるものであ぀おもよく、その衚面は、疎氎性
あるいは芪氎性のいずれであ぀おもよい。
The medical device of the present invention is suitable for living organisms, that is,
Includes items that may come into contact with tissues or body fluids, such as artificial organs, artificial blood vessels, contact lenses, blood circuits, blood bags, plasma separators, blood tubes, catheters, and tissue or cell culture vessels. However, it is of course not limited to these. Further, the materials constituting these may be any material such as synthetic resin, natural or synthetic rubber, natural or synthetic fiber, glass, metal, ceramics, etc., and the surface thereof may be either hydrophobic or hydrophilic. Good too.

しかしお、本発明の医療甚具は、少なくずも生
䜓ず接觊する郚䜍の衚面に、疎氎性アシル鎖ずし
お、䞀般匏 で衚される゚レオステアリン酞由来のアシル鎖を
少なくずも䞀぀有する重合性脂質の重合被膜を圢
成しおなる芪氎性衚面を有するこずを特城ずする
ものである。
Therefore, the medical device of the present invention has the general formula () as a hydrophobic acyl chain on the surface of at least the part that contacts the living body It is characterized by having a hydrophilic surface formed by forming a polymerized film of a polymerizable lipid having at least one acyl chain derived from eleostearic acid represented by:

本明现曞䞭においお、「脂質」ずは芪氎性の極
性郚ず少なくずも䞀぀の長鎖脂肪族アシル鎖から
なる疎氎性の非極性郚を有する䞡芪媒性化合物を
瀺し、䟋えばホスフアチゞルコリン、ホスフアチ
ゞル゚ヌテルアミン、ホスフアチゞルセリンおよ
びホスフアチゞルグリセロヌルなどのようなホス
フオリピド類、スフむンゎミ゚リンなどのような
スフむンゎリピド類、セレブドシド、怍物グリコ
リピドおよびガングリオシドなどのようなグリコ
リピド類、ホスフオノグリセリドなどのようなグ
リセリド類、グリセロヌル゚ヌテル類、セラミド
−−アミノ゚チルホスフオン酞およびホスフオ
ノグリセリドなどのようなホスフオノリピド類、
その他、ゞアルキルホスプヌト類、ゞアルキル
ホスフオネヌト類、アルキルホスフむネヌトモノ
アルキル゚ステル類、−二眮換ゞメチルア
ンモニりムハラむド、トリアルキルメチルアンモ
ニりムハラむド、テトラアルキルアンモニりムハ
ラむドなどのようなアルキルアンモニりムハラむ
ド類、ゞアルキルスルホサクシン酞゚ステル類、
−ゞアシロキシスクシン酞類等のような脂
質ないし脂質類緑化合物の骚栌を有するものをさ
す。なお、これらのうちアルキルアンモニりムハ
ラむド類などの骚栌を有するものずは、その骚栌
ずなる化合物のアルキル鎖の端郚あるいは偎郚に
゚ステル結合によりアシル鎖が結合しおいるよう
な構造のものである。たた䞊蚘脂質ないし脂質類
緑化合物矀の名称は、脂質の骚栌ずなる構造を瀺
すためのものであり、埓぀おその眮換䜓および類
䌌化合物を含む広い意味で解釈されるべきで、䟋
えば該名称にいおお「アルキル」で衚わした郚分
がアルケニル、アルカゞ゚ニル、アルカトリ゚ニ
ル、アルキニルなどの䞍飜和炭化氎玠基である化
合物も含たれる。
As used herein, "lipid" refers to an amphipathic compound having a hydrophilic polar part and a hydrophobic non-polar part consisting of at least one long-chain aliphatic acyl chain, such as phosphatidylcholine, phosphatidylcholine, Phospholipids such as atidyl etheramine, phosphatidylserine and phosphatidylglycerol, sphingolipids such as sphingomyelin, glycolipids such as ceredoside, plant glycolipids and gangliosides, phosphonoglycerides, etc. phosphonolipids, such as glycerides, glycerol ethers, ceramide-2-aminoethylphosphonic acid and phosphonoglycerides;
In addition, alkyl ammonium halides such as dialkyl phosphates, dialkyl phosphonates, alkyl phosphinate monoalkyl esters, N,N-disubstituted dimethyl ammonium halides, trialkyl methyl ammonium halides, tetraalkylammonium halides, etc. , dialkyl sulfosuccinic acid esters,
Refers to substances having a skeleton of lipids or lipid-like green compounds such as 2,3-diacyloxysuccinic acids. Furthermore, among these, those having a skeleton such as alkylammonium halides have a structure in which an acyl chain is bonded to the end or side of the alkyl chain of the compound serving as the skeleton by an ester bond. . In addition, the names of the lipids and lipid-like green compounds mentioned above are intended to indicate the structure that serves as the backbone of lipids, and therefore should be interpreted in a broad sense including substitutes and similar compounds. Also included are compounds in which the moiety represented by "alkyl" is an unsaturated hydrocarbon group such as alkenyl, alkadienyl, alkatrienyl, and alkynyl.

本発明の医療甚具の芪氎性衚面ずしお圢成され
る重合被膜を構成する重合性脂質は、䞊蚘のごず
き「脂質」の䞀皮であ぀おその疎氎性アシル鎖ず
しお、䞀般匏のアシル鎖が合成的に導入さ
れたものである。この重合性脂質ずしおは生䜓適
合性の面から、䞊蚘に挙た骚栌のうち、ホスフオ
リピド類、スフむンゎリピド類、グリコリピド
類、グリセリド類、グリセロヌル゚ヌテル類ある
いはホスフオノリピド類などのような倩然に存圚
する脂質の骚栌を有するものが望たしく、特に䞀
般匏 ただし匏䞭、は−CH2−2N CH33ホス
フアチゞルコリン、−CH2−2N CH3ケフア
リンたたは−CH2−CH H3−COO ホ
スフアチゞルセリンであり、たたR1、R2は飜
和たたは䞍飜和炭化氎玠基である。で衚わされ
る生䜓膜の構成郚分ずしおも代衚的なホスフオリ
ピド、さらに奜たしくはホスフアチゞルコリンの
骚栌を有するものが望たれる。
The polymerizable lipid constituting the polymeric film formed as the hydrophilic surface of the medical device of the present invention is a type of "lipid" as described above, and its hydrophobic acyl chain has an acyl chain of the general formula () synthesized. It was introduced in the From the viewpoint of biocompatibility, the polymerizable lipids include naturally occurring lipid skeletons such as phospholipids, sphingolipids, glycolipids, glycerides, glycerol ethers, and phosphonolipids among the skeletons listed above. It is desirable to have the general formula () [In the formula, R is -(CH 2 -) 2 N (CH 3 ) 3 (phosphatidylcholine), -(CH 2 -) 2 N CH 3 (kephalin) or -CH 2 -CH (NH 3 )-COO (phosphatidylserine), and R 1 and R 2 are saturated or unsaturated hydrocarbon groups. ] Typical phospholipids as constituent parts of biological membranes, more preferably those having a phosphatidylcholine skeleton are desired.

