JPS6226126B2 - - Google Patents
Info
- Publication number
- JPS6226126B2 JPS6226126B2 JP56097014A JP9701481A JPS6226126B2 JP S6226126 B2 JPS6226126 B2 JP S6226126B2 JP 56097014 A JP56097014 A JP 56097014A JP 9701481 A JP9701481 A JP 9701481A JP S6226126 B2 JPS6226126 B2 JP S6226126B2
- Authority
- JP
- Japan
- Prior art keywords
- insulating layer
- weight
- thickness
- flame
- properties
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 claims description 21
- 239000003063 flame retardant Substances 0.000 claims description 21
- 229920000098 polyolefin Polymers 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 11
- 239000004020 conductor Substances 0.000 claims description 9
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 claims description 9
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 claims description 8
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 claims description 8
- 239000005038 ethylene vinyl acetate Substances 0.000 claims description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 7
- 239000006229 carbon black Substances 0.000 claims description 5
- 239000003431 cross linking reagent Substances 0.000 claims description 2
- 230000005855 radiation Effects 0.000 claims description 2
- 238000009413 insulation Methods 0.000 description 19
- 238000002485 combustion reaction Methods 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 229920001684 low density polyethylene Polymers 0.000 description 6
- 239000004702 low-density polyethylene Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 229910052736 halogen Inorganic materials 0.000 description 4
- 150000002367 halogens Chemical class 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- BJELTSYBAHKXRW-UHFFFAOYSA-N 2,4,6-triallyloxy-1,3,5-triazine Chemical compound C=CCOC1=NC(OCC=C)=NC(OCC=C)=N1 BJELTSYBAHKXRW-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 229920001038 ethylene copolymer Polymers 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920005653 propylene-ethylene copolymer Polymers 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000011243 crosslinked material Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000007765 extrusion coating Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 230000026030 halogenation Effects 0.000 description 1
- 238000005658 halogenation reaction Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 229920001179 medium density polyethylene Polymers 0.000 description 1
