JPS62264556A - Hydrogen battery - Google Patents

Hydrogen battery

Info

Publication number
JPS62264556A
JPS62264556A JP61107615A JP10761586A JPS62264556A JP S62264556 A JPS62264556 A JP S62264556A JP 61107615 A JP61107615 A JP 61107615A JP 10761586 A JP10761586 A JP 10761586A JP S62264556 A JPS62264556 A JP S62264556A
Authority
JP
Japan
Prior art keywords
hydrogen
negative electrode
pva
battery
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61107615A
Other languages
Japanese (ja)
Inventor
Kiyoshi Mitsuyasu
光安 清志
Shinji Tsuruta
鶴田 慎司
Yuji Sato
優治 佐藤
Motoi Kanda
基 神田
Eriko Yagasaki
矢ケ崎 えり子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61107615A priority Critical patent/JPS62264556A/en
Publication of JPS62264556A publication Critical patent/JPS62264556A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve capacity deterioration during storage of a battery by applying PVA or CMC onto a negative electrode. CONSTITUTION:Polyvinyl alcohol (PVA) or Na-carboxymethylcellulose (CMC) is applied onto a negative electrode. For applying PVA onto the negative electrode, PVA is dissolved in distilled water to prepare a PVA solution, and the negative electrode is immersed in the PVA solution, drawing out, then dried. Dissolving of hydrogen on the surface of hydrogen storage alloy into an electrolyte is retaded and capacity deterioration of a battery is decreased.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、水素吸蔵合金を用いた水素電池の特性改善に
係シ、詳しくは、水素゛電池の貯蔵時における。容量低
下を改善した負極に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to improving the characteristics of a hydrogen battery using a hydrogen storage alloy, and specifically, during storage of a hydrogen battery. This invention relates to a negative electrode with improved capacity reduction.

(従来の技術) 水素吸蔵合金を主要構成材とする水素電池が、エネルギ
ー密度が大きいという事で注目されている。
(Prior Art) Hydrogen batteries whose main component is a hydrogen storage alloy are attracting attention because of their high energy density.

この水素吸蔵は、多量の水素を可逆的に吸収。This hydrogen storage reversibly absorbs large amounts of hydrogen.

放出する能力を有しておシ、また。電解液中においても
電気化学的方法により、水素の吸収および放出が可能で
ある。この反応の反応式を[1)式に示す。式中Mは水
素吸蔵合金を M+nH,O+ne  4”MHn十n0H−fl)示
す。すなわち、を解液中におりては、電解液中の水が電
気分解された時に発生する水素を水素吸蔵合金が吸収し
、その吸収された水素は、放出時に電解液中の水酸基と
反応して水にもどるのである。上記反応を二次電池の負
極に応用したのが水素電池である。
It also has the ability to emit light. Hydrogen can be absorbed and released even in an electrolytic solution by electrochemical methods. The reaction formula for this reaction is shown in formula [1]. In the formula, M represents a hydrogen storage alloy. When released, the absorbed hydrogen reacts with hydroxyl groups in the electrolyte and returns to water.A hydrogen battery is an application of the above reaction to the negative electrode of a secondary battery.

(発明が解決しようとする問題点) 上記水素電池の問題点の一つに貯蔵中の電池容址の低下
がある。
(Problems to be Solved by the Invention) One of the problems with the above-mentioned hydrogen battery is a decrease in battery capacity during storage.

113式では、電気化学的に水素吸蔵合金中に水素を吸
収、放出する反応を示したが、この反応で電中に入る反
応と、合金中の水素が合金表面に出て来る反応には関与
せず、それらの反応は、水素吸蔵合金表面の水素濃度の
多少により決るものである。
Formula 113 shows a reaction that electrochemically absorbs and releases hydrogen into a hydrogen storage alloy, but there is no involvement in the reaction in which hydrogen enters the electrolyte and the reaction in which hydrogen in the alloy comes out to the alloy surface. However, these reactions are determined by the hydrogen concentration on the surface of the hydrogen storage alloy.