䞀般匏で衚わされる疎氎性アシル基の䞊
蚘のような骚栌構造を有する脂質ぞの導入は、゚
レオステアリン酞を出発物質ずしお公知の方法よ
り容易に行なうこずができる。この゚レオステア
リン酞は、䞀般匏′ CH3CH23CHCHCHCHCHCHCH+7C
OOH′ で衚わされる第、11、13䜍に共圹二重結合を有
する倩然の䞍飜和脂肪酞であり、桐油䞭から容易
に抜出でき、混合脂肪酞の80〜95重量を占めお
いる。この桐油を加氎分解しお埗られる桐油脂肪
酞䞭にぱレオステアリン酞が60重量以䞊、奜
たしくは80重量以䞊含有され、残䜙成分ずしお
は飜和酞、オレむン酞、リノヌル酞等が含たれお
いる。本発明の医療甚具の重合被膜を構成する重
合性脂質を調補するために、この桐油脂肪酞をそ
のたた倩然䞍飜和脂肪酞ずしお甚いおもよく、た
た必芁によりカラムクロマトグラフむヌおよび
たたは再結晶等で粟補しお゚レオステアリン酞の
みを取り出しお甚いおもよい。
Introduction of the hydrophobic acyl group represented by the general formula () into a lipid having the above-mentioned skeleton structure can be easily carried out by a known method using eleostearic acid as a starting material. This eleostearic acid has the general formula (') CH 3 (CH 2 ) 3 CH=CHCH=CHCH=CH (CH + ) 7 C
It is a natural unsaturated fatty acid with conjugated double bonds at the 9th, 11th, and 13th positions represented by OOH('), and can be easily extracted from tung oil, accounting for 80 to 95% by weight of mixed fatty acids. The tung oil fatty acid obtained by hydrolyzing this tung oil contains 60% by weight or more, preferably 80% by weight or more of eleostearic acid, and the remaining components include saturated acids, oleic acid, linoleic acid, etc. There is. In order to prepare the polymerizable lipid constituting the polymerized coating of the medical device of the present invention, this tung oil fatty acid may be used as it is as a natural unsaturated fatty acid, and if necessary, column chromatography and/or
Alternatively, only eleostearic acid may be extracted and used after purification by recrystallization or the like.

䟋えば、ホスフオリピドの骚栌ぞ゚レオステア
リン酞より䞀般匏で衚わされるアシル鎖を
導入するには、以䞋のようにしお行なわれる。も
う䞀぀の出発物質ずなる脂質の芪氎性極性郚は、
倩然のホスフオリピドその倚くは、飜和脂肪族
アシル鎖の疎氎性非極性郚を有する。より容易
にか぀倚量に埗るこずができる。倩然のホスフオ
リピドは加氎分解させお、特にその金属錯䜓、䟋
えばカドミりム等の金属の錯䜓ずしお゚レオステ
アリン酞ずの゚ステル化反応に䟛される。゚ステ
ル化反応は、倩然のホスフオリピドの加氎分解物
ないしその金属錯䜓をクロロホルム、四塩化炭
玠、塩化メチレン等の媒䜓䞭に加えお撹拌䞋に懞
濁させ、この懞濁液䞭に゚レオステアリン酞の酞
無氎物誘導䜓をホスフオリピド加氎分解物100重
量郚圓り200〜400重量郚、奜たしくは300〜370重
量郚および觊媒を適圓量加え、反応系内をアルゎ
ン、窒玠、ヘリりム等の䞍掻性ガスで眮換した
埌、〜40℃、奜たしくは15〜25℃の枩床で暗所
にお24〜90時間、奜たしくは40〜72時間反応させ
るこずで行われる。觊媒ずしおは−ゞメチルア
ミノピリゞンなどがあり、ホスフオリピド加氎分
解物100重量郚圓り50〜100重量郚、奜たしくは80
〜85重量郚䜿甚される。反応埌、癜色の䞍溶物が
析出するので濟去し、溶媒を宀枩で枛圧留去埌ク
ロロホルムメタノヌル氎の混合溶媒容量比
に再溶解しおむオン亀換暹脂ず接
觊させ、぀いで掗い萜ずす。混合溶媒を枛圧留去
埌、少量のクロロホルムに溶解し、シリカゲルカ
ラム等によりクロロホルム、メタノヌル混合溶媒
で粟補し、䞀般匏 ただし、匏䞭は−CH2−2N CH33、−
CH2−2N H3たたは−CH2−CH H3−
COO などである。で衚わされる゚レオステア
リン酞ホスフオリピドを埗る。
For example, an acyl chain represented by the general formula () can be introduced from eleostearic acid into the skeleton of a phospholipid as follows. The hydrophilic polar part of the lipid, which is another starting material, is
They can be obtained more easily and in larger quantities than natural phospholipids, many of which have a hydrophobic nonpolar portion of a saturated aliphatic acyl chain. The natural phospholipid is hydrolyzed and subjected to an esterification reaction with eleostearic acid, especially as its metal complex, for example a complex of a metal such as cadmium. In the esterification reaction, a natural phospholipid hydrolyzate or its metal complex is added to a medium such as chloroform, carbon tetrachloride, or methylene chloride and suspended under stirring, and eleostearic acid is added to this suspension. 200 to 400 parts by weight, preferably 300 to 370 parts by weight of an acid anhydride derivative per 100 parts by weight of phospholipid hydrolyzate and an appropriate amount of a catalyst were added, and the inside of the reaction system was replaced with an inert gas such as argon, nitrogen, helium, etc. After that, the reaction is carried out in a dark place at a temperature of 5 to 40°C, preferably 15 to 25°C, for 24 to 90 hours, preferably 40 to 72 hours. Examples of the catalyst include 4-dimethylaminopyridine, and the amount is 50 to 100 parts by weight, preferably 80 parts by weight, per 100 parts by weight of the phospholipid hydrolyzate.
~85 parts by weight are used. After the reaction, white insoluble matter precipitates and is filtered off. The solvent is distilled off under reduced pressure at room temperature, and then redissolved in a mixed solvent of chloroform/methanol/water (volume ratio = 4/5/1) to combine with the ion exchange resin. Contact it and then wash it off. After evaporating the mixed solvent under reduced pressure, it was dissolved in a small amount of chloroform, purified with a chloroform and methanol mixed solvent using a silica gel column, etc., and the general formula () [However, in the formula, R is −(CH 2 −) 2 N (CH 3 ) 3 , −(
CH 2 −) 2 N H 3 or −CH 2 −CH(NH 3 )−
Such as COO. ] An eleostearic acid phospholipid is obtained.

