JPS6226270B2 - - Google Patents

Info

Publication number
JPS6226270B2
JPS6226270B2 JP55013723A JP1372380A JPS6226270B2 JP S6226270 B2 JPS6226270 B2 JP S6226270B2 JP 55013723 A JP55013723 A JP 55013723A JP 1372380 A JP1372380 A JP 1372380A JP S6226270 B2 JPS6226270 B2 JP S6226270B2
Authority
JP
Japan
Prior art keywords
signal
induction motor
detection means
deviation
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55013723A
Other languages
Japanese (ja)
Other versions
JPS56112889A (en
Inventor
Sumio Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1372380A priority Critical patent/JPS56112889A/en
Publication of JPS56112889A publication Critical patent/JPS56112889A/en
Publication of JPS6226270B2 publication Critical patent/JPS6226270B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • H02P3/24Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor by applying dc to the motor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Stopping Of Electric Motors (AREA)

Description

【発明の詳細な説明】 本発明は電動トルクおよび制動トルクを発生す
ることができる多相誘導電動機の制御装置の改良
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a control device for a polyphase induction motor capable of generating electric torque and braking torque.

多相誘導電動機に加える一次電圧を制御して電
動トルクを調整し、また、多相誘導電動機の2相
間に直流電力を供給することで制動トルクを発生
することにより、多相誘導電動機を電動域から制
動域まで連続して制御することが行なわれてい
る。このような制御装置の例を第1図に示す。図
中R,S,Tは3相交流電源の母線、1は図示し
ない負荷に連結した3相誘導電動機、2は3相交
流電源と3相誘導電動機1との間に接続した電力
制御手段であり、それぞれの母線に逆並列に挿入
したサイリスタ3,4,5,6,7,8より構成
される。9は3相誘導電動機1の運転速度に応じ
た速度信号を取り出すための速度検出手段であ
り、3相誘導電動機1に連結した速度発電機1
0、速度発電機10の発生電圧を整流する整流回
路11より構成する。12は3相誘導電動機1の
運転速度を指令するため運転速度に対応する指令
信号を発する速度指令手段、13は速度検出手段
9の速度信号と速度指令手段12の指令信号との
偏差値を増幅する第1の偏差検出手段、14は第
1の偏差検出手段13の偏差信号を反転して増幅
する第2の偏差検出手段である。この第1の偏差
検出手段13から出力される偏差信号は速度信号
より指令信号の値が大きな範囲で正、第2の偏差
検出手段14から出力される偏差信号は指令信号
より速度信号の値が大きな範囲で正となる。15
は指令信号より速度信号の値が大きな範囲を検出
する極性検出手段、16は3相誘導電動機1が同
期速度に近い高速領域で運転していることを検出
する高速運転領域検出手段、17は3相交流電源
の半サイル毎に同期信号を発する同期信号発生手
段である。18は間引き信号発生手段であり、極
性検出手段15、高速運転領域検出手段16、同
期信号発生手段17より各信号を入力し、3相誘
導電動機1の制動域において同期速度に近い高速
領域にあれば3相交流電源の2サイクルに半サイ
クルの出力信号を発し、それ以外の低速領域であ
れば1サイクルに半サイクルの出力信号を発す
る。また、間引き信号発生手段18は3相誘導電
動機1が電動域にある場合には同期信号発生手段
17の同期信号を取り込み、同様な信号を出力す
る。19,20は移相手段であり同期信号発生手
段17より取り込んだ同期信号を第1の偏差検出
手段13よりダイオード21,22を介して取り
込んだ偏差信号の大きさに応じてタイミング信号
として出力する点弧時間を調整する。同じく23
は同期信号発生手段であり間引き信号発生手段1
8より取り込んだ信号を第1・第2の偏差検出手
段13,14よりダイオード24,25を介して
取り込んだ偏差信号の大きさに応じてタイミング
信号として出力する点弧時間を調整する。26は
電力制御手段2を制御するための駆動信号を発す
る駆動手段であり、移相手段19,20,23の
タイミング信号を取り込んで分配し、サイリスタ
3,4,5,6,7,8を点弧制御するための点
弧信号を発するサイリスタ駆動回路27,28,
29を備える。
By controlling the primary voltage applied to the polyphase induction motor to adjust the electric torque, and by generating braking torque by supplying DC power between the two phases of the polyphase induction motor, the polyphase induction motor can be controlled in the motor range. Continuous control is carried out from the start to the braking range. An example of such a control device is shown in FIG. In the figure, R, S, and T are bus bars of a three-phase AC power supply, 1 is a three-phase induction motor connected to a load (not shown), and 2 is a power control means connected between the three-phase AC power supply and the three-phase induction motor 1. It consists of thyristors 3, 4, 5, 6, 7, and 8 inserted in antiparallel to each bus bar. 9 is a speed detection means for extracting a speed signal according to the operating speed of the three-phase induction motor 1, and a speed generator 1 connected to the three-phase induction motor 1;
0. It is composed of a rectifier circuit 11 that rectifies the voltage generated by the speed generator 10. 12 is a speed command means for issuing a command signal corresponding to the operating speed in order to command the operating speed of the three-phase induction motor 1; 13 is amplifying the deviation value between the speed signal of the speed detection means 9 and the command signal of the speed command means 12; 14 is a second deviation detection means that inverts and amplifies the deviation signal of the first deviation detection means 13. The deviation signal outputted from the first deviation detection means 13 is positive in the range where the value of the command signal is greater than the value of the speed signal, and the deviation signal outputted from the second deviation detection means 14 is positive within the range where the value of the speed signal is greater than the value of the command signal. It is positive over a large range. 15