- 239000004701 medium-density polyethylene Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000002896 organic halogen compounds Chemical class 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000012744 reinforcing agent Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Insulated Conductors (AREA)
Description
本発明は垂直燃焼試験に合格する高度の難燃特
性と、低ハロゲン性、耐水性、良好な引張特性、
耐LOCA性、電気特性等とを兼ね備えた難燃性絶
縁電線・ケーブルに関するものである。
難燃性絶縁電線・ケーブル、特に機器配線用、
車輛用、原子力発電所用等の電線・ケーブルの絶
縁及びシース材料には、垂直燃焼試験、例えば、
UL規格758のVW−1燃焼試験、IPCEA S−61
−402の垂直燃焼試験及びTEEE383の垂直トレイ
試験に合格する高度の難燃特性が要求され、また
機器配線用では絶縁抵抗はさほど問題とならない
が、車輛用及び原子力発電所用では一般の絶縁材
料と同様に2500MΩ/Km以上の絶縁抵抗が必要で
ある。引張特性については引張強さ1.0Kg/mm2以
上及び伸び100%以上が要求される。その他に、
原子力発電所用では冷却材喪失事故を想定した耐
LOCA試験に合格するほか、燃焼時のハロゲンガ
ス発生量が100mg/g以下であるという低ハロゲ
ン性等も要求される。
絶縁及びシース材料としてポリオレフインを使
用する場合には、難燃特性を満足させるために有
機ハロゲン化合物を多量に添加することが必要で
あり、この結果高価になるほか、低ハロゲン性を
満足させることができない。エチレン共重合体の
場合には、水酸化アルミニウム、水酸化マグネシ
ウム等のような水和金属酸化物を高充填すること
により、ハロゲンフリーまたは低ハロゲン性で高
難燃性とすることができるが、引張特性が大幅に
低下する。特開昭51−132254号公報、特公昭51−
34866号公報等に被瀝されているエチレンコポリ
マーに水和金属酸化物を高充填した組成物はハロ
ゲンフリーであるが、難燃特性、電気特性及び耐
LOCA特性が不十分であり、垂直燃焼試験に合格
するような高難燃性を付与しようとすると、引張
特性等の物性が著しく低下する。塩化ビニルの場
合には、炭酸カルシウム又は水和金属酸化物を高
充填することによつて高難燃性とすることができ
るほか、見掛け上は低ハロゲン化を達成できる
が、この場合も垂直燃焼試験に合格するような高
難燃性を付与しようとすると、引張特性等の物性
が著しく低下する。
上述のように、プラスチツク絶縁及びシース材
料には引張強さ1.0Kg/mm2以上及び伸び100%とい
う引張特性が要求されるが、従来技術において
は、絶縁及びシース材料としてポリオレフインを
使用する場合でも、また塩化ビニルを使用する場
合でも、かかる引張特性を満足し、かつハロゲン
フリーで、垂直燃焼試験に合格する高難燃特性を
有し、さらに耐LOCA性、電気特性等を全て満足
するものは得られておらず、従つてこれらの特性
を全て満足する難燃性絶縁電線・ケーブルも得ら
れていない。
本発明においては、従来の難燃性絶縁電線・ケ
ーブルにおける上述の欠点を解決すべく鋭意検討
した結果、単一絶縁層によつて上述の特性を全て
満足させることは不可能であるが、電気特性及び
引張特性等のような物性が優れている特定の樹脂
を内層絶縁層とし、これらの特性の点では劣つて
いるが高難燃特性を有する特定の樹脂組成物を外
層絶縁層とし、これら両絶縁層を組合せ施すこと
により、引張特性のような物性、電気特性のほ
か、耐水性及び耐LOCA性についても著しく優
れ、ハロゲンフリーで垂直燃焼試験に十分合格す
る難燃性絶縁電線・ケーブルが得られることを見
い出した。
即ち、本発明は第1図〜第2図に示したよう
に、導体1上に、ポリオレフイン又はポリオレフ
イン共重合体からなり少くとも0.03mm以上の厚さ
を有する内層絶縁層2と、酢酸ビニル濃度40重量
%以上のエチレン−酢酸ビニル共重合体100重量
部に対して120〜250重量部の水酸化アルミニウム
及び0.5〜70重量部の無定形シリカとカーボンブ
ラツクとのうちの少くとも一方を配合した組成物
からなる外層絶縁層3とを、内層絶縁層2と外層
絶縁層3との厚さの比率が1/1以下となるよう
に形成したことを特徴とする難燃性絶縁電線4、
およびこの絶縁電線の所望数を介在物層5を介在
させるか又は介在させるに集束し、その外側にポ
リ塩化ビニル、難燃性ポリエチレン等の難燃性の
プラスチツク等によつてシース層6を設けたケー
ブルに関するものである。
本発明においては、ポリオレフイン又はポリオ
レフイン共重合体からなる内層絶縁層2の厚さ
は、絶縁抵抗及び引張特性の点から、少くとも
0.03mm以上とする必要がある。厚さ0.03mm未満で
は内層絶縁層にピンホールが発生し易く、現在実
用されている最小のφ0.16mm導体においても、長
手方向に100mづつ数本の電線について絶縁抵抗
を測定すると、ピンホールによる短絡がいくつか
発生する。また引張特性も厚さ0.03mm未満では引