埗られる重合性脂質は䜿甚する出発原料によ぀
お異なり、䟋えば卵黄レシチンを䜿甚する堎合に
は䞀般匏で瀺される゚レオステアリン酞ホ
スフアチゞルコリン、たたケフアリンやホスフア
チゞルセリン等を䜿甚した堎合にはこれらに察応
する重合性脂質が埗られる。
The polymerizable lipid obtained varies depending on the starting material used. For example, when using egg yolk lecithin, eleostearate phosphatidylcholine represented by the general formula (), kephalin, phosphatidylserine, etc. are used. In these cases, polymerizable lipids corresponding to these can be obtained.

このようにしお埗られる重合性脂質は、アシル
鎖ずしお䞀般匏で衚わされるような鎖䞭に
個の共圹二重結合を有する゚レオステアリン酞
由来のアシル鎖を有するものであるので、光、玫
倖線、β線、γ線、線、などの電磁波、特に玫
倖線を照射するこずによりこの疎氎性アシル鎖䞭
の個の共圹二重結合が容易に架橋反応を起こし
重合性脂質同志が重合しおゲル化し安定な状態を
圢成する。この共圹トリ゚ン型の重合性脂質はそ
の吞光スペクトルの極倧波長が270nm以䞊の比范
的䜎゚ネルギヌ䜍眮にあり第図参照、それ
自身が電磁波゚ネルギヌによる重合を行なうため
重合開始剀や増感剀、還元剀などは必芁ずせず、
これらの添加による毒性の心配もない。さらに驚
くべきこずに、この共圹トリ゚ン型の重合性脂質
は、単に空気䞭に攟眮するこずによ぀おも重合反
応が生起するこずが芋出された。すなわち該重合
性脂質は、酞玠の存圚によ぀お自動的に酞化重合
反応を開始するものであ぀お、この結果、電磁波
照射した堎合ず同様に安定な架橋重合䜓を圢成す
るものである。このような重合の圢態の差異によ
り重合被膜の化孊構造における盞違は考えられる
ものの、いずれも高い生䜓適合性を瀺すこずは明
らかであ぀た。たた該重合性脂質は、電磁波照射
およびたたは酞玠接觊を受ける前には、クロロ
ホルム、゚ヌテル、メタノヌル、ゞメチルホルム
アミド等に可溶であるが、照射およびたたは接
觊を受け重合しゲル化するず、これらの溶媒に察
しお党く䞍溶ずなり、架橋重合によ぀お著しい溶
解床の差が生じるものである。
The polymerizable lipid obtained in this way has an acyl chain derived from eleostearic acid and has three conjugated double bonds in the chain as represented by the general formula (). When irradiated with electromagnetic waves such as light, ultraviolet rays, β rays, γ rays, and X rays, especially ultraviolet rays, the three conjugated double bonds in this hydrophobic acyl chain easily undergo a crosslinking reaction, causing polymerizable lipids to bond together. Polymerizes and gels to form a stable state. This conjugated triene-type polymerizable lipid has a maximum wavelength of its absorption spectrum at a relatively low-energy position of 270 nm or more (see Figure 2), and because it is polymerized by electromagnetic energy, it cannot be used as a polymerization initiator or sensitizer. , no reducing agent is required,
There is no fear of toxicity due to these additions. Furthermore, it was surprisingly found that a polymerization reaction occurs even when this conjugated triene type polymerizable lipid is simply left in the air. That is, the polymerizable lipid automatically starts an oxidative polymerization reaction in the presence of oxygen, and as a result, forms a stable crosslinked polymer in the same way as when irradiated with electromagnetic waves. Although it is possible that the chemical structure of the polymerized film differs due to such differences in polymerization form, it was clear that all of them exhibited high biocompatibility. Furthermore, the polymerizable lipid is soluble in chloroform, ether, methanol, dimethylformamide, etc. before being exposed to electromagnetic wave irradiation and/or oxygen contact, but when it is polymerized and gelled by irradiation and/or contact, these It is completely insoluble in the solvents, and a significant difference in solubility occurs due to crosslinking polymerization.