16 is a polarity detection means for detecting a range in which the value of the speed signal is larger than the command signal, 16 is a high-speed operation region detection means for detecting that the three-phase induction motor 1 is operating in a high-speed region close to the synchronous speed, and 17 is 3 This is a synchronization signal generating means that generates a synchronization signal every half cycle of the phase AC power supply. Reference numeral 18 denotes a thinning signal generating means, which inputs each signal from the polarity detecting means 15, the high-speed operation region detecting means 16, and the synchronous signal generating means 17, and inputs each signal from the polarity detecting means 15, the high-speed operation region detecting means 16, and the synchronous signal generating means 17, and inputs each signal from the polarity detecting means 15, the high-speed operation region detecting means 16, and the synchronous signal generating means 17, and determines whether the three-phase induction motor 1 is in a high-speed region close to the synchronous speed in the braking region. For example, a half-cycle output signal is generated every two cycles of a three-phase AC power source, and a half-cycle output signal is generated every cycle in other low-speed areas. Furthermore, when the three-phase induction motor 1 is in the motor range, the thinning signal generating means 18 takes in the synchronizing signal from the synchronizing signal generating means 17 and outputs a similar signal. Reference numerals 19 and 20 denote phase shifting means, which output the synchronization signal taken in from the synchronization signal generation means 17 as a timing signal according to the magnitude of the deviation signal taken in from the first deviation detection means 13 via diodes 21 and 22. Adjust ignition time. Also 23
is a synchronization signal generation means and a thinning signal generation means 1
The firing time for outputting the signal as a timing signal is adjusted according to the magnitude of the deviation signal taken in from the first and second deviation detection means 13 and 14 via the diodes 24 and 25. Reference numeral 26 denotes a drive means for emitting a drive signal for controlling the power control means 2, which captures and distributes the timing signals of the phase shift means 19, 20, 23, and controls the thyristors 3, 4, 5, 6, 7, 8. Thyristor drive circuits 27, 28, which issue ignition signals for ignition control;
Equipped with 29.

次にこのように構成した制御装置の動作を説明
する。まず、速度指令手段12の指令信号より速
度検出手段9の速度信号の値が小さな電動域で第
1の偏差検出手段13の偏差信号は正電圧とな
り、ダイオード21,22,24を通して移相手
段19,20,23に送られる。また、第2の偏
差検出手段14の偏差信号は負電圧となりダイオ
ード25によりオフされる。さらに、極性検出手
段15の出力はLレベルとなるため、間引き信号
発生手段18は高速運転領域検出手段16の信号
に関係なく同期信号発生手段17の同期信号を移
相手段23に出力する。そして移送手段19,2
0,23のタイミング信号が駆動手段26に入力
することにより電力制御手段2が制御され3相誘
導電動機1の運転速度が調整される。すなわち、
第1の偏差検出手段13の偏差信号の値が大きく
なるに従い、各サイリスタ3,4,5,6,7,
8のオン期間が増加する。したがつて、3相誘導
電動機1に加わる一次電圧が上昇し、3相誘導電
動機1の電動トルクが増大してゆく。
Next, the operation of the control device configured as described above will be explained. First, in the motor range where the value of the speed signal of the speed detection means 9 is smaller than the command signal of the speed command means 12, the deviation signal of the first deviation detection means 13 becomes a positive voltage, and the deviation signal of the first deviation detection means 13 becomes a positive voltage. , 20, 23. Further, the deviation signal of the second deviation detection means 14 becomes a negative voltage and is turned off by the diode 25. Further, since the output of the polarity detecting means 15 is at L level, the thinning signal generating means 18 outputs the synchronizing signal of the synchronizing signal generating means 17 to the phase shifting means 23 regardless of the signal of the high speed operation region detecting means 16. and transport means 19,2
By inputting the timing signals of 0 and 23 to the drive means 26, the power control means 2 is controlled and the operating speed of the three-phase induction motor 1 is adjusted. That is,
As the value of the deviation signal of the first deviation detection means 13 increases, each thyristor 3, 4, 5, 6, 7,
8 on-period increases. Therefore, the primary voltage applied to the three-phase induction motor 1 increases, and the electric torque of the three-phase induction motor 1 increases.