すなわち、水の電気分解時には水素吸蔵合金表面の水素
濃度が増加しそのため水素が合金中に入シ、水素が水酸
基と反応する際には、水素吸蔵合金表面の水素!Jut
’が低下するため合金中から水素が出てくるのである。
In other words, during electrolysis of water, the hydrogen concentration on the surface of the hydrogen storage alloy increases, so hydrogen enters the alloy, and when hydrogen reacts with hydroxyl groups, the hydrogen concentration on the surface of the hydrogen storage alloy increases! Jut
' decreases, and hydrogen comes out from the alloy.

従って、貯蔵中に水素吸蔵合金表面の水素が消費される
状態にあれば、水素吸蔵−a金中の水素は放う)゛ 出され答訛の低下をまねく事となる−に1電池内には、
水素との反応性の高い正ゐが負極のごく近くに設置され
ているため、電解液中に溶けている水素は容易に正極に
よって消費され、その、ため水素吸蔵合金表面の水素が
電解液中に溶は出し、更にその溶は出した水素が正極に
よって消費されるというサイクルを繰り返し、常に水素
吸蔵合金表面の水素は消費される状態におかれる。その
ため。
Therefore, if the hydrogen on the surface of the hydrogen-absorbing alloy is consumed during storage, the hydrogen in the hydrogen-absorbing alloy (a) will be released and the hydrogen in the metal will be released, leading to a decrease in the response rate. teeth,
Since the positive electrode, which is highly reactive with hydrogen, is installed very close to the negative electrode, the hydrogen dissolved in the electrolyte is easily consumed by the positive electrode, and as a result, the hydrogen on the surface of the hydrogen storage alloy is absorbed into the electrolyte. A cycle is repeated in which the dissolved hydrogen is consumed by the positive electrode, and the hydrogen on the surface of the hydrogen storage alloy is constantly consumed. Therefore.

水素吸蔵合金からなる水素極の容器の低下を招くととも
に、正極は水素により還元され、工種容量も低下するこ
ととなる。
This results in deterioration of the hydrogen electrode container made of the hydrogen storage alloy, and the positive electrode is reduced by hydrogen, resulting in a reduction in work capacity.

〔発明の構成〕[Structure of the invention]

(問題を解決するための手段) 本発明は上述した問題点を解決するためになされたもの
であり、内部に電解液が保有される容器と、 水素吸蔵合金を主要構成材料としtitl記電解液中に
浸漬される負蔦と。
(Means for Solving the Problems) The present invention has been made to solve the above-mentioned problems, and includes a container in which an electrolytic solution is held, and an electrolytic solution whose main constituent material is a hydrogen storage alloy. With the ivy immersed inside.

間にセパレータを介して前記負極に対向して前記電解液
中に浸漬される正極とを有する水素電池において。
A hydrogen battery having a positive electrode immersed in the electrolytic solution facing the negative electrode with a separator interposed therebetween.

前記負極にポリビニルアルコール(以下、 PVAとす
る)又はNa−カルボキシメタルセルロース(以下、C
MCとする)が塗布されることを特徴としている。
The negative electrode is made of polyvinyl alcohol (hereinafter referred to as PVA) or Na-carboxymetal cellulose (hereinafter referred to as C
MC) is applied.