本発明の医療甚具は、このような重合性脂質の
重合被膜を少なくずも生䜓ず接觊する郚䜍の衚面
に有するものであるが、該重合性脂質が䞡芪媒性
化合物であるため、該医療甚具の衚面性状が疎氎
性である堎合に、該衚面に重合性脂質の疎氎性の
非極性郚、すなわちアシル鎖郚分が配向しお良奜
な付着性を瀺し、か぀芪氎性の極性郚が倖偎に向
くので凊理衚面を芪氎化するこずができる。なお
架橋重合を起こす感応基である共圹トリ゚ン基
は、アシル鎖䞭に存圚するので、架橋重合させお
重合被膜が圢成された埌においおも、芪氎性の極
性郚の性質には倉化はない。医療甚具の衚面に圢
成される重合被膜はこのような重合性脂質の単分
子局膜あるいはこのような単分子局膜をラングミ
ナアヌ−ブロヌゞ゚ツト法Langmuir−
Blodgett method LB法等により环積させた环
積膜ずしお䞎えられる以倖に、リポ゜ヌムの圢態
でも圢成される。すなわち䞊蚘のごずき重合性脂
質は氎性溶媒䞭に超音波凊理等で分散させるず、
自動的に脂質に二重局構造よりなる小胞䜓、いわ
ゆるリポ゜ヌムを圢成する。該リポ゜ヌムにおい
おは、その内方に重合性脂質の疎氎基が、倖方に
芪氎基が配向しおおり、埓぀おその倖衚面性状も
芪氎性である。このリポ゜ヌム盞互には䞀皮の匕
力が働くものであるためリポ゜ヌム集合䜓による
膜を圢成できさらにこのようなリポ゜ヌム状態に
おいおも電磁波照射およびたたは酞玠接觊によ
り重合反応が生起するものである。
The medical device of the present invention has such a polymerized coating of a polymerizable lipid on the surface of at least a portion that comes into contact with a living body, and since the polymerizable lipid is an amphiphilic compound, the surface of the medical device When the property is hydrophobic, the hydrophobic non-polar part of the polymerizable lipid, that is, the acyl chain part, is oriented on the surface and shows good adhesion, and the hydrophilic polar part faces outward, so it can be treated. The surface can be made hydrophilic. Note that since the conjugated triene group, which is a sensitive group that causes crosslinking polymerization, is present in the acyl chain, there is no change in the properties of the hydrophilic polar portion even after crosslinking polymerization and formation of a polymer film. The polymeric film formed on the surface of a medical device is formed by forming a monolayer film of such a polymerizable lipid or by using a Langmuir-Blodgeet method to form a monomolecular layer film of such a polymerizable lipid.
In addition to being provided as a cumulative film by methods such as the Blodgett method (LB method), it is also formed in the form of liposomes. In other words, when the above polymerizable lipids are dispersed in an aqueous solvent by ultrasonication,
It automatically forms endoplasmic reticulum, a so-called liposome, with a bilayer structure of lipids. In the liposome, the hydrophobic groups of the polymerizable lipid are oriented on the inside and the hydrophilic groups are oriented on the outside, and therefore the outer surface properties are also hydrophilic. Since a kind of attractive force acts between these liposomes, a membrane can be formed by the liposome aggregate, and even in such a liposome state, a polymerization reaction occurs due to electromagnetic wave irradiation and/or oxygen contact.

本発明の医療甚具の補造方法ずしおは、皮々の
方法が考えられるが、簡単には医療甚具の少なく
ずも生䜓ず接觊する郚品の衚面に、該重合性脂質
の溶液あるいはリポ゜ヌム懞濁液を塗垃し、溶媒
あるいは分散媒を蒞発させるこずで被芆する。た
た氎面䞊に圢成させた該重合性脂質の単分子局を
ラングミナアヌ−ブロヌゞ゚ツト法により医療甚
具の衚面䞊に环積させお行うこずもできる。この
ようにしお衚面䞊を被芆した重合性脂質を電磁波
およびたたは酞玠により架橋重合させ、重合性
脂質の重合被膜を衚面䞊に担持固定させるこずが
できる。特に酞玠により架橋重合される重合被膜
は、䟋えば医療甚具がカテヌテルである堎合のよ
うに、生䜓ず接觊する内面には、玫倖線等の電磁
波を照射するこずが困難であり、電磁波により架
橋重合される重合被膜が圢成できないものであ぀
おも、たた医療甚具が電磁波によ぀お劣化しおし
たう虞れのある材質により構成されおいるもので
あ぀おも圢成できる。
Various methods can be considered for manufacturing the medical device of the present invention, but simply, a solution or liposome suspension of the polymerizable lipid is applied to the surface of at least the parts of the medical device that come into contact with a living body, Coating is performed by evaporating the solvent or dispersion medium. Alternatively, the monomolecular layer of the polymerizable lipid formed on the water surface can be accumulated on the surface of a medical device by the Langmuir-Blodget method. The polymerizable lipid coated on the surface in this manner is cross-linked and polymerized by electromagnetic waves and/or oxygen, and a polymer film of the polymerizable lipid can be supported and fixed on the surface. In particular, polymer coatings that are crosslinked and polymerized by oxygen are difficult to irradiate with electromagnetic waves such as ultraviolet rays on the inner surface that comes into contact with a living body, such as when a medical device is a catheter. It can be formed even if a polymeric film cannot be formed or even if the medical device is made of a material that is likely to be deteriorated by electromagnetic waves.

このようにしお埗られる本発明の医療甚具は、
少なくずも生䜓ず接觊する郚䜍の衚面に疎氎性ア
シル鎖ずしお䞀般匏で衚わされる゚レオス
テアリン酞由来のアシル鎖を少なくずも䞀぀を有
する重合性脂質の重合被膜を圢成しおなる芪氎性
衚面を有するものであり、該重合被膜の詳现な構
造は明らかではないが、生䜓膜の構成成分である
リン脂質ず同様の構造を有する重合性脂質により
構成されたものであり、たたその衚面は芪氎性を
瀺すため生䜓適合性が高く、か぀架橋重合された
圢態であるために安定した状態にあり、生䜓ある
いは溶媒等ずの接觊によ぀おも倉化を生じない。
The medical device of the present invention obtained in this way is
A hydrophilic surface formed by forming a polymerized film of a polymerizable lipid having at least one acyl chain derived from eleostearic acid represented by the general formula () as a hydrophobic acyl chain on the surface of at least the part that comes into contact with a living body. Although the detailed structure of the polymer coating is not clear, it is composed of polymeric lipids with a structure similar to phospholipids, which are constituents of biological membranes, and its surface is hydrophilic. It exhibits high biocompatibility, and since it is in a cross-linked polymerized form, it is stable and does not change even when it comes into contact with living organisms or solvents.

以䞋、本発明を実斜䟋によ぀お具䜓的に説明す
る。なお、参考䟋しお、甚いられる重合性脂質の
合成䟋を合せお蚘茉する。
Hereinafter, the present invention will be specifically explained with reference to Examples. In addition, as a reference example, a synthesis example of the polymerizable lipid used will also be described.

参考䟋 ぀ぎに実斜䟋を挙げお本発明をさらに詳现に説
明する。
Reference Examples Next, the present invention will be explained in more detail with reference to Examples.