次に、速度検出手段9の速度信号より速度指令
手段12の指令信号の値が小さくなり3相誘導電
動機1が制動域になると、第1の偏差検出手段1
3の偏差信号は負電圧となりダイオード21,2
2,24がオフする。一方、第2の偏差検出手段
14の偏差信号および極性検出手段15の出力信
号は正電圧となりダイオード25がオンする。し
たがつて、移相手段23は間引き制御手段18よ
り信号を取り込んでからタイミング信号を発する
までの点弧時間を偏差信号の大きさに応じて調整
する。すなわち、高速運転領域検出手段16の出
力信号がLレベルにある3相誘導電動機1の低速
運転領域においては、間引き制御手段18より3
相交流電源の1サイクルに半サイクルの間だけ発
せられる出力信号により移相手段23のタイミン
グ信号が駆動手段26に加わり、電力制御手段2
が2相間、例えばR相とT相との間に直流電流を
供給し3相誘導電動機1の発電(直流)制動が行
なわれる。また、高速運転領域検出手段16の出
力信号がHレベルにある3相誘導電動機1の高速
運転領域においては、間引き制御手段18より3
相交流電源の2サイクルに半サイクルの間だけ発
せられる出力信号により移相手段23のタイミン
グ信号が駆動手段26に加わり、電力制御手段2
が2相間、例えばR相とT相との間に直流電流を
給電し3相誘導電動機1の発電(直流)制動が行
なわれる。第2図によりさらに説明する。第2図
において、横軸は3相誘導電動機1の運転速度
N、縦軸は3相誘導電動機1に発生するトルク7
を示すものであり正の範囲で電動トルク、負の範
囲で制動トルクを表わす。すなわち図中Aは各サ
イリスタ3,4,5,6,7,8を導通した場合
の電動トルク特性、Bはサイリスタ3,8あるい
はサイリスタ4,7のどちらかを3相交流電源の
1サイクルに半サイクルの間導通した場合の制動
トルク特性であり同期速度Noに近い高速運転領
域の部分で電動トルクを生じている。また、Cは
サイリスタ3,8あるいはサイリスタ4,7のど
ちらかを3相交流電源の2サイクルに半サイクル
の間導通した場合の制動トルク特性であり、同期
速度Noに近い高速運転領域の部分で十分な制動
トルクを生じている。したがつて、高速運転領域
検出手段16によつて高速運転領域を検出し速度
N1において、二つの制動状態を切り替えること
により、図上、実線Dで示すように3相誘導電動
機1の制動域では常に制動トルクを得ることがで
きる。
Next, when the value of the command signal from the speed command means 12 becomes smaller than the speed signal from the speed detection means 9 and the three-phase induction motor 1 enters the braking region, the first deviation detection means 1
The deviation signal of 3 becomes a negative voltage and the diodes 21, 2
2 and 24 are turned off. On the other hand, the deviation signal of the second deviation detection means 14 and the output signal of the polarity detection means 15 become positive voltages, and the diode 25 is turned on. Therefore, the phase shift means 23 adjusts the firing time from when the signal is taken in by the thinning control means 18 to when the timing signal is issued, depending on the magnitude of the deviation signal. That is, in the low-speed operation region of the three-phase induction motor 1 where the output signal of the high-speed operation region detection means 16 is at L level, the thinning control means 18
The timing signal of the phase shift means 23 is applied to the drive means 26 by the output signal which is emitted only for half a cycle in one cycle of the phase AC power supply, and the power control means 2
supplies DC current between two phases, for example, between the R phase and the T phase, and power generation (DC) braking of the three-phase induction motor 1 is performed. In addition, in the high-speed operation region of the three-phase induction motor 1 where the output signal of the high-speed operation region detection means 16 is at H level, the thinning control means 18
The timing signal of the phase shift means 23 is applied to the drive means 26 by the output signal which is emitted only during two and a half cycles of the phase AC power supply, and the power control means 2
A DC current is supplied between two phases, for example, between the R phase and the T phase, and power generation (DC) braking of the three-phase induction motor 1 is performed. This will be further explained with reference to FIG. In Fig. 2, the horizontal axis is the operating speed N of the three-phase induction motor 1, and the vertical axis is the torque 7 generated in the three-phase induction motor 1.
The positive range represents electric torque, and the negative range represents braking torque. In other words, in the figure, A is the electric torque characteristic when each thyristor 3, 4, 5, 6, 7, and 8 is conductive, and B is the electric torque characteristic when either thyristor 3, 8 or thyristor 4, 7 is connected to one cycle of the three-phase AC power supply. This is the braking torque characteristic when it is conductive for half a cycle, and electric torque is generated in the high-speed operation region near the synchronous speed No. In addition, C is the braking torque characteristic when either thyristors 3 and 8 or thyristors 4 and 7 are conducted for half a cycle in two cycles of a three-phase AC power supply, and in the high-speed operation region near the synchronous speed No. Sufficient braking torque is generated. Therefore, the high-speed operation area detection means 16 detects the high-speed operation area and determines the speed.
By switching between the two braking states at N1 , braking torque can always be obtained in the braking range of the three-phase induction motor 1, as shown by the solid line D in the diagram.