張強さ1.0Kg/mm2以上及び伸び100%以上に達しな
い。内層絶縁層2と外層絶縁層3との厚さの比率
は難燃性の点から1/1以下とするのが必要であ
る。この比率がこの値より大きいと、例えば2/
1、3/1等のように外層厚さに比べ内層厚さが
大きくなると垂直燃特性が不合格となる。
本発明において、内層絶縁層に用いるポリオレ
フインとしては低密度ポリエチレン、中密度ポリ
エチレン、高密度ポリエチレン等が望ましく、ま
たポリオレフイン共重合体としてプロピレン−エ
チレン共重合体、酢酸ビニル含有量が25重量%以
下のエチレン−酢酸ビニル共重合体が望ましい。
外層絶縁層としては酢酸ビニル濃度40重量%以上
のエチレン−酢酸ビニル共重合体100重量部に対
して120〜250重量部の水酸化アルミニウム及び
0.5〜70重量部の無定形シリカとカーボンブラツ
クとのうちの少くとも一方を配合した組成物を使
用する。この組成物においてエチレン−酢酸ビニ
ル共重合体中の酢酸ビニル濃度を40重量%以上と
した理由は、酢酸ビニル濃度40重量%未満の共重
合体では難燃性が不十分となるためである。水酸
化アルミニウム配合量をエチレン−酢酸ビニル共
重合体100重量部に対して120〜250重量部とした
理由は、120重量部未満では難燃性の点で不十分
であり、また250重量部より多量では引張特性の
点で不十分であるためである。外層絶縁層を形成
する組成物に無定形シリカとカーボンブラツクと
のうちの少くとも一方を配合することにより、引
張強さを一層大きくすることができる。カラーコ
ード化する場合には、カーボンブラツクより無定
形シリカが望ましい。外層絶縁層にこのような一
般にゴム用補強剤として知られている物質を添加
することにより、易燃性である内層の厚さを一層
薄くすることができ、難燃性の点で有利になる。
しかし配合量が70重量部を越えると、外層組成物
の引張強さは向上するが、伸びが著しく低下しか
つ低温で含れ易くなるので好ましくない。また、
内層絶縁層と外層絶縁層とのうちの少くとも一方
を、架橋剤の存在下又は放射線の作用下に架橋さ
せたものとすることができる。架橋体とすること
により絶縁層の伸びは低下するが、引張強さは向
上する。なお、所要に応じて、外層絶縁層には滑
剤、老化防止剤、架橋助剤等を配合することがで
きる。
本発明を次の実施例及び比較例について説明す
る。
これらの例では下記の材料を使用した:
低密度ポリエチレン:(商品名)UBEC180、宇
部興産(株)製。
プロピレン−エチレン共重合体:(商品名)ノー
プレンBJH−M、三井東圧化学(株)製。
エチレン−酢酸ビニル共重合体(VA:酢酸ビニ
ル濃度):
VA=75重量%、(商品名)エバスレン310P、
大日本インキ化学工業(株)製、
VA=68重量%、(商品名)エバスレン410P、
大日本インキ化学工業(株)製、
VA=33重量%、(商品名)エバフレツクス
150、三井ポリケミカル(株)製、
VA=28重量%、(商品名)エバフレツクス
260、三井ポリケミカル(株)製、
VA=18重量%、(商品名)エバフレツクス
460、三井ポリケミカル(株)製。
水酸化アルミニウム:(商品名)ハイジラエト、
昭和電工(株)製。
無定形シリカ:徳山曹達(株)製。
トリアリルシアヌレート:(商品名)TR−127、
武蔵野商事(株)。
これらの例では、先ず外層絶縁層を構成する材
料をバンバリーミキサで練り混ぜて均一な組成物
を得た。次いで押出被覆機に二層用コモンヘツド
を用い、添付図面に示すように導体1上に内層絶
縁層2及び外層絶縁層3を同時に押出し、被覆し
て、絶縁電線を製造した。
このようにして得た絶縁電線について下記の試
験を行つた。
(1) 絶縁体の引張特性(引張強さ及び伸び):
JIS C3005に準拠した。
(2) 絶縁抵抗:5本の20m長電線を水中に1時間
浸漬後測定し、5本の平均値を試験値とした。
(3) 垂直燃焼試験:UL規格758のVW−1に準拠
し、10本の電線について試験した。
さらに、一部の試料(実施例5)について
は、IPCEA S−61−402の垂直燃焼試験、
TEEE383の垂直トレイ燃焼試験、及びLOCA
試験を行つた。
(4) LOCA試験:電線を121℃×7日加熱後、大
気中常温でγ線を76Mrad照射し、次いで100%
水蒸気雰囲気中で171℃×9時間(水蒸気圧
4.35Kg/cm2以上)保持し、さらに121℃×13日
(水蒸気圧1.76Kg/cm2以上)に保持した後電線
を取出し、3500U×5分間の耐圧試験を行う。
実施例1〜5及び比較例1〜7
これらの例は内層絶縁層の厚さ及び内層絶縁層
と外層絶縁層との厚さの比の影響を示す。
内層絶縁層には低密度ポリエチレンを使用し、
外層絶縁層にはエエチレン−酢酸ビニル共重合体
(VA=75重量%)100重量部と水酸化アルミニウ
ム150重量部と無定形シリカ30重量部とトリアリ
ルシアヌレート(架橋助剤)3重量部とからなる
組成物を使用した。
導体としては導体径0.16、0.4及び1.8mmの3種
を使用し、第1表に示すように内層及び外層の絶
縁層の厚さを変え、電子線を未照射及び7.5Mrad
照射後に得た絶縁電線について、第1表に示す試
験結果を得た。これらの結果から次のことが判
る。
(1) 内層絶縁層(低密度ポリエチレン)が存在し
ない単一絶縁層の場合には、引張強さ及び絶縁
抵抗は不良である(比較例4)。
(2) 内層絶縁層(低密度ポリエチレン)の厚さが
30μm以下の場合には、ところどころピンホー
ルが発生する(比較例1〜3)。
(3) 内層絶縁層と外層絶縁層との厚さの比率が
1/1より大きい場合、すなわち内層厚さが外
層厚さより大きい場合には、難燃性が不良であ
る(比較例5〜7)。
(4) 内層絶縁層(低密度ポリエチレン)の厚さが
0.03mm以上で、内層絶縁層と外層絶縁層との厚
さの比率が1/1以上である場合には、引張特
性、絶縁抵抗及び難燃特性は全て良好である
(実施例1〜5)。実施例3において、未照射の
場合の引張強さは不十分なものであるが、
7.5Mrad照射により十分な値になる。
さらに、実施例5の電線はIPCEA S−61−
402の垂直燃焼試験及びTEEE383の垂直トレイ
燃焼試験に合格し、さらに原子力発電所用ケー
ブルに必要な過酷なLOCA試験にも合格した。
The present invention has high flame retardant properties that pass vertical combustion tests, low halogen properties, water resistance, good tensile properties,
This relates to flame-retardant insulated wires and cables that have both LOCA resistance and electrical properties. Flame-retardant insulated wires and cables, especially for equipment wiring,
Insulation and sheath materials for electric wires and cables for vehicles, nuclear power plants, etc. are subjected to vertical combustion tests, e.g.
VW-1 combustion test according to UL standard 758, IPCEA S-61
-402 vertical combustion test and TEEE383 vertical tray test are required, and while insulation resistance is not a big problem for equipment wiring, general insulating materials for vehicles and nuclear power plants are required. Similarly, insulation resistance of 2500MΩ/Km or more is required. Regarding tensile properties, tensile strength of 1.0 Kg/mm 2 or more and elongation of 100% or more are required. Other,
For nuclear power plants, it is designed to withstand loss of coolant accidents.
In addition to passing the LOCA test, it is also required to have low halogen properties, emitting less than 100 mg/g of halogen gas during combustion. When polyolefin is used as an insulation and sheath material, it is necessary to add a large amount of organic halogen compound to satisfy flame retardant properties, which results in high cost and makes it difficult to satisfy low halogen properties. Can not. In the case of ethylene copolymers, they can be made halogen-free or low-halogenated and highly flame retardant by being highly loaded with hydrated metal oxides such as aluminum hydroxide, magnesium hydroxide, etc. Tensile properties are significantly reduced. Japanese Unexamined Patent Publication No. 132254/1983, Japanese Patent Application Publication No. 1983-
The composition of ethylene copolymer highly loaded with hydrated metal oxide, as disclosed in Publication No. 34866, is halogen-free, but has poor flame retardant properties, electrical properties, and resistance.
The LOCA properties are insufficient, and when trying to impart high flame retardancy that would pass a vertical combustion test, physical properties such as tensile properties deteriorate significantly. In the case of vinyl chloride, it is possible to make it highly flame retardant by highly filling it with calcium carbonate or hydrated metal oxides, and it is also possible to achieve apparent low halogenation, but in this case as well, vertical combustion If an attempt is made to impart high flame retardancy that will pass the test, physical properties such as tensile properties will be significantly reduced. As mentioned above, plastic insulation and sheath materials are required to have tensile properties such as a tensile strength of 1.0 Kg/mm 2 or more and an elongation of 100%, but in the conventional technology, even when polyolefin is used as the insulation and sheath material, , even when vinyl chloride is used, it must satisfy the tensile properties, be halogen-free, have high flame retardant properties that pass the vertical combustion test, and also satisfy all of the LOCA resistance, electrical properties, etc. Therefore, flame-retardant insulated wires and cables that satisfy all of these characteristics have not been obtained. In the present invention, as a result of intensive studies to solve the above-mentioned drawbacks of conventional flame-retardant insulated wires and cables, we found that although it is impossible to satisfy all the above-mentioned characteristics with a single insulating layer, The inner insulating layer is made of a specific resin that has excellent physical properties such as properties and tensile properties, and the outer insulating layer is made of a specific resin composition that is inferior in these properties but has high flame retardant properties. By combining both insulating layers, we can create flame-retardant insulated wires and cables that are halogen-free and have excellent physical and electrical properties such as tensile properties, as well as water resistance and LOCA resistance, and are halogen-free and fully pass vertical combustion tests. I found out what I can get. That is, as shown in FIGS. 1 and 2, the present invention includes, on a conductor 1, an inner insulating layer 2 made of polyolefin or polyolefin copolymer and having a thickness of at least 0.03 mm, and a vinyl acetate concentration layer 2. At least one of 120 to 250 parts by weight of aluminum hydroxide and 0.5 to 70 parts by weight of amorphous silica and carbon black is blended with 100 parts by weight of 40% by weight or more of ethylene-vinyl acetate copolymer. A flame-retardant insulated wire 4, characterized in that an outer insulating layer 3 made of a composition is formed such that the ratio of the thickness of the inner insulating layer 2 to the outer insulating layer 3 is 1/1 or less;
A desired number of these insulated wires are bundled with or without an inclusion layer 5, and a sheath layer 6 is provided on the outside with flame-retardant plastic such as polyvinyl chloride or flame-retardant polyethylene. This is related to cables that have been installed. In the present invention, from the viewpoint of insulation resistance and tensile properties, the thickness of the inner insulating layer 2 made of polyolefin or polyolefin copolymer is at least
It must be 0.03mm or more. If the thickness is less than 0.03mm, pinholes are likely to occur in the inner insulation layer, and even with the smallest conductor currently in use, φ0.16mm, when measuring the insulation resistance of several wires each 100m in length, it is found that pinholes are likely to occur in the inner insulation layer. Some short circuits occur. Furthermore, when the thickness is less than 0.03 mm, the tensile strength does not reach 1.0 Kg/mm 2 or more and the elongation does not reach 100% or more. The ratio of the thicknesses of the inner insulating layer 2 and the outer insulating layer 3 must be 1/1 or less from the viewpoint of flame retardancy. If this ratio is larger than this value, for example 2/
If the inner layer thickness is larger than the outer layer thickness, such as 1 or 3/1, the vertical combustion characteristics will fail. In the present invention, the polyolefin used for the inner insulating layer is preferably low-density polyethylene, medium-density polyethylene, high-density polyethylene, etc., and the polyolefin copolymer is preferably a propylene-ethylene copolymer or a polyolefin with a vinyl acetate content of 25% by weight or less. Ethylene-vinyl acetate copolymer is preferred.
As the outer insulating layer, 120 to 250 parts by weight of aluminum hydroxide and
A composition containing at least one of 0.5 to 70 parts by weight of amorphous silica and carbon black is used. The reason why the vinyl acetate concentration in the ethylene-vinyl acetate copolymer in this composition is set to 40% by weight or more is that a copolymer with a vinyl acetate concentration of less than 40% by weight will have insufficient flame retardancy. The reason why the content of aluminum hydroxide was set at 120 to 250 parts by weight per 100 parts by weight of ethylene-vinyl acetate copolymer is that less than 120 parts by weight is insufficient in terms of flame retardancy, and 250 parts by weight This is because a large amount is insufficient in terms of tensile properties. By incorporating at least one of amorphous silica and carbon black into the composition forming the outer insulating layer, the tensile strength can be further increased. In the case of color coding, amorphous silica is preferable to carbon black. By adding such a substance, generally known as a rubber reinforcing agent, to the outer insulating layer, the thickness of the easily flammable inner layer can be further reduced, which is advantageous in terms of flame retardancy. .
However, if the blending amount exceeds 70 parts by weight, although the tensile strength of the outer layer composition is improved, the elongation is significantly reduced and the content becomes more likely to occur at low temperatures, which is not preferable. Also,
At least one of the inner insulating layer and the outer insulating layer may be crosslinked in the presence of a crosslinking agent or under the action of radiation. By forming a crosslinked material, the elongation of the insulating layer decreases, but the tensile strength improves. Note that, if necessary, a lubricant, an anti-aging agent, a crosslinking aid, etc. can be added to the outer insulating layer. The present invention will be explained with reference to the following examples and comparative examples. The following materials were used in these examples: Low-density polyethylene: (trade name) UBEC180, manufactured by Ube Industries, Ltd. Propylene-ethylene copolymer: (trade name) Noprene BJH-M, manufactured by Mitsui Toatsu Chemical Co., Ltd. Ethylene-vinyl acetate copolymer (VA: vinyl acetate concentration): VA = 75% by weight, (trade name) Evathrene 310P,
Manufactured by Dainippon Ink and Chemicals Co., Ltd., VA = 68% by weight, (trade name) Evathrene 410P,
Manufactured by Dainippon Ink and Chemicals Co., Ltd., VA=33% by weight, (product name) Evaflex
150, manufactured by Mitsui Polychemical Co., Ltd., VA = 28% by weight, (trade name) Evaflex
260, manufactured by Mitsui Polychemical Co., Ltd., VA = 18% by weight, (trade name) Evaflex
460, manufactured by Mitsui Polychemical Co., Ltd. Aluminum hydroxide: (Product name) Hyjiraet,
Manufactured by Showa Denko Co., Ltd. Amorphous silica: Manufactured by Tokuyama Soda Co., Ltd. Triallyl cyanurate: (Product name) TR-127,
Musashino Shoji Co., Ltd. In these examples, the materials constituting the outer insulating layer were first mixed in a Banbury mixer to obtain a uniform composition. Next, using an extrusion coating machine with a two-layer common head, the inner insulating layer 2 and the outer insulating layer 3 were simultaneously extruded and coated onto the conductor 1 as shown in the accompanying drawings, thereby producing an insulated wire. The following tests were conducted on the insulated wire thus obtained. (1) Tensile properties of insulators (tensile strength and elongation):
Compliant with JIS C3005. (2) Insulation resistance: Five 20m long electric wires were immersed in water for 1 hour and then measured, and the average value of the five wires was taken as the test value. (3) Vertical combustion test: Tested on 10 electric wires in accordance with VW-1 of UL standard 758. Furthermore, some samples (Example 5) were subjected to IPCEA S-61-402 vertical combustion test,
TEEE383 vertical tray combustion test and LOCA
I conducted a test. (4) LOCA test: After heating the wire at 121℃ for 7 days, 76 Mrad of gamma rays was irradiated in the atmosphere at room temperature, and then 100%
171°C x 9 hours in a water vapor atmosphere (water vapor pressure
After holding the wire at 121℃ for 13 days (water vapor pressure of 1.76Kg/cm 2 or more ), the wire was taken out and subjected to a pressure test of 3500 U for 5 minutes. Examples 1-5 and Comparative Examples 1-7 These examples illustrate the influence of the thickness of the inner insulating layer and the ratio of the thicknesses of the inner insulating layer and the outer insulating layer. Low-density polyethylene is used for the inner insulation layer,
The outer insulating layer contains 100 parts by weight of ethylene-vinyl acetate copolymer (VA = 75% by weight), 150 parts by weight of aluminum hydroxide, 30 parts by weight of amorphous silica, and 3 parts by weight of triallyl cyanurate (crosslinking aid). A composition consisting of the following was used. Three types of conductors with conductor diameters of 0.16, 0.4, and 1.8 mm were used, and the thickness of the inner and outer insulation layers was changed as shown in Table 1.
The test results shown in Table 1 were obtained for the insulated wires obtained after irradiation. The following can be seen from these results. (1) In the case of a single insulating layer without an inner insulating layer (low-density polyethylene), the tensile strength and insulation resistance are poor (Comparative Example 4). (2) The thickness of the inner insulation layer (low density polyethylene)
When the thickness is 30 μm or less, pinholes occur here and there (Comparative Examples 1 to 3). (3) If the ratio of the thickness of the inner insulating layer to the outer insulating layer is greater than 1/1, that is, if the inner layer thickness is greater than the outer layer thickness, the flame retardance is poor (Comparative Examples 5 to 7). ). (4) The thickness of the inner insulation layer (low density polyethylene)
When the thickness is 0.03 mm or more and the ratio of the thickness of the inner insulating layer to the outer insulating layer is 1/1 or more, the tensile properties, insulation resistance, and flame retardant properties are all good (Examples 1 to 5) . In Example 3, the tensile strength in the case of non-irradiation was insufficient, but
A sufficient value is obtained by 7.5 Mrad irradiation. Furthermore, the electric wire of Example 5 is IPCEA S-61-
It passed the 402 vertical combustion test and the TEEE383 vertical tray combustion test, as well as the harsh LOCA test required for nuclear power plant cables.
【表】
実施例6〜7及び比較例8〜11
これらの例は内層及び外層の絶縁層の材料を変
えた場合に影響を示す。
導体径1.2mmの導体を使用し、第2表に示すよ
うに内層及び外層の絶縁層の材料を変え、電子線
を7.5Mrad照射後に得た絶縁電線について、第2
表に示す試験結果を得た。なお、内層及び外層の
絶縁層の厚さは、比較例9を除き、それぞれ0.2
mm及び0.3mmとした。これらの結果から次のこと
が判る。
(1) 内層材料としてはポリオレフイン(実施例1
〜5)のほかにポリオレフイン共重合体も使用
できるが、エチレン酢酸ビニル共重合体の場合
には酢酸ビニル含有量25%以下が望ましい(実
施例6〜7、比較例10)。
(2) 外層組成物中のエチレン−酢酸ビニル共重合
体中の酢酸ビニル濃度は40重量%未満では不合
格である(比較例9)。
(3) 外層組成物中の水酸化アルミニウム配合量は
120〜250Phrの範囲外では不合格である(比較
例8及び11)。[Table] Examples 6 to 7 and Comparative Examples 8 to 11 These examples show the effects when the materials of the inner and outer insulating layers are changed. Using a conductor with a conductor diameter of 1.2 mm, the materials of the inner and outer insulation layers were changed as shown in Table 2, and the second insulated wire was obtained after irradiation with an electron beam of 7.5 Mrad.
The test results shown in the table were obtained. The thickness of the inner and outer insulation layers is 0.2 each, except for Comparative Example 9.
mm and 0.3 mm. The following can be seen from these results. (1) Polyolefin (Example 1) was used as the inner layer material.
In addition to ~5), polyolefin copolymers can also be used, but in the case of ethylene-vinyl acetate copolymers, the vinyl acetate content is preferably 25% or less (Examples 6-7, Comparative Example 10). (2) If the vinyl acetate concentration in the ethylene-vinyl acetate copolymer in the outer layer composition is less than 40% by weight, it is unacceptable (Comparative Example 9). (3) The amount of aluminum hydroxide in the outer layer composition is
If it is outside the range of 120 to 250 Phr, it is rejected (Comparative Examples 8 and 11).
第1図は本発明の難燃性絶縁電線の一例の断面
略図、第2図は本発明の難燃性絶縁ケーブルの断
面略図である。
1……導体、2……内層絶縁層、3……外層絶
縁層、4……難燃性絶縁電線、5……介在物層、
6……シース層。
FIG. 1 is a schematic cross-sectional view of an example of the flame-retardant insulated wire of the present invention, and FIG. 2 is a schematic cross-sectional view of the flame-retardant insulated cable of the present invention. DESCRIPTION OF SYMBOLS 1... Conductor, 2... Inner insulating layer, 3... Outer insulating layer, 4... Flame retardant insulated wire, 5... Inclusion layer,
6... Sheath layer.
Claims (1)
ン共重合体からなり少なくとも0.03mm以上の厚さ
を有する内層絶縁層と、酢酸ビニル濃度40重量%
以上のエチレン−酢酸ビニル共重合体100重量部
に対して120〜250重量部の水酸化アルミニウム及
び0.5〜70重量部の無定形シリカとカーボンブラ
ツクとのうちの少なくとも一方を配合した組成物
からなる外層絶縁層とを、内層絶縁層と外層絶縁
層との厚さの比率が1/1以下となるように形成
したことを特徴とする難燃性絶縁電線・ケーブ
ル。 2 内層絶縁層と外層絶縁層とのうちの少なくと
も一方が架橋剤の存在下又は放射線の作用下で架
橋させたものである特許請求の範囲第1項記載の
難燃性絶縁電線・ケーブル。[Claims] 1. An inner insulating layer made of polyolefin or polyolefin copolymer and having a thickness of at least 0.03 mm on the conductor, and a vinyl acetate concentration of 40% by weight.
A composition comprising 120 to 250 parts by weight of aluminum hydroxide and 0.5 to 70 parts by weight of at least one of amorphous silica and carbon black to 100 parts by weight of the above ethylene-vinyl acetate copolymer. A flame-retardant insulated wire/cable, characterized in that the outer insulating layer is formed such that the ratio of the thickness of the inner insulating layer to the outer insulating layer is 1/1 or less. 2. The flame-retardant insulated wire/cable according to claim 1, wherein at least one of the inner insulating layer and the outer insulating layer is crosslinked in the presence of a crosslinking agent or under the action of radiation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56097014A JPS57212707A (en) | 1981-06-23 | 1981-06-23 | Flame resistant insulated wire and cable |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56097014A JPS57212707A (en) | 1981-06-23 | 1981-06-23 | Flame resistant insulated wire and cable |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57212707A JPS57212707A (en) | 1982-12-27 |
JPS6226126B2 true JPS6226126B2 (en) | 1987-06-06 |
Family
ID=14180477
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56097014A Granted JPS57212707A (en) | 1981-06-23 | 1981-06-23 | Flame resistant insulated wire and cable |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57212707A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6149310A (en) * | 1984-08-16 | 1986-03-11 | 株式会社フジクラ | Flame resistant cable |
JPH03126309U (en) * | 1990-04-04 | 1991-12-19 | ||
JP5199602B2 (en) * | 2007-04-27 | 2013-05-15 | 株式会社オートネットワーク技術研究所 | Insulated wire and wire harness |
JP2015072743A (en) * | 2013-10-01 | 2015-04-16 | 日立金属株式会社 | Wire and cable |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5928574Y2 (en) * | 1979-02-15 | 1984-08-17 | 住友電気工業株式会社 | flame retardant cable |
-
1981
- 1981-06-23 JP JP56097014A patent/JPS57212707A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS57212707A (en) | 1982-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4549041A (en) | Flame-retardant cross-linked composition and flame-retardant cable using same | |
US7518064B2 (en) | Halogen free flame retardant cable | |
US7586043B2 (en) | Non-halogenous insulated wire and a wiring harness | |
US8063308B2 (en) | Halogen free electric wire, wire bundle, and automotive wiring harness | |
EP3264424A1 (en) | Insulated wire | |
US5936205A (en) | Communication cable for use in a plenum | |
JPS59226413A (en) | Optical composite cable | |
CA2630003A1 (en) | Flame-retardant resin composition, and insulated wire, insulated shielded wire, insulated cable and insulating tube using the same | |
KR930006208B1 (en) | Flame-retardant cross-linked composition and flame-retardant cable using same | |
US20070155883A1 (en) | Crosslinked flame-retardant resin composition, and an insulated wire and a wiring harness using the same | |
JPS6342928B2 (en) | ||
JP7533457B2 (en) | Core wire for multi-core cable and multi-core cable | |
JPS6226126B2 (en) | ||
KR20140049606A (en) | Non-halogen flame retardant resin composition and electric wire and cable using same | |
CN106560899B (en) | Insulated electric conductor | |
CN105609166A (en) | Electric wire and cable | |
CN102483974B (en) | Photovoltaic power collection cable | |
US5814406A (en) | Communication cable for use in a plenum | |
US11205525B2 (en) | Insulated wire | |
EP3524428A1 (en) | Multi-layer insulated wire and method of manufacturing the same | |
CN111499950A (en) | Halogen-free resin composition, electric wire and cable | |
JP3953694B2 (en) | Insulated wire / cable | |
JP7498253B1 (en) | LAN cable | |
JP2011049116A (en) | Fire-resistant composition for electric cable coating, and electric cable | |
CN111180122B (en) | Cable with a protective layer |