゚レオステアリン酞の無氎物の補造 ゚レオステアリン酞80に盞圓する桐油脂肪酞
を脱氎蒞留盎埌の四塩化炭玠600mlに溶解した、
この溶液にゞシクロヘキシルカルボゞむミド32.6
を加え、容噚内をアルゎンガスで眮換しお密封
し、そのたた25℃で24時間攟眮時々撹拌し
た。䞍溶成分を濟別し、蒞留也固した。これをゞ
クロロメタンを展開溶媒ずしおシリカゲルで粟補
したずころ、29の収率で゚レオステアリン酞無
氎物が埗られた。
Production of eleostearic acid anhydride Tung oil fatty acid equivalent to 80 g of eleostearic acid was dissolved in 600 ml of carbon tetrachloride immediately after dehydration and distillation.
Dicyclohexylcarbodiimide 32.6 to this solution
g was added, the inside of the container was replaced with argon gas, the container was sealed, and the container was left as it was at 25° C. for 24 hours (with occasional stirring). Insoluble components were filtered off and distilled to dryness. When this was purified with silica gel using dichloromethane as a developing solvent, eleostearic anhydride was obtained in a yield of 29%.

卵黄レシチンホスフアチゞルコリン加氎分
解物カドミりム錯䜓の補造 卵黄レシチンキナヌピヌPL−10045を脱
氎゚ヌテル450mlに溶解し、䞍溶物を濟別埌、10
濃床のテトラブチルアンモニりムヒドロキシド
のメタノヌル溶液50mlを加え、25℃で枩床で激し
く振盪した。反応の進行に䌎な぀お溶液は癜濁
し、次第に局分離しおくるので、これを静眮し、
耐色油状物を充分沈柱させ、䞊柄をデカンテヌシ
ペンした。耐色油状物を脱氎゚ヌテル100mlで
回掗浄したのち、脱氎メタノヌル125mlに加熱溶
解させ、沞点還流䞋に脱色剀を加えお熱時濟
過した。冷华埌、濟液に脱氎゚ヌテル250mlを加
え、析出沈柱を残しおデカンテヌヌシペンし、沈
柱を熱湯40mlに溶解させた。これに塩化カドミり
ム氎和物を玔氎20mlに溶解したものを
加え、さらに掻性炭2.5および脱色剀を加
えお沞点還流埌、濟玙および0.25Όミリポアフ
むルタヌにお濟過した。これに゚タノヌル100〜
150mlを加えたずころ、着色沈柱が生成したので、
これを陀去した癜濁溶液のみを採取し、さらに゚
タノヌル100〜150mlを加えお激しく振盪したずこ
ろ、癜色結晶を析出しおきた。〜℃の枩床で
䞀倜静眮埌、析出結晶を濟集し、脱氎メタノヌ
ル、脱氎゚ヌテルおよび脱氎ベンれンの順で結晶
を掗浄し、さらに五酞化リン䞊で80℃の枩床で終
倜真空也燥したずころ、56の収率でホスフアチ
ゞルコリン加氎分解物のカドミりム錯䜓が埗られ
た。
Production of egg yolk lecithin (phosphatidylcholine) hydrolyzate cadmium complex Dissolve 45 g of egg yolk lecithin (Kewpie PL-100) in 450 ml of dehydrated ether, filter out insoluble materials,
50 ml of a methanol solution of % strength tetrabutylammonium hydroxide were added and shaken vigorously at a temperature of 25°C. As the reaction progresses, the solution becomes cloudy and the layers gradually separate, so let it stand.
A brown oil was allowed to settle out well and the supernatant was decanted. Dissolve the brown oil with 100ml of dehydrated ether.
After washing twice, the mixture was heated and dissolved in 125 ml of dehydrated methanol, 1 g of a decolorizing agent was added under reflux at the boiling point, and the mixture was filtered while hot. After cooling, 250 ml of dehydrated ether was added to the filtrate, the precipitate was left behind and decanted, and the precipitate was dissolved in 40 ml of hot water. To this was added 8 g of cadmium chloride pentahydrate dissolved in 20 ml of pure water, and further added 2.5 g of activated carbon and 2 g of a decolorizing agent, and after refluxing at the boiling point, the mixture was filtered using a filter paper and a 0.25 ÎŒm Millipore filter. Add 100 ethanol to this
When I added 150ml, a colored precipitate was formed, so
When only the cloudy solution from which this was removed was collected, 100 to 150 ml of ethanol was added and vigorously shaken, white crystals were precipitated. After standing overnight at a temperature of 0 to 5°C, the precipitated crystals were collected by filtration, washed with dehydrated methanol, dehydrated ether, and dehydrated benzene in this order, and further vacuum-dried over phosphorus pentoxide at a temperature of 80°C overnight. However, a cadmium complex of phosphatidylcholine hydrolyzate was obtained with a yield of 56%.

゚ステル化による重合性脂質の補造 卵黄レチシン加氎分解物カドミりム錯䜓6.74
に、蒞留盎埌のクロロホルム160mlを加えお撹拌
䞋に懞濁させた。これに桐油脂肪酞無氎物24.70
および觊媒である。−ゞメチルアミノピリゞ
ン5.61を加え、容噚内をアルゎンガスで眮換し
たのち、密栓し、暗所で25℃の枩床で60時間撹拌
しながら反応させた。このずき、癜色䞍溶物が析
出したので、これを濟別し、溶媒を宀枩䞋枛圧留
去埌、メタノヌルクロロホルム氎
混合溶媒100mlに再溶解させる。この溶液を再
床濟過しお濟液をむオン亀換暹脂AG−501−X8
Bio−Redカラムに泚入し、先の混合溶
媒500mlで掗い萜した。この溶媒を250℃の枩床で
枛圧留去したのち、クロロホルムに再溶解しおシ
リカゲルカラムによる粟補を行な぀たずころ、30
の収率で゚レオステアリン酞ホスフアチゞルコ
リンが埗られた。その赀倖線吞収スペクトルは、
第図のずおりであ぀た。
Production of polymerizable lipids by esterification Egg yolk reticin hydrolyzate cadmium complex 6.74g
160 ml of chloroform immediately after distillation was added to the solution and suspended under stirring. Add to this tung oil fatty acid anhydride 24.70
g and a catalyst. After adding 5.61 g of 4-dimethylaminopyridine and purging the inside of the container with argon gas, the container was tightly stoppered and reacted in the dark with stirring at a temperature of 25° C. for 60 hours. At this time, a white insoluble substance was precipitated, which was filtered and the solvent was distilled off under reduced pressure at room temperature, followed by methanol/chloroform/water=5/4/
1. Redissolve in 100ml of mixed solvent. This solution was filtered again and the filtrate was collected using ion exchange resin AG-501-X8.
(D) (Bio-Red) It was injected into a column and washed off with 500 ml of the above mixed solvent. After distilling off this solvent under reduced pressure at a temperature of 250°C, it was redissolved in chloroform and purified using a silica gel column.
% yield of phosphatidylcholine eleostearate was obtained. Its infrared absorption spectrum is
It was as shown in Figure 1.