さて、このような制御装置では各種のパルス信
号を取り扱うデジタル回路と両信号の偏差量など
を増幅するアナログ回路とが混在していぬ。した
がつて、アナログ回路側からデジタル回路側にノ
イズが侵入しデジタル回路側が誤動作を起こし易
い状態にある。したがつて、3相誘導電動機1が
電動域で運転中、例えば極性検出手段15、高速
運転領域検出手段16あるいは間引き信号発生手
段18のデイジタル回路がアナログ回路からノイ
ズを受け誤動作すると移相手段23は間引き信号
発生手段18から同期信号発生手段17の同期信
号と同様の信号が入力されない。このため、移相
手段23はタイミングが異なるとき点弧信号を出
力し3相誘導電動機が正常に速度調整できないこ
とがあつた。
Now, in such a control device, a digital circuit that handles various pulse signals and an analog circuit that amplifies the amount of deviation between the two signals are not mixed together. Therefore, noise enters the digital circuit side from the analog circuit side, and the digital circuit side is likely to malfunction. Therefore, when the three-phase induction motor 1 is operating in the electric range, for example, if the digital circuits of the polarity detection means 15, the high-speed operation region detection means 16, or the thinning signal generation means 18 receive noise from the analog circuit and malfunction, the phase shift means 23 In this case, a signal similar to the synchronization signal of the synchronization signal generation means 17 is not inputted from the thinning signal generation means 18. For this reason, the phase shift means 23 outputs an ignition signal at different timings, and the speed of the three-phase induction motor cannot be adjusted normally.

そこで本発明は特に電動域において、デイジタ
ル回路がノイズ等によつて誤動作しても正常な速
度制御ができる信頼性の高い多相誘導電動機の制
御装置を提供するものである。
Therefore, the present invention provides a highly reliable control device for a multiphase induction motor that can perform normal speed control even if the digital circuit malfunctions due to noise or the like, particularly in the motorized range.