(作用) 電池の容量低下は前述したように水素極表面から電解液
中に湿は出した水素が正極に達して消費されるために起
こるが、この反応は大きく3つの過程に分けられる。す
なわち■水素吸蔵合金内から水素が表面に出る過楊、■
水素吸蔵合金表面の水素が電解液中に各は出し、電解液
中を正極に向って拡散する過程、■正極に、Rした水素
が正極と反応する過程である。これらのうち1つの過程
を抑制することにより電池の容量低下は改善されるが、
本発明では、負極表面にPVA又はCヤCを塗布するこ
とによジ、■の水素吸蔵合金表面の水素が電解液中に溶
は出す過程を抑制し、よって電池の容量低下の改善を実
現したものである。
(Function) As described above, the capacity of the battery decreases because the hydrogen released from the surface of the hydrogen electrode into the electrolyte reaches the positive electrode and is consumed, and this reaction can be broadly divided into three processes. In other words, ■Hydrogen comes out from within the hydrogen storage alloy to the surface,■
The hydrogen on the surface of the hydrogen storage alloy is released into the electrolyte and diffuses through the electrolyte toward the positive electrode; and (2) the R hydrogen reacts with the positive electrode. By suppressing one of these processes, the decrease in battery capacity can be improved, but
In the present invention, by applying PVA or CyaC to the surface of the negative electrode, the process of dissolving hydrogen on the surface of the hydrogen storage alloy (2) and (2) into the electrolyte is suppressed, thereby improving the reduction in battery capacity. This is what I did.

(実施例) 実施例1〜6 令井礫嗜ヰ 本発明の実施例を第1図を使用して説明する。(Example) Examples 1-6 Rei Reki Hobby An embodiment of the present invention will be described using FIG.

まず、水素吸蔵合金としてはL a N i 4.7 
A、J 0.3を用いた。これをまず20μm程度の粉
末とし、これにポリテトラフルオロエチレンを4重量%
の割合で添加混練しQ、5 mm tのシートにした。
First, as a hydrogen storage alloy, L a N i 4.7
A, J 0.3 was used. This is first made into a powder of about 20 μm, and 4% by weight of polytetrafluoroethylene is added to this powder.
The mixture was added and kneaded at a ratio of Q to form a sheet of 5 mm t.

このシートを10mmXIQmmにカットしそれにニッ
ケル網状体の集電体lを圧着して負極2とした。正極3
は寸法40mmX25mmであり負極に対して大過剰の
ニッケル酸化物を用いポリプロピレン製の厚さ0.2m
mの不織布のセパレータ4を介して負極と缶着させた。
This sheet was cut to a size of 10 mm x IQ mm, and a current collector 1 made of a nickel mesh was crimped onto it to form a negative electrode 2. Positive electrode 3
is 40 mm x 25 mm in size and made of polypropylene with a thickness of 0.2 m using a large excess of nickel oxide with respect to the negative electrode.
The negative electrode was attached to the negative electrode through a separator 4 made of nonwoven fabric.

これをアクリル製の電解セル5に入れ、8NKOHo)
′IE解液を注入して0リング8及びゴムパツキン9に
より密閉された試験セルとした。負極表面へのPVAの
塗布の方法は、まず、PVAを蒸留水に溶解し、その中
に負梧を浸してから引き上げ、乾燥させる方法を採った
。蒸留水に溶解したPVAの濃度はそれぞれxoI!/
l(実施例1 ) e 209/l (実施例2 )、
 3oy/l実施例3)とした。
Put this into an acrylic electrolytic cell 5 and 8NKOHo)
'IE solution was injected into the test cell, which was sealed with an O-ring 8 and a rubber packing 9. The method for applying PVA to the surface of the negative electrode was to first dissolve PVA in distilled water, immerse the Negogi in it, then take it out and dry it. The concentration of PVA dissolved in distilled water is xoI! /
l (Example 1) e 209/l (Example 2),
3oy/l Example 3).

また、同様の方法でCMCを塗布した負極を用いた試験
セルを作製した。この時のCM Cの1度は、それぞれ
1011/l (実施fl14 ) 、 2og#(実
、*flJ5)、30#/J(実施例6 )、!:L7
’C0さらに比較例として何も塗布していない負極を便
用して作製した試験セルも用意した。なお、いずれの場
合も参照極としてはカドミウム極7を使用した。
In addition, a test cell using a negative electrode coated with CMC was prepared in the same manner. The degrees of CMC at this time were 1011/l (implemented fl14), 2og# (actual, *flJ5), and 30#/J (example 6), respectively! :L7
'C0 Furthermore, as a comparative example, a test cell prepared using a negative electrode without any coating was also prepared. Note that in both cases, cadmium electrode 7 was used as a reference electrode.