重合性リン脂質からのリポ゜ヌムの補造 ゚レオステアリン酞ホスフアチゞルコリン200
mgをクロロホルムmlに溶解した。このようにし
お埗られた脂質溶液をナス型フラスコに入れ、゚
バポレヌタで溶媒を完党に陀去しおナス型フラス
コ底面に脂質膜を圢成させた。これにヘペスバツ
フアHepes buffer10mM、PH8.010mlを添
加しおボルテツクスミキサヌで振盪した埌、チツ
プ型超音波照射機40〜50Wでアルゎン気流䞋
に10分間凊理した。凊理液は癜濁状態から透明分
散液ずなり、リポ゜ヌムの圢成が確認された。た
た、走査型電子顕埮鏡により盎埄0.2〜0.5Όの
球状粒子が芳察され、リポ゜ヌムの圢成が確認さ
れた。
Production of liposomes from polymerizable phospholipids Phosphatidylcholine eleostearate 200
mg was dissolved in 6 ml of chloroform. The lipid solution thus obtained was placed in an eggplant-shaped flask, and the solvent was completely removed using an evaporator to form a lipid film on the bottom of the eggplant-shaped flask. After adding 10 ml of Hepes buffer (10 mM, PH8.0) to this and shaking it with a vortex mixer, the mixture was treated with a tip-type ultrasonic irradiator (40 to 50 W) under an argon stream for 10 minutes. The treatment liquid changed from a cloudy state to a transparent dispersion, and the formation of liposomes was confirmed. Furthermore, spherical particles with a diameter of 0.2 to 0.5 ÎŒm were observed using a scanning electron microscope, confirming the formation of liposomes.

実斜䟋  䞊蚘参考䟋で埗られた゚レオステアリン酞ホス
フアチゞルコリンの重量メタノヌル溶液をポ
リスチレン補の組織培逊甚シダヌレに塗垃しお也
燥した。このポリスチレン補シダヌレに察し75W
氎銀灯により空気䞭宀枩䞋で時間玫倖線照射を
行な぀た。シダヌレを蒞留氎で十分掗浄埌、ポリ
スチレン補シダヌレ衚面の氎滎の接觊角を枬定し
た。゚レオステアリン酞ホスフアチゞルコリンの
重合被芆の圢成されおいない察照甚のポリスチレ
ンシダヌレにおける接觊角66°であるのに察し、
䞊蚘凊理を斜したシダヌレの衚面の接觊角は21゜
であ぀た。
Example 1 A 1% by weight methanol solution of phosphatidylcholine eleostearate obtained in the above reference example was applied to a polystyrene tissue culture shear dish and dried. 75W for this polystyrene shear
Ultraviolet irradiation was performed using a mercury lamp in air at room temperature for 6 hours. After thoroughly washing the shear dish with distilled water, the contact angle of water droplets on the surface of the polystyrene shear dish was measured. The contact angle was 66° in the control polystyrene Schare without the polymerized coating of phosphatidylcholine eleostearate.
The contact angle of the surface of the shear coat treated as described above was 21°.

実斜䟋  䞊蚘参考䟋で埗られた゚レオステアリン酞ホス
フアチゞルコリンの重量メタノヌル溶液をポ
リスチレン補の組織培逊甚シダヌレ䞊に塗垃し也
燥した。このポリスチレン補シダヌレに察し、
75W氎銀灯により窒玠雰囲気䞭宀枩で12時間玫倖
線照射を行な぀た。このポリスチレンシダヌレに
MEM培地で×105個现胞mlに調補した
Hela−S3现胞浮遊液mlを分泚し、48時間培逊
を行な぀た。48時間経過の埌、このシダヌレ衚面
を顕埮鏡で芳察するず、现胞が生着、䌞展、増殖
しおいるこずが確認された。
Example 2 A 1% by weight methanol solution of phosphatidylcholine eleostearate obtained in the above reference example was applied onto a polystyrene tissue culture shear dish and dried. For this polystyrene shear,
Ultraviolet irradiation was performed for 12 hours at room temperature in a nitrogen atmosphere using a 75W mercury lamp. In this polystyrene shearle
Adjusted to 1×10 5 cells/ml in MEM medium.
5 ml of Hela-S3 cell suspension was dispensed and cultured for 48 hours. After 48 hours, the surface of the sheared surface was observed under a microscope, and it was confirmed that the cells had engrafted, spread, and proliferated.

実斜䟋  䞊蚘参考䟋で埗られた゚レオステアリン酞ホス
フアチゞルコリン500mgを含むクロロホルム溶液
を100mlのナス型フラスコに入れ、ロヌタリ−゚
バポレヌタヌでクロロホルムを枛圧留去しお、フ
ラスコ内面に゚レオステアリン酞ホスフアチゞル
コリンの薄膜を圢成させた。これを空気䞭暗所に
宀枩䞋で䞀週間攟眮した。この結果゚レオステア
リン酞ホスフアチゞルコリンは空気䞭の酞玠によ
り重合ゲル化し、クロロホルム、゚ヌテル、メタ
ノヌル等の有機溶媒および氎に察しお党く䞍溶ず
な぀た。
Example 3 A chloroform solution containing 500 mg of phosphatidylcholine eleostearate obtained in the above reference example was placed in a 100 ml eggplant-shaped flask, and the chloroform was distilled off under reduced pressure using a rotary evaporator to coat the inner surface of the flask with eleostearin. A thin film of acid phosphatidylcholine was formed. This was left in the dark at room temperature for one week. As a result, phosphatidylcholine eleostearate was polymerized and gelled by oxygen in the air, and became completely insoluble in organic solvents such as chloroform, ether, and methanol, and in water.

実斜䟋  䞊蚘参考䟋で埗られた゚レオステアリン酞ホス
フアチゞルコリンのリポ゜ヌムを重量含有す
るヘペスバツフア懞濁液をガラス補のシダヌレ䞊
に塗垃し也燥させた。これに75W氎銀灯により空
気䞭宀枩䞋にお時間玫倖線照射を行な぀た。こ
の結果シダヌレ衚面にはクロロホルム、゚ヌテ
ル、メタノヌル等有機溶媒および氎に察しお党く
䞍溶な被膜が圢成されたこずが確認された。
Example 4 A hepes buffer suspension containing 1% by weight of the liposome of eleostearate phosphatidylcholine obtained in the above reference example was applied onto a glass shear dish and dried. This was irradiated with ultraviolet rays for 6 hours in air at room temperature using a 75W mercury lamp. As a result, it was confirmed that a film completely insoluble in water and organic solvents such as chloroform, ether, and methanol was formed on the surface of the sheared surface.

これずは別にリポ゜ヌムをサンプル濃床10mg/
mlずし、75Wの氎銀ランプを光源ずしお照射距離
12cmずしお脱気䞋においお氎枩25℃の氎济䞭で玫
倖線を照射したずころ第図に瀺すようにトリ゚
ンに基づく272nmにおける吞光床が照射時間の経
過ずずもに枛少しおいるこずから重合が進行しお
いるこずが確認された。
Separately, liposomes were added at a sample concentration of 10mg/
ml, and the irradiation distance using a 75W mercury lamp as the light source.
When the sample was irradiated with ultraviolet rays in a deaerated water bath with a water temperature of 25℃ as a 12cm sample, as shown in Figure 2, the absorbance at 272nm based on triene decreased with the passage of irradiation time, indicating that polymerization was progressing. was confirmed.

発明の具䜓的効果 以䞊述べたように本発明は、少なくずも生䜓ず
接觊する郚䜍の衚面に、疎氎性アシル鎖ずしお、
䞀般匏で衚わされる゚レオステアリン酞由
来のアシル鎖を少なくずも䞀぀有する重合性脂質
の重合被膜を圢成しおなる芪氎性衚面を有するこ
ずを特城ずする医療甚具であるから、生䜓、すな
わち組織ないし䜓液等ず接觊する郚䜍の衚面は、
生䜓膜を構成する成分ずほが同様の構造を有する
重合性脂質により構成されたものであり、たたそ
の衚面は芪氎性を瀺すため、非垞に生䜓適合性が
高く、か぀該衚面は架橋重合された重合被膜圢態
であるために安定した状態にあり、䜿甚時に生䜓
ずあるいは、䜿甚前に溶媒等ず接觊しおも倉化を
生じるこずなく極めお優れた医療甚具である。た
たこのような重合被膜を構成する重合性脂質は、
倩然に埗られる゚レオステアリン酞および倩然に
埗られる脂質を出発物質ずしお簡単、倧量か぀安
䟡に合成され埗るものであるので、最終補品であ
る医療甚具を量的にたたコスト的に限定する虞れ
もない。さらにこの医療甚具は該重合性脂質を医
療甚具衚面ぞ適圓な方法で塗垃した埌、該塗垃面
に光、玫倖線、β線、γ線、線などの電磁波を
照射するおよびたたは酞玠を接觊させるこずで
重合性脂質を架橋重合させ重合被膜を圢成するず
いう簡単な方法で補造でき、特に酞玠ず接觊させ
るこずのみによ぀おも補造可胜であるこずから、
埓来のポリアセチレン型脂質を甚いおは䞍可胜で
あ぀た、䟋えばカテヌテルの内面のような玫倖線
等の電磁波の到達しない郚分に重合被膜を圢成さ
せる必芁のある医療甚具、あるいは電磁波照射に
よ぀お劣化を起こしおしたう虞れのある材質によ
り構成されおいる医療甚具などの堎合においおも
優れた生䜓適合性を有する医療甚具を提䟛できる
ものである。
Specific Effects of the Invention As described above, the present invention provides hydrophobic acyl chains on the surface of at least the parts that come into contact with living bodies.
Since it is a medical device characterized by having a hydrophilic surface formed by forming a polymerized film of a polymerizable lipid having at least one acyl chain derived from eleostearic acid represented by the general formula (), it is suitable for living organisms, i.e. Surfaces that come into contact with tissues or body fluids, etc.
It is composed of polymerizable lipids that have a structure almost similar to the components that make up biological membranes, and its surface is hydrophilic, so it is extremely biocompatible, and the surface is cross-linked and polymerized. Because it is in the form of a polymeric film, it is in a stable state, and it is an extremely excellent medical device without causing any change even when it comes into contact with a living body during use or with a solvent or the like before use. In addition, the polymerizable lipids constituting such a polymer film are
Since it can be synthesized easily, in large quantities, and at low cost using naturally-obtained eleostearic acid and naturally-obtained lipids as starting materials, there is a risk that the final product, a medical device, will be limited in terms of quantity and cost. Nor. Furthermore, after applying the polymerizable lipid to the surface of the medical device using an appropriate method, the medical device irradiates the coated surface with electromagnetic waves such as light, ultraviolet rays, β rays, γ rays, and X-rays, and/or contacts the surface with oxygen. It can be produced by a simple method of cross-linking polymerizable lipids to form a polymer film, and in particular, it can also be produced only by contacting with oxygen.
For example, medical devices that require the formation of a polymeric film on areas where electromagnetic waves such as ultraviolet rays cannot reach, such as the inner surface of catheters, which was not possible using conventional polyacetylene-type lipids, or that are susceptible to deterioration due to electromagnetic irradiation. It is possible to provide a medical device having excellent biocompatibility even in the case of a medical device constructed of a material that is likely to cause an accident.

このような効果は、䞀般匏で衚わされる
゚レオステアリン酞由来のアシル鎖を少なくずも
䞀぀有する重合性脂質が゚レオステアリン酞ホス
フオリピド、さらに奜たしくぱレオステアリン
酞ホスフアチゞルコリンである堎合はより顕著な
ものずなる。
Such effects can be obtained when the polymerizable lipid having at least one acyl chain derived from eleostearic acid represented by the general formula () is eleostearic acid phospholipid, more preferably eleostearic acid phosphatidylcholine. becomes more prominent.

【図面の簡単な説明】[Brief explanation of drawings]

第図は本発明の医療甚具の重合被膜を構成す
る重合性脂質の䞀䟋に関する赀倖吞収スペクトル
のチダヌトであり、たた第図はこの重合脂質の
リポ゜ヌム圢態における玫倖線照射による重合の
皋床を瀺す吞収スペクトルのチダヌトである。
Figure 1 is a chart of an infrared absorption spectrum of an example of a polymerizable lipid constituting the polymerized coating of the medical device of the present invention, and Figure 2 shows the degree of polymerization of this polymeric lipid in liposome form by ultraviolet irradiation. This is a chart of the absorption spectrum.

Claims (1)

【特蚱請求の範囲】  少なくずも生䜓ず接觊する郚䜍の衚面に、疎
氎性アシル鎖ずしお、䞀般匏 で衚される゚レオステアリン酞由来のアシル鎖を
少なくずも䞀぀有する重合性脂質の重合被膜を圢
成しおなる芪氎性衚面を有するこずを特城ずする
医療甚具。  重合性脂質が、䞀般匏 ただし、匏䞭は−CH2−2N CH33、−
CH2−2N H3たたは−CH2−CH H3−
COO である。で衚されるホスフオリピドから
なるものである特蚱請求の範囲第項に蚘茉の医
療甚具。  䞀般匏のが−CH2−2N CH33
である特蚱請求の範囲第項に蚘茉の医療甚具。  重合被膜は重合性脂質を電磁波照射により架
橋重合させお圢成されたものである特蚱請求の範
囲第項〜第項のいずれか䞀぀に蚘茉の医療甚
具。  重合被膜は重合性脂質を酞玠ず接觊させるこ
ずにより架橋重合させお圢成されたものである特
蚱請求の範囲第項〜第項のいずれか䞀぀に蚘
茉の医療甚具。  重合被膜は重合性脂質を電磁波照射および酞
玠接觊させるこずにより架橋重合させお圢成され
たものである特蚱請求の範囲第項〜第項のい
ずれか䞀぀に蚘茉の医療甚具。
[Claims] 1 At least on the surface of the site that comes into contact with the living body, as a hydrophobic acyl chain, a compound of the general formula () A medical device characterized by having a hydrophilic surface formed by forming a polymerized film of a polymerizable lipid having at least one acyl chain derived from eleostearic acid represented by: 2 The polymerizable lipid has the general formula () [However, in the formula, R is −(CH 2 −) 2 N (CH 3 ) 3 , −(
CH 2 −) 2 N H 3 or −CH 2 −CH(NH 3 )−
He is the COO. ] The medical device according to claim 1, which is made of a phospholipid represented by the following. 3 R in general formula () is -(CH 2 -) 2 N (CH 3 ) 3
The medical device according to claim 2. 4. The medical device according to any one of claims 1 to 3, wherein the polymeric film is formed by cross-linking and polymerizing polymerizable lipids by irradiating electromagnetic waves. 5. The medical device according to any one of claims 1 to 3, wherein the polymeric film is formed by crosslinking and polymerizing a polymerizable lipid by bringing it into contact with oxygen. 6. The medical device according to any one of claims 1 to 3, wherein the polymeric film is formed by crosslinking and polymerizing a polymerizable lipid by exposing it to electromagnetic waves and contacting it with oxygen.
JP61107569A 1986-05-13 1986-05-13 Medical instrument Granted JPS62266067A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP61107569A JPS62266067A (en) 1986-05-13 1986-05-13 Medical instrument
EP19870106719 EP0245799B1 (en) 1986-05-13 1987-05-08 Electromagnetic wave-sensitive material and bio-adaptable surface treating agent
DE8787106719T DE3773989D1 (en) 1986-05-13 1987-05-08 SENSITIVE MATERIAL AND BIOCOMPATIBLE SURFACE TREATMENT AGENT FOR ELECTROMAGNETIC SHAFTS.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61107569A JPS62266067A (en) 1986-05-13 1986-05-13 Medical instrument

Publications (2)

Publication Number Publication Date
JPS62266067A JPS62266067A (en) 1987-11-18
JPH0148777B2 true JPH0148777B2 (en) 1989-10-20

Family

ID=14462494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61107569A Granted JPS62266067A (en) 1986-05-13 1986-05-13 Medical instrument

Country Status (1)

Country Link
JP (1) JPS62266067A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR038926A1 (en) * 2002-03-13 2005-02-02 Novartis Ag MATERIALS WITH MULTIPLE VESICLE LAYER CONTENT

Also Published As

Publication number Publication date
JPS62266067A (en) 1987-11-18

Similar Documents

Publication Publication Date Title
EP0032622B1 (en) Polymerisable phospholipids and polymers thereof, methods for their preparation, methods for their use in coating substrates and forming liposomes and the resulting coated substrates and liposome compositions
CA1222254A (en) Polymerized vesicles and compounds for their preparation
JP3424927B2 (en) Improvements in or with contrast agents
RU2640287C2 (en) C6-c18-acylated derivative of hyaluronic acid, method for production nanomicellar composition based thereon, method for production and method for production of stabilized nanomicellar composition and its application
ES2945608T3 (en) Lipid analogues and liposomes comprising the same
CA1167838A (en) Polymerizable phospholipids and a process for their preparation, polymeric phospholipids and a process for their preparation, and the use of the polymeric phospholipids
US4594193A (en) Thiol based lipids and membranes made therefrom
EP0186211B1 (en) Polymerizable liposome-forming lipid, method for production thereof, and use thereof
JP2002543249A (en) Amphiphilic cyclodextrin, preparation and use of said cyclodextrin for dissolving organized systems and incorporating hydrophobic molecules
US4808480A (en) Polymerizable heterocyclic disulfide-based compounds and membranes made therefrom
EP0245799B1 (en) Electromagnetic wave-sensitive material and bio-adaptable surface treating agent
JPH0148777B2 (en)
JPH0314838B2 (en)
JPH0148776B2 (en)
JP3860246B2 (en) Cationic Vitamin E Derivative, Process for Producing the Same, and Amphiphilic Polymer Formed Using the Same
JPH03160086A (en) Thin polypeptide film
EP0251229A1 (en) Polymerizable beta-glycerophospholipid and method for production thereof
JPS61155392A (en) Polymerizable liposome-forming lipid and production thereof
JPH0572915B2 (en)
JPS6332330B2 (en)
JPH0588718B2 (en)
KR101551464B1 (en) Hydrogel particle coated with lipid bilayer, and method for preparing thereof
JPH0453418B2 (en)
JPH0710874B2 (en) Polymerizable phospholipid
JP3529058B2 (en) Amino acid type glycolipid and ER stabilizer