以下、第3図に示す実施例を説明する。第1図
に示す制御装置と同じ付号で示すのは同じ働きを
するものであるから説明を省略する。30は移相
手段であり図に示すようにダイオード24,25
を介してそれぞれ入力する第1・第2の偏差検出
手段13,14の偏差信号の大きさに応じて同期
信号発生手段17より取り込む同期信号をタイミ
ング信号として出力する点弧時間を調整する。3
1は間引き制御手段であり3相交流電源の1相の
電圧と、高速運転領域検出手段16の出力信号を
取り込み3相誘導電動機1の制動域において、移
相手段30に加わる第2の偏差検出手段14の偏
差信号を制御する。37は一方向性素子としての
ダイオードであり、第2の偏差検出手段14から
間引き制御手段31への信号のみ通過させるもの
である。第4図に間引き制御手段31の構成を示
す。すなわち、JKフリツプフロツプ32以前の
回路は3相交流電源のR相・T相の線間より取り
込んだ正弦波形を成形し、1サイクルに1個の割
合でパルス信号を得るための波形成形回路、JK
フリツプフロツプ33は3相交流電源の2サイク
ルに1個の割合でパルス信号を得るための回路、
NAND回路34およびOR回路(NOT回路+OR
回路)35は高速運転領域検出手段16の出力が
Hレベルにあるとき、JKフリツプフロツプ33
の出力を取り出し、高速運転領域検出手段16の
出力がLレベルにあるときJKフリツプフロツプ
32の出力を取り出すための信号選択回路であ
る。トランジスタ36およびダイオード37は信
号選択回路の出力がHレベルにあるとき、第2の
偏差検出手段14の偏差信号が移相手段30に入
力されないよう働くキヤンセル回路である。
The embodiment shown in FIG. 3 will be described below. Components designated by the same reference numerals as the control device shown in FIG. 1 have the same function, and therefore their explanation will be omitted. Reference numeral 30 denotes a phase shift means, which includes diodes 24 and 25 as shown in the figure.
The ignition time for outputting the synchronizing signal taken in from the synchronizing signal generating means 17 as a timing signal is adjusted according to the magnitude of the deviation signal of the first and second deviation detecting means 13 and 14 inputted through the synchronizing signal generating means 17, respectively. 3
Reference numeral 1 denotes a thinning control means which receives the voltage of one phase of the three-phase AC power source and the output signal of the high-speed operation region detection means 16, and detects a second deviation applied to the phase shifting means 30 in the braking region of the three-phase induction motor 1. The deviation signal of the means 14 is controlled. 37 is a diode as a unidirectional element, which allows only the signal from the second deviation detection means 14 to the thinning control means 31 to pass through. FIG. 4 shows the configuration of the thinning control means 31. In other words, the circuit before the JK flip-flop 32 is a waveform shaping circuit that shapes a sine waveform taken in between the R-phase and T-phase lines of a three-phase AC power supply and obtains a pulse signal at a rate of one per cycle.
The flip-flop 33 is a circuit for obtaining a pulse signal once every two cycles of the three-phase AC power supply.
NAND circuit 34 and OR circuit (NOT circuit + OR
A circuit) 35 is a JK flip-flop 33 when the output of the high-speed operation region detection means 16 is at H level.
This is a signal selection circuit for taking out the output of the JK flip-flop 32 when the output of the high-speed operation region detection means 16 is at L level. The transistor 36 and the diode 37 are a cancel circuit that functions to prevent the deviation signal from the second deviation detection means 14 from being input to the phase shifting means 30 when the output of the signal selection circuit is at H level.

次にこのように構成した制御装置の3相誘導電
動機1の電動域における動作を第3図に基き説明
する。電動域において第1の偏差手段13の偏差
信号は正電圧となり、ダイオード21,22,2
4を通して移相手段19,20,30に送られ
る。これら移相手段19,20,30はそれぞれ
同期信号発生手段17より同期信号を入力し、第
1の偏差手段13の偏差信号に応じたタイミング
信号を駆動手段26へ出力する。そして駆動手段
26は電力制御手段2を制御し3相誘導電動機1
の運転速度が調整される。ここで第2の偏差検出
手段14は第1の偏差検出手段13の偏差信号を
反転して増幅するものであるから、電動域時偏差
信号が負電圧となる。このため、間引き制御手段
31がノイズ等により誤動作しても第2の偏差検
出手段14の偏差信号はダイオード37でオフさ
れる。したがつて、移相手段19,20,30は
間引き制御手段31の誤動作の影響を受けること
がなく常に正常に制御される。
Next, the operation in the electric range of the three-phase induction motor 1 of the control device configured as described above will be explained based on FIG. 3. In the electric range, the deviation signal of the first deviation means 13 becomes a positive voltage, and the diodes 21, 22, 2
4 to the phase shift means 19, 20, 30. These phase shifting means 19, 20, and 30 each receive a synchronizing signal from the synchronizing signal generating means 17, and output a timing signal corresponding to the deviation signal of the first deviation means 13 to the driving means 26. The drive means 26 controls the power control means 2 and controls the three-phase induction motor 1.
operating speed is adjusted. Here, since the second deviation detection means 14 inverts and amplifies the deviation signal of the first deviation detection means 13, the deviation signal in the electric range becomes a negative voltage. Therefore, even if the thinning control means 31 malfunctions due to noise or the like, the deviation signal of the second deviation detection means 14 is turned off by the diode 37. Therefore, the phase shifting means 19, 20, and 30 are not affected by the malfunction of the thinning control means 31 and are always normally controlled.

つぎに制御装置の3相誘導電動機1の制動域に
おける動作を第5図によつて説明する。第5図に
おいて横軸は時間の経過tを、縦軸には付号で表
わされる各回路の出力信号の波形を示す。すなわ
ち、3相交流電源のR相−T相間の電圧波形より
成形加工されたパルス信号によりトランジスタ3
6がオン・オフを繰返すと、第2の偏差検出手段
14の偏差信号が周期的にキヤンセルされ、移相
手段30には電源周波数の1サイクルあるいは2
サイクルに半サイクルの期間だけ偏差信号が伝達
される。つまり、高速運転領域検出手段16の出
力がLレベルにある間は電源周波数の1サイクル
毎に半サイクルの期間だけ偏差信号が移相手段3
0に加わり、3相誘導電動機1のR相−T相間に
接続した巻線に直流電力が給電される。また、高
速運転領域検出手段16の出力がHレベルになる
と電源周波数の2サイクルに半サイクルの期間だ
け偏差信号が移相手段30に加わり、3相誘導電
動機1には電源周波数の1/2に間引かれた半サイ
クルの間だけ直流電力が給電される。このよう
に、3相誘導電動機1の2相間に直流電力が給電
されると、第2図ですでに説明したように3相誘
導電動機1は運転期間中常に制動トルクを発生す
る。
Next, the operation of the three-phase induction motor 1 of the control device in the braking range will be explained with reference to FIG. In FIG. 5, the horizontal axis shows the passage of time t, and the vertical axis shows the waveform of the output signal of each circuit indicated by the numerals. In other words, the transistor 3
6 repeats on and off, the deviation signal of the second deviation detection means 14 is periodically canceled, and the phase shift means 30 receives one or two cycles of the power frequency.
The deviation signal is transmitted for a period of half a cycle. In other words, while the output of the high-speed operation region detection means 16 is at the L level, the deviation signal remains at the phase shift means 3 for a period of half a cycle for every cycle of the power supply frequency.
0, and DC power is supplied to the winding connected between the R phase and the T phase of the three-phase induction motor 1. Further, when the output of the high-speed operation region detection means 16 becomes H level, a deviation signal is applied to the phase shift means 30 for a period of half a cycle to two cycles of the power supply frequency, and the deviation signal is applied to the three-phase induction motor 1 at 1/2 of the power supply frequency. DC power is supplied only during the thinned out half cycles. In this way, when DC power is supplied between the two phases of the three-phase induction motor 1, the three-phase induction motor 1 always generates braking torque during the operation period, as already explained with reference to FIG.

前記の実施例において電源波形を成形するため
に、JKフリツプフロツプを使用したがこれは、
第6図に示すようにインバータゲートを2個組み
合わせたり、あるいはシユミツト回路により構成
してもよい。また、前記実施例においては制動域
において2段階に直流電力が給電される期間を調
整してゆくものについて説明したが、これは第2
の偏差検出手段の偏差信号をキヤンセルする期間
を調整することにより、さらに多くの段数に切り
替えてゆくことができる。また、第2の偏差検出
手段の偏差信号は第1の偏差検出手段13の偏差
信号を反転して求めたが、これは速度検出手段9
の速度信号と速度指令手段12の指令信号との差
信号より直接求めることもできる。
In the above embodiment, a JK flip-flop was used to shape the power waveform, but this
As shown in FIG. 6, two inverter gates may be combined, or a Schmitt circuit may be used. Furthermore, in the embodiment described above, the period during which DC power is supplied in two stages in the braking region is adjusted;
By adjusting the period during which the deviation signal of the deviation detection means is canceled, it is possible to switch to a larger number of stages. Furthermore, the deviation signal of the second deviation detection means was obtained by inverting the deviation signal of the first deviation detection means 13;
It can also be directly determined from the difference signal between the speed signal of 1 and the command signal of the speed command means 12.

以上の説明から明らかなように、本発明による
制御装置は電力制御手段を制御する駆動手段にタ
イミング信号を出力する移相手段が同期信号発生
手段の同期信号を入力し、かつ間引き制御手段と
第2の偏差検出手段との間に一方向性素子を設け
て構成したので、デイジタル回路でなる間引き制
御手段がノイズで誤動作しても電動域で移相手段
が誤動作することがない。つまり、最も多く使用
される多相誘導電動機の電動域では移相手段に確
実に同期信号発生手段からの同期信号が供給され
るため、多相誘導電動機が制御不能になるといつ
た事故を防ぐことができる。したがつて、制御装
置の信頼性を高める効果がある。
As is clear from the above description, in the control device according to the present invention, the phase shift means for outputting a timing signal to the drive means for controlling the power control means inputs the synchronization signal of the synchronization signal generation means, and the thinning control means and the Since a unidirectional element is provided between the second deviation detecting means and the second deviation detecting means, even if the thinning control means made of a digital circuit malfunctions due to noise, the phase shift means will not malfunction in the motorized range. In other words, in the motor range of the polyphase induction motor that is most commonly used, the synchronization signal from the synchronization signal generation means is reliably supplied to the phase shift means, thereby preventing accidents such as when the polyphase induction motor becomes uncontrollable. I can do it. Therefore, this has the effect of increasing the reliability of the control device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の多相誘導電動機の制御装置の構
成を説明するためのブロツク図、第2図は第1図
に示す制御装置により発生するトルクを説明する
ための図、第3図は本発明の一つの実施例を説明
するためのブロツク図、第4図は第3図に示す間
引き制御手段の構成を説明するための図、第5図
は第3図、第4図に示す実施例の動作を説明する
ためのタイミング図、第6図は第4図で説明した
間引き制御手段の波形成形回路の他の実施例を説
明するための図である。 1……多相誘導電動機、2……電力制御手段、
9……速度検出手段、12……速度指令手段、1
3……第1の偏差検出手段、14……第2の偏差
検出手段、16……高速運転領域検出手段、17
……同期信号発生手段、19,20,30……移
相手段、26……駆動手段、31……間引き制御
手段、37……一方向性素子としてのダイオー
ド。
FIG. 1 is a block diagram for explaining the configuration of a conventional control device for a polyphase induction motor, FIG. 2 is a diagram for explaining the torque generated by the control device shown in FIG. 1, and FIG. A block diagram for explaining one embodiment of the invention, FIG. 4 is a diagram for explaining the configuration of the thinning control means shown in FIG. 3, and FIG. 5 is a diagram for explaining the embodiment shown in FIGS. 3 and 4. FIG. 6 is a timing diagram for explaining the operation of FIG. 6, and is a diagram for explaining another embodiment of the waveform shaping circuit of the thinning control means explained in FIG. 1... polyphase induction motor, 2... power control means,
9...Speed detection means, 12...Speed command means, 1
3...First deviation detection means, 14...Second deviation detection means, 16...High speed operation region detection means, 17
... Synchronization signal generation means, 19, 20, 30 ... Phase shifting means, 26 ... Driving means, 31 ... Thinning control means, 37 ... Diode as a unidirectional element.

Claims (1)

【特許請求の範囲】[Claims] 1 多相誘導電動機の電動域では多相誘導電動機
の一次電圧制御を行ない、制動域では2相間に直
流電力を供給する制御装置において、前記多相誘
導電動機の運転速度を検出する速度検出手段と、
前記多相誘導電動機の運転速度を指令する速度指
令手段と、前記速度検出手段と前記速度指令手段
の信号を比べ多相誘導電動機の電動域で両信号の
偏差を検出する第1の偏差検出手段と、前記速度
検出手段と前記速度指令手段の信号を比べ多相誘
導電動機の制動域で両信号の偏差を検出する第2
の偏差検出手段と、多相誘導電動機を接続する多
相電源の半サイクル毎に出力を発する同期信号発
生手段と、該同期信号発生手段と前記第1・第2
の偏差検出手段の信号の大きさに応じて出力信号
の位相を制御する移相手段と、該移相手段の信号
を取り込み多相誘導電動機と多相電源との間に接
続した電力制御手段を制御する駆動手段と、多相
誘導電動機の高速運転領域を検出する高速運転領
域検出手段と、該高速運転領域検出手段の信号を
受け多相電源の1サイクルを越えるサイクル毎に
前記第2の偏差検出手段の信号を前記移相手段に
伝える間引き制御手段と、該間引き制御手段と前
記第2の偏差検出手段との間に接続されており、
前記第2の偏差検出手段から前記間引き制御手段
への信号を通過させる一方向性素子とを備えたこ
とを特徴とする多相誘導電動機の制御装置。
1. In a control device that performs primary voltage control of the polyphase induction motor in the motor range of the polyphase induction motor and supplies DC power between two phases in the braking range, a speed detection means for detecting the operating speed of the polyphase induction motor; ,
A speed command means for commanding the operating speed of the polyphase induction motor; and a first deviation detection means for comparing the signals of the speed detection means and the speed command means and detecting a deviation between the two signals in the motor range of the polyphase induction motor. and a second device for comparing the signals of the speed detection means and the speed command means and detecting a deviation between the two signals in the braking region of the polyphase induction motor.
a deviation detection means for detecting deviation of the polyphase induction motor; a synchronization signal generation means for generating an output every half cycle of a polyphase power supply connecting the polyphase induction motor;
phase shifting means for controlling the phase of the output signal according to the magnitude of the signal from the deviation detection means; and power control means for receiving the signal from the phase shifting means and connected between the polyphase induction motor and the polyphase power source. a drive means for controlling; a high-speed operation range detection means for detecting a high-speed operation range of the polyphase induction motor; and a high-speed operation range detection means for detecting the second deviation for each cycle exceeding one cycle of the polyphase power supply in response to a signal from the high-speed operation range detection means. a decimation control means for transmitting a signal from the detection means to the phase shift means; connected between the decimation control means and the second deviation detection means;
A control device for a polyphase induction motor, comprising: a unidirectional element that passes a signal from the second deviation detection means to the thinning control means.
JP1372380A 1980-02-08 1980-02-08 Controlling device for multiphase induction motor Granted JPS56112889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1372380A JPS56112889A (en) 1980-02-08 1980-02-08 Controlling device for multiphase induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1372380A JPS56112889A (en) 1980-02-08 1980-02-08 Controlling device for multiphase induction motor

Publications (2)

Publication Number Publication Date
JPS56112889A JPS56112889A (en) 1981-09-05
JPS6226270B2 true JPS6226270B2 (en) 1987-06-08

Family

ID=11841159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1372380A Granted JPS56112889A (en) 1980-02-08 1980-02-08 Controlling device for multiphase induction motor

Country Status (1)

Country Link
JP (1) JPS56112889A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61108650U (en) * 1984-12-22 1986-07-10

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49127122A (en) * 1973-04-09 1974-12-05
JPS5060711A (en) * 1973-09-28 1975-05-24

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49127122A (en) * 1973-04-09 1974-12-05
JPS5060711A (en) * 1973-09-28 1975-05-24

Also Published As

Publication number Publication date
JPS56112889A (en) 1981-09-05

Similar Documents

Publication Publication Date Title
US4354223A (en) Step-up/step down chopper
US4330817A (en) Process and system for controlling the energization of a load
US4878163A (en) Pulse width modulated inverter with high-to-low frequency output converter
US4172991A (en) AC current control system for AC power supply
US4321478A (en) Auxiliary power supply with kinetic energy storage
JPS62104493A (en) Driving device for ac motor
CA1312116C (en) Method and device for braking a squirrel-cage motor
JPS6226270B2 (en)
US4415848A (en) Alternating current power source apparatus for car
JPS6137865B2 (en)
US4467261A (en) Variable speed motor drive system
US4907144A (en) Frequency converter and a method of applying same
JPH0363310B2 (en)
GB1532037A (en) Bipolar inverter circuits
JPH0669316B2 (en) Power regeneration control circuit for power converter
JPH0549263A (en) Power supply
JPS586391B2 (en) Inverter touch
JPH0638539A (en) Power source
SU657560A1 (en) Induction squirrel-cage motor braking control arrangement
JP2703293B2 (en) Engine driven AC generator
JP2001178192A (en) Speed control device for induction motor
JPH0750962B2 (en) AC electric vehicle control device
JPH01126169A (en) Inverter controlling device
JPH0783635B2 (en) Inverter device
JP2553511B2 (en) Control device for thyristor converter