JPS62260061A - Formation of amorphous carbon film - Google Patents

Formation of amorphous carbon film

Info

Publication number
JPS62260061A
JPS62260061A JP10274186A JP10274186A JPS62260061A JP S62260061 A JPS62260061 A JP S62260061A JP 10274186 A JP10274186 A JP 10274186A JP 10274186 A JP10274186 A JP 10274186A JP S62260061 A JPS62260061 A JP S62260061A
Authority
JP
Japan
Prior art keywords
substrate
plasma
cathode
amorphous carbon
carbon film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10274186A
Other languages
Japanese (ja)
Inventor
Naohisa Ooyama
尚久 大山
Minoru Hatano
実 波多野
Akira Takemura
武村 亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP10274186A priority Critical patent/JPS62260061A/en
Publication of JPS62260061A publication Critical patent/JPS62260061A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To form an amorphous carbon film having excellent characteristics on a substrate with relatively simple constitution by introducing a gaseous raw material contg. gaseous hydrocarbon into a reduced vessel in which a high voltage is impressed between a cathode and anode to generate plasma and impressing a magnetic field to said plasma. CONSTITUTION:The inside of a chamber 1 is evacuated 10 to <=10Torr and thereafter the gaseous HC of the raw material is introduced 8 into the chamber. The system is kept under the specified pressure by controlling a discharge side valve 10 and the DC voltage is impressed between the cathode 3 and the anode 2. The pressure during this time is kept under 2X10<-2>-10Torr and the impressed voltage is 500-5,000V. The magnetic field of 100-800 gauss magnetic flux density generated by a magnet 5 is impressed to the plasma generated between the cathode and the anode and the generated ions or radicals are deposited on a substrate 4. The deposition time in this case is 1-3hr and the film is formed to 0.5-3mum thickness. The film forming speed is 0.5-1mum/h and the substrate temp. is <=200 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアモルファスカーボン膜の形成方法に関し、こ
のアモルファスカーボン膜はダイヤモンド状であるため
に、例えば表面保護皮覆層や、あるいはその熱伝導性、
絶縁性の良好なことを利用したIC回路用絶縁放熱層等
に用いられて有効なものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for forming an amorphous carbon film, and since this amorphous carbon film has a diamond shape, it can be used as a surface protective coating layer or for its thermal conductivity. ,
It is effective for use in insulating heat dissipation layers for IC circuits, etc., taking advantage of its good insulation properties.

〔従来の技術〕[Conventional technology]

ダイヤモンドは炭素どうしがSP3結合で粘合した結晶
であり、機賊的、電気的、光学的いずれをとっても他の
固体物質では得られないすくれた特性を持っている。従
来からダイヤモンド結晶の人工合成法としては炭素原料
を超高圧、超高温下でダイヤモンドに変換するいわゆる
高圧法が知られているが、高価で特殊な装置を必要とす
ることから容易には実施し得ない。さらに半導体や摺動
材への応用を考えると薄膜状が好ましいのであるが、高
圧法で合成した粒子状ダイヤモンドではスライスして1
片状にしたり任意の形状にするのが難しく、また大面積
のものは作成できないという欠点を持つ。もしも容易に
任意の形状の薄膜状ダイヤモンドが合成できれば、硬さ
を利用して金属や樹脂表面の硬質及覆材・摺動材あるい
は高い電気抵抗や熱伝導度を利用して高密度集積回路の
絶縁放熱層等への利用が考えられる。このような背景か
ら近年気相からの低圧合成法によるダイヤモンド状アモ
ルファスカーボン膜の作成が検討されている。
Diamond is a crystal made of carbon bonded together through SP3 bonds, and has unique mechanical, electrical, and optical properties that cannot be obtained from other solid materials. The so-called high-pressure method, in which carbon raw materials are converted into diamond under ultra-high pressure and ultra-high temperature, has traditionally been known as an artificial synthesis method for diamond crystals, but it is difficult to implement because it requires expensive and special equipment. I don't get it. Furthermore, when considering applications to semiconductors and sliding materials, a thin film is preferable, but granular diamond synthesized using a high-pressure method can be sliced into pieces.
It has the disadvantage that it is difficult to make into pieces or into arbitrary shapes, and it is not possible to make large-area pieces. If a thin film of diamond of any shape could be easily synthesized, it could be used to make high-density integrated circuits by taking advantage of its hardness and making it a hard, covering, or sliding material on metal or resin surfaces, or by using its high electrical resistance and thermal conductivity. It can be considered to be used as an insulating heat dissipation layer, etc. Against this background, the creation of diamond-like amorphous carbon films by low-pressure synthesis from the gas phase has been studied in recent years.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