第1表に本発明の実施例1〜6の試験セルの容量低下の
測定結果を示す。試験セルでは、正極として大過剰のニ
ッケル酸化物を用いてお9.結果として得られるのは、
水素極の8に低下である。
Table 1 shows the measurement results of the capacity reduction of the test cells of Examples 1 to 6 of the present invention. In the test cell, a large excess of nickel oxide was used as the positive electrode. The result is:
It is a drop to 8 of the hydrogen electrode.

容量低下の測定方法は、まず一定の時間(1時間)と電
流(3QmA)による光電と、一定の電流(3QmA)
による端子電圧が0.9 V (Cなるまでの放電を多
数回繰り返し、放電容量が安定してから光電が安定した
時点で光放電サイクルを止め、1週間、25℃で貯蔵し
た。貯蔵後それを放電し。
The method for measuring capacity reduction is first photoelectric measurement using a constant time (1 hour) and current (3QmA), and then a constant current (3QmA).
Discharge was repeated many times until the terminal voltage reached 0.9 V (C), and when the discharge capacity became stable and the photoelectricity became stable, the photodischarge cycle was stopped and stored at 25 °C for one week. discharge.

容■を求め貯蔵時間を設けずに放電した揚台のそれぞれ
の電極容量を100%として、それに対する容置低下の
割合を求めた。
The capacity (2) was determined, and the capacity of each electrode of the platform discharged without a storage time was set as 100%, and the rate of capacity reduction relative to that was determined.

以下余白 第1表に示されているように、PVA又はCMCを塗布
した負極を便用した試験セルは、従来の何も塗布しない
負極を使用した試験セルに比べ容量低下が小さいことが
分る。
As shown in Table 1 in the margin below, it can be seen that test cells that use negative electrodes coated with PVA or CMC have a smaller capacity drop than test cells that use conventional negative electrodes that are not coated with anything. .

代 また、実施例においては、水素吸蔵合金ゼ、LaN i
 4,7人Jj 0.3を用いたが1本発明は合金表面
に出てきている水素の電解液への溶解を抑制するもので
あるため、その効果は上記合金のみに特定されるもので
はない。よって水素吸蔵合金の種類よびこれらのNiの
一部を他の金属元素1例えばAJtMm、F’e、Co
、Ti 、Cu、Zn、Zr、Cr等でま換し、三元あ
るいは四元以上の合金としたもの。
In addition, in the examples, hydrogen storage alloy ze, LaN i
4.7 Jj 0.3 was used, but the present invention suppresses the dissolution of hydrogen appearing on the alloy surface into the electrolytic solution, so the effect is not specific to the above alloy only. do not have. Therefore, depending on the type of hydrogen storage alloy, some of these Ni may be replaced with other metal elements such as AJtMm, F'e, Co.
, Ti, Cu, Zn, Zr, Cr, etc. to form a ternary or quaternary or higher alloy.

更VCMg 、N i 系、 T iN i系、 T 
ire系O曾金カ用いられるが、格別これらにも限定さ
れるわけではなく、本発明において用いる水素吸蔵合金
は、を解液中で電気化学的に発生させた水素を容易に吸
蔵し、かつ放電時に容易に放出できるものであれば、い
かなるものを用いても良い。
Furthermore, VCMg, N i system, T iN i system, T
The hydrogen storage alloy used in the present invention can easily store hydrogen electrochemically generated in the solution, and is not particularly limited to these. Any material may be used as long as it can be easily released during discharge.

〔発明の効果〕〔Effect of the invention〕

本発明の水素電池は、その負極にPVAあるいはCM 
Cを被着させることにより、貯蔵中の容量低下を改番す
ることができる。
The hydrogen battery of the present invention uses PVA or CM as its negative electrode.
By depositing C, capacity loss during storage can be counteracted.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は不発明に係る水素電池の試験セルの模擬断面図
である。 l・・・集電体、2・・・負極、3・・・正極、4・・
・セパレータ、5・・・電解セル、6・・・電解液、7
・・・カドミウム極(参照極)%8・・・0りング、9
・・・ゴムパツキン・ 代理人 弁理士   則 近 憲 右 同     竹 花 喜久男 手 続 補 正 書(自発)
FIG. 1 is a simulated sectional view of a test cell of a hydrogen battery according to the invention. l... Current collector, 2... Negative electrode, 3... Positive electrode, 4...
・Separator, 5... Electrolytic cell, 6... Electrolyte, 7
...Cadmium pole (reference pole) %8...0 ring, 9
・・・Gumpatzkin Agent Patent Attorney Nori Chika Ken Udo Takehana Kikuo Proceedings Amendment (Voluntary)

Claims (1)

【特許請求の範囲】 内部に電解液が保有される容器と、 水素吸蔵合金を主要構成材料とし前記電解液中に浸漬さ
れる負極と、 間にセパレータを介して前記負極に対向して前記電解液
中に浸漬される正極とを有する水素電池において、 前記負極にポリビニールアルコール又はNa−カルボキ
シメタルセルロースが塗布されていることを特徴とする
水素電池。
[Scope of Claims] A container in which an electrolytic solution is held, a negative electrode whose main constituent material is a hydrogen storage alloy and immersed in the electrolytic solution, and a separator placed between the container and the electrolytic solution. A hydrogen battery having a positive electrode immersed in a liquid, characterized in that the negative electrode is coated with polyvinyl alcohol or Na-carboxymetal cellulose.
JP61107615A 1986-05-13 1986-05-13 Hydrogen battery Pending JPS62264556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61107615A JPS62264556A (en) 1986-05-13 1986-05-13 Hydrogen battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61107615A JPS62264556A (en) 1986-05-13 1986-05-13 Hydrogen battery

Publications (1)

Publication Number Publication Date
JPS62264556A true JPS62264556A (en) 1987-11-17

Family

ID=14463661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61107615A Pending JPS62264556A (en) 1986-05-13 1986-05-13 Hydrogen battery

Country Status (1)

Country Link
JP (1) JPS62264556A (en)

Similar Documents

Publication Publication Date Title
US3738870A (en) Storage batteries containing zinc halide in an aqueous solution of the type having a soluble cathode and a dissolved anode
US3917769A (en) Process for the preparation of electrodes for an electrochemical generator
JPS62264556A (en) Hydrogen battery
JPS62254359A (en) Hydrogen cell
US3335032A (en) Method of manufacturing battery plates
JP2830479B2 (en) Non-aqueous electrolyte secondary battery
JPS63164162A (en) Cadmium negative electrode for alkaline storage battery
US3306778A (en) Secondary battery electrode and methods of making
JPS59114767A (en) Manufacture of hydrogen electrode
JP2855677B2 (en) Sealed lead-acid battery
JPS62249367A (en) Hydrogen battery
JP2002343359A (en) Sealed type lead storage battery
JP3196234B2 (en) Cadmium negative electrode plate for alkaline storage battery and method of manufacturing the same
JPH02174061A (en) Paste type cadmium negative electrode for alkaline storage battery
JPH09245827A (en) Manufacture of alkaline storage battery
JPH02148661A (en) Battery
CN1205116A (en) Rechangable alkaline cells containing zinc anodes without added mercury
JPS6224562A (en) Cadmium electrode plate for sealed battery
JPS6091565A (en) Nonaqueous electrolyte battery
JPS58186164A (en) Manufacture of negative electrode for alkaline battery
JP2002343413A (en) Seal type lead-acid battery
JPH03283362A (en) Nickel hydrogen storage battery
JPS6050861A (en) Positive plate for quick use type lead storage battery
JPS62271347A (en) Manufacture of negative electrode plate of cadmium for alkaline storage battery
JPH0963580A (en) Nickel positive electrode for alkaline storage battery