これまでに実施されている低圧気相合成法としては熱フ
イラメントCVD法・マイクロ波プラズマCVD法・R
Fグロー放電プラズマCVD法・電子線CV D法・イ
オン化蒸着法などがあるが、それぞれ温調可能な加熱炉
、マイクロ波発振器。
Low-pressure vapor phase synthesis methods that have been implemented so far include thermal filament CVD, microwave plasma CVD, and R
There are F glow discharge plasma CVD methods, electron beam CVD methods, and ionization vapor deposition methods, each of which requires a temperature-controlled heating furnace and microwave oscillator.

高周波発振器等高価で特殊な設備が必要であったり、ま
たフィラメントを用いるものでは成膜中のフィラメント
の形状変化による再現性の低さが問題となり、さらには
基板を高温に加熱する必要のあるものもあって耐熱性の
低い基板には成膜できないという欠点を持つ。簡便な装
置で低温合成を行える方法としては直流電源のみを用い
る直流グロー放電プラズマCVD法があるが、平行平板
電極間に直流電圧を印加する単純な直流法ではプラズマ
密度が低く十分な特性を持った膜は得にくいという欠点
を有している。
Those that require expensive and special equipment such as a high-frequency oscillator, those that use filaments have problems with low reproducibility due to changes in the shape of the filament during film formation, and those that require heating the substrate to high temperatures. For this reason, it has the disadvantage that it cannot be deposited on substrates with low heat resistance. The DC glow discharge plasma CVD method, which uses only a DC power source, is a method that can perform low-temperature synthesis using simple equipment, but the simple DC method, which applies a DC voltage between parallel plate electrodes, has low plasma density and sufficient characteristics. It has the disadvantage that it is difficult to obtain a thin film.

本発明は上記の欠点を解決し簡便な直流グロー放電法で
満足できる特性を持ったアモルファスカーボン膜を作成
する方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for solving the above-mentioned drawbacks and producing an amorphous carbon film having satisfactory characteristics using a simple DC glow discharge method.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために本発明は減圧容器内に対向さ
せた陰極と陽極との間に高電圧を印加し、前記減圧容器
内に炭化水素ガスを含む原料ガスを導入することにより
プラズマを発生させるとともに、該プラズマに磁界を印
加させながら前記プラズマ中に配置された基板上に成膜
するアモルファスカーボン膜の形成方法を採用するもの
である。
In order to achieve the above object, the present invention generates plasma by applying a high voltage between a cathode and an anode facing each other in a reduced pressure container and introducing a raw material gas containing hydrocarbon gas into the reduced pressure container. The present invention employs a method of forming an amorphous carbon film in which a film is formed on a substrate placed in the plasma while applying a magnetic field to the plasma.

〔作用〕[Effect]

上記手段により、1)炭化水素ガスをグロー放電させて
生成したプラズマ中には中性ラジカルがイオン:ラジカ
ル−1=6程度の高い割合で含まれており高寿命を有し
ている。このラジカルは通常の分子がプラズマ中でエネ
ルギーを持った粒子とマ)i突して分解したものであり
不対電子を持っている。不対電子を持つということは小
磁石と考えてよく、磁場中では磁力線方向に配向させら
れる力を受けることとなり、磁界のない場合と比べてよ
り近距離秩序を持つアモルファスカーボン膜が得られる
。したがってアモルファスながらもミクロに見ればダイ
ヤモンドの構造に近くなり特性も向上する。
By the above means, 1) the plasma generated by glow-discharging hydrocarbon gas contains neutral radicals at a high ratio of about ions:radicals-1=6, and has a long life. These radicals are normal molecules that are decomposed by colliding with energetic particles in plasma, and have unpaired electrons. Having unpaired electrons can be thought of as a small magnet, and in a magnetic field it receives a force that orients it in the direction of the magnetic field lines, resulting in an amorphous carbon film with more short-range order than in the case without a magnetic field. Therefore, although it is amorphous, it has a structure similar to that of diamond when viewed microscopically, and its properties are improved.

2)陰極へは正イオンが衝突しその際陰極表面より電子
が飛び出す。この電子は陽)1へ向かって運動しその途
中で他の粒子と衝突し励起させる。
2) When positive ions collide with the cathode, electrons are ejected from the cathode surface. This electron moves toward positive (1) and collides with other particles on the way, causing them to be excited.

この時もしプラズマに磁界がかかっていると荷電粒子で
ある電子は磁力線のまわりをら旋運動しながら陽極方向
へ向かうため直線的に向かうルホ界のない場合に比べて
運動距離が長くなりその分だけ衝突確率が増加し、その
結果プラズマのイオン化率が増加しプラズマ密度が高く
なり低プラズマ密度である直流グロー法の欠点を補うこ
とができる。
At this time, if a magnetic field is applied to the plasma, the electrons, which are charged particles, move spirally around the magnetic lines of force and move toward the anode, so the distance of movement is longer than when there is no Luho field, which moves in a straight line. The collision probability increases, and as a result, the ionization rate of the plasma increases and the plasma density increases, which can compensate for the drawback of the DC glow method, which has a low plasma density.

〔実施例〕〔Example〕

本発明のアモルファスカーボン膜の形成方法に使用する
実験装置を第1図及び第2図に示す。第1図及び第2図
中において各部の名称、働きを説明する。1はガラス製
チャンバーであり透明なため外側より放電状態を観察で
きる。2及び3はそれぞれ放電用の陽極、陰極であり材
質はスパッタの影響の少ないグラファイトあるいはステ
ンレスを用いた。4はカーボン膜を堆積すべき基1反で
あり主にSi単結晶を用いたが、金属基板・樹脂基板で
もよい。5は中空の円筒状永久磁石であり第1図のよう
に両極ともに磁界中に含まれるよう配置した場合と第2
図のように陰極のみが磁界中に含まれるよう配置した場
合を行ったが、いずれにしても基板4をのせた陰極付近
に比較的均一な磁界を与えるような配置とした。6は磁
石5を収納するガラス容器である。7は原料ガス供給ボ
ンベであり主にメタンを用いたがエタン、プロパン。
An experimental apparatus used in the method of forming an amorphous carbon film of the present invention is shown in FIGS. 1 and 2. The names and functions of each part will be explained in FIGS. 1 and 2. Reference numeral 1 is a glass chamber that is transparent so that the discharge state can be observed from the outside. Reference numerals 2 and 3 are an anode and a cathode for discharge, respectively, and the material used is graphite or stainless steel, which is less affected by sputtering. Reference numeral 4 designates a substrate on which a carbon film is to be deposited, and Si single crystal was mainly used, but a metal substrate or a resin substrate may also be used. 5 is a hollow cylindrical permanent magnet, and when it is arranged so that both poles are included in the magnetic field as shown in Figure 1, and
As shown in the figure, an arrangement was made in which only the cathode was included in the magnetic field, but in any case, the arrangement was such that a relatively uniform magnetic field was applied to the vicinity of the cathode on which the substrate 4 was placed. 6 is a glass container that houses the magnet 5. 7 is a raw material gas supply cylinder, which mainly uses methane, but also ethane and propane.

エチレン、アセチレン等の炭化水素ガスあるいはそれら
と水素の混合ガスでもよい。8は原料ガス流量を調節す
るニードルバルブである。9は図示しない排気ポンプへ
の排気パイプであり、バルブ10で系内の圧力を調節す
る。11は両極間へ直流電圧を印加するための直流電源
である。
A hydrocarbon gas such as ethylene or acetylene or a mixed gas of these and hydrogen may be used. 8 is a needle valve that adjusts the flow rate of the raw material gas. 9 is an exhaust pipe to an exhaust pump (not shown), and a valve 10 adjusts the pressure within the system. 11 is a DC power supply for applying a DC voltage between the two electrodes.

次に上記装置を用いた本発明の形成方法を説明すると、
まずチャンバー1内を真空ポンプに接続される排気パイ
プのバルブ10を開き10−5Torr以下の圧力まで
排気した後に原料ガスをボンへ7からニードルバルブ8
を介して導入する。排出側バルブ10を調節して系を規
定圧に保ち直流電源11によって両電極間に直流電圧を
印加した。圧力は2×10−2〜10TOrrであり、
2 X 10−”Torr以下ではグロー放電が維持で
きず、また1QTorr以上では放電状態が不安定とな
る結果膜質が不均一になりさらに基板温度が上がりすぎ
て膜中に残留応力が発生してはく離を起こすので好まし
くない。また印加電圧は500〜5000Vであり、5
00V以下ではグロー放電を維持できず、また5000
V以上では陰極のスパフタリングが激しく起こり好まし
くない。もちろん圧力が高いほど低電圧でもグロー放電
は維持でき、圧力が低い場合には高電圧が必要となる。
Next, the formation method of the present invention using the above device will be explained.
First, open the valve 10 of the exhaust pipe connected to the vacuum pump to exhaust the inside of the chamber 1 to a pressure of 10-5 Torr or less, and then supply the raw material gas from the needle valve 8 to the cylinder 7.
Introduced via. The discharge side valve 10 was adjusted to maintain the system at a specified pressure, and a DC voltage was applied between both electrodes by a DC power supply 11. The pressure is 2 x 10-2 to 10 TOrr,
Below 2 x 10-" Torr, glow discharge cannot be maintained, and above 1 Q Torr, the discharge state becomes unstable, resulting in uneven film quality and furthermore, the substrate temperature rises too much, causing residual stress to occur in the film and resulting in peeling. This is not preferable because it causes
Glow discharge cannot be maintained below 00V, and
If it is more than V, sputtering of the cathode will occur violently, which is not preferable. Of course, the higher the pressure, the more glow discharge can be maintained even with a lower voltage, and when the pressure is lower, a higher voltage is required.

磁石5により発生する磁束密度は100〜800 Ga
ussであり100Gauss以下では磁石の効果はな
く、800 Gauss以上ではプラズマが中心部に集
まり膜は不均一となる。電極間距離は直径25龍の電極
に対しては30〜1001富であり、30m以下あるい
は100龍以上では放電は起こし難い。ただし電極面積
(S)、電極間隔(d)、圧力(P)の間にはS及びd
をn倍にしPを1/nにしても放電電圧は変化しないと
う関係が成立するため、その最適な範囲は自づと決定さ
れる。以上の条件の下で直流グロー放電しプラズマを発
生させその中で生成したイオンやラジカルを基板4上に
堆積させる。析出時間は1〜3hrであり生成した膜厚
は圧力及び印加電圧にもよるが0.5〜3μmとなり成
膜速度は0.5〜1μm/hrである。なお本実験の条
件下では基板温度は200°C以下であり、樹脂等の耐
熱性の低い基板にも成膜可能である。
The magnetic flux density generated by the magnet 5 is 100 to 800 Ga
If it is less than 100 Gauss, the magnet has no effect, and if it is more than 800 Gauss, the plasma will gather in the center and the film will become non-uniform. The distance between the electrodes is 30 to 1,001 mm for an electrode with a diameter of 25 mm, and discharge is difficult to occur when the distance is less than 30 m or more than 100 mm. However, between the electrode area (S), electrode spacing (d), and pressure (P), S and d
Since there is a relationship that the discharge voltage does not change even if P is multiplied by n and P is set to 1/n, the optimum range is determined automatically. Under the above conditions, a DC glow discharge is performed to generate plasma, and the ions and radicals generated therein are deposited on the substrate 4. The deposition time is 1 to 3 hr, the thickness of the produced film is 0.5 to 3 μm, depending on the pressure and applied voltage, and the film formation rate is 0.5 to 1 μm/hr. Note that under the conditions of this experiment, the substrate temperature was 200° C. or less, making it possible to form a film even on a substrate with low heat resistance, such as a resin.

〔実施例1〕 直径100龍高さ1501のガラス製チャンバー1内で
基板4としてSi単結晶を用いて原料ガスとしてのメタ
ンガスをlcc/minで供給しながら系内圧力を5×
10〜”Torrに保ち磁束密度50Q Gauss、
印加電圧2000Vで3hr析出を行った。Si基板4
上には肉眼で滑らかな厚さ2μmの薄膜が得られた。こ
の膜をレーザーラマン分光装置で分析したところ第3図
に示すように158Qcm−’のカーボンに特有のピー
クを持つことがわかった。さらにX線回折を行ったとこ
ろ結晶を示すシャープなピークが現われなかったこと、
及び走査電子顕微鏡による観察でも膜表面、膜内部とも
滑らか、均質であったことより、この膜がアモルファス
カーボン膜であることを同定できた。この膜の特性とし
て硬度、電気抵抗、熱伝4度を測定した。硬度は明石製
作所製マイクロビッカース硬度計を用いて荷重25gで
行い、ビッカース硬度は3000 kg/mu”となっ
た。電気抵抗は膜表面及び基Vi、裏側に導電性樹脂を
塗りサンドイッチ構造にして(カーボン膜+Si基板)
の抵抗を測定し、そこからSi基板のみの抵抗を差し引
いて求めたところ1010Ω・cmとなった。また熱(
云専度は真空理工製の光照射型熱拡散早計を用いてAC
カロリメトリー法で(カーボン膜+Si基板)の熱拡散
率を測定しその値をもとに比熱、密度を考慮して計算し
熱伝導度として1450kcal/m、hr″Cを得た
[Example 1] In a glass chamber 1 with a diameter of 100 mm and a height of 1501 mm, a Si single crystal was used as the substrate 4, and while supplying methane gas as a raw material gas at lcc/min, the system pressure was increased to 5×.
10~” Maintain magnetic flux density at 50Q Gauss,
Deposition was performed for 3 hours at an applied voltage of 2000V. Si substrate 4
A thin film with a thickness of 2 μm that was visually smooth to the naked eye was obtained on top. When this film was analyzed using a laser Raman spectrometer, it was found that it had a peak of 158 Qcm-' which is unique to carbon, as shown in FIG. Furthermore, when X-ray diffraction was performed, no sharp peaks indicating crystals appeared.
Also, observation using a scanning electron microscope revealed that both the surface and the inside of the film were smooth and homogeneous, and it was therefore possible to identify that this film was an amorphous carbon film. The properties of this film were measured for hardness, electrical resistance, and thermal conductivity. The hardness was measured using a micro Vickers hardness tester made by Akashi Seisakusho under a load of 25 g, and the Vickers hardness was 3000 kg/mu. carbon film + Si substrate)
The resistance was measured, and the resistance of only the Si substrate was subtracted from it, and it was found to be 1010 Ω·cm. Also heat (
Yunsen uses AC using a light irradiation type heat diffusion meter manufactured by Shinku Riko.
The thermal diffusivity of (carbon film + Si substrate) was measured by the calorimetry method, and based on the value, calculations were made taking into account specific heat and density, and a thermal conductivity of 1450 kcal/m, hr''C was obtained.

上記実施例とわずかずつ条件を変えて行ったものの結果
を、磁石を用いない従来の単純直流グロー放電法の結果
とともに第1表に示す。
The results obtained by slightly changing the conditions from those of the above example are shown in Table 1 along with the results of the conventional simple direct current glow discharge method that does not use a magnet.

(以下余白) 上記実施例において基板4は陰極3上に載置されていた
が、必ずしもこれに限定されず適宜の保持手段により離
れて保持されていてもよい。また磁石5は永久磁石に代
えて電磁石であってもよいことは言うまでもない。
(Hereinafter, blank space) Although the substrate 4 was placed on the cathode 3 in the above embodiment, the substrate 4 is not necessarily limited to this, and may be held separately by an appropriate holding means. Furthermore, it goes without saying that the magnet 5 may be an electromagnet instead of a permanent magnet.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明は、グロー放電により発生する
プラズマに磁界を印加するという比較的簡便な構成によ
り、特性の優れたアモルファスカーボン膜が形成できる
方法が提供できる。
As described above, the present invention can provide a method for forming an amorphous carbon film with excellent characteristics using a relatively simple configuration in which a magnetic field is applied to plasma generated by glow discharge.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の方法に使用する装置の構
造を示す断面模式図、第3図は形成されたアモルファス
カーボン膜のラマンスペクトルデータを示す特性図であ
る。 1・・・ガラス製チャンバー、2・・・陽極、3・・・
陰極。 4・・・基板、5・・・磁石、7・・・ボンベ、11・
・・直流電源。
1 and 2 are schematic cross-sectional views showing the structure of an apparatus used in the method of the present invention, and FIG. 3 is a characteristic diagram showing Raman spectrum data of the amorphous carbon film formed. 1...Glass chamber, 2...Anode, 3...
cathode. 4... Board, 5... Magnet, 7... Cylinder, 11...
...DC power supply.

Claims (3)

【特許請求の範囲】[Claims] (1)減圧容器内に対向させた陰極と陽極との間に高電
圧を印加し、前記減圧容器内に炭化水素ガスを含む原料
ガスを導入することによりプラズマを発生させるととも
に、該プラズマに磁界を印加させながら前記プラズマ中
に配置された基板上に成膜するアモルファスカーボン膜
の形成方法。
(1) Plasma is generated by applying a high voltage between a cathode and an anode facing each other in a reduced pressure container and introducing a raw material gas containing hydrocarbon gas into the reduced pressure container, and a magnetic field is applied to the plasma. A method for forming an amorphous carbon film, in which the film is formed on a substrate placed in the plasma while applying an amorphous carbon film.
(2)前記基板は陰極上に載置され、該基板に垂直方向
の前記磁界を印加する特許請求の範囲第1項記載のアモ
ルファスカーボン膜の形成方法。
(2) The method for forming an amorphous carbon film according to claim 1, wherein the substrate is placed on a cathode, and the magnetic field is applied in a perpendicular direction to the substrate.
(3)前記磁界の磁束密度は100〜800ガウスであ
る特許請求の範囲第1項記載のアモルファスカーボン膜
の形成方法。
(3) The method for forming an amorphous carbon film according to claim 1, wherein the magnetic flux density of the magnetic field is 100 to 800 Gauss.
JP10274186A 1986-05-02 1986-05-02 Formation of amorphous carbon film Pending JPS62260061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10274186A JPS62260061A (en) 1986-05-02 1986-05-02 Formation of amorphous carbon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10274186A JPS62260061A (en) 1986-05-02 1986-05-02 Formation of amorphous carbon film

Publications (1)

Publication Number Publication Date
JPS62260061A true JPS62260061A (en) 1987-11-12

Family

ID=14335661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10274186A Pending JPS62260061A (en) 1986-05-02 1986-05-02 Formation of amorphous carbon film

Country Status (1)

Country Link
JP (1) JPS62260061A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005220366A (en) * 2004-02-03 2005-08-18 Sony Corp Film deposition system, film deposition method and tubular reactor for film deposition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005220366A (en) * 2004-02-03 2005-08-18 Sony Corp Film deposition system, film deposition method and tubular reactor for film deposition

Similar Documents

Publication Publication Date Title
Angus et al. Carbon thin films
US6416820B1 (en) Method for forming carbonaceous hard film
CA1329791C (en) Process for making diamond, doped diamond, diamond-cubic boron nitride composite films
EP0284190A2 (en) Enhanced CVD method for deposition of carbon
EP0286306A1 (en) Method and apparatus for vapor deposition of diamond
EP0479907A1 (en) Process for making diamond, doped diamond, diamond-cubic boron nitride composite films at low temperature
Ham et al. Diamond‐like carbon films grown by a large‐scale direct current plasma chemical vapor deposition reactor: System design, film characteristics, and applications
JPS60195092A (en) Method and apparatus for production of carbon thin film
Maslov et al. Pulsed carbon-plasma source for production processes
Gilliam et al. Plasma Polymerization Behavior of Fluorocarbon Monomers in Low‐Pressure AF and RF Discharges
JPS62260061A (en) Formation of amorphous carbon film
CA2061302C (en) Method of making synthetic diamond film
JPS61238962A (en) Method and apparatus for forming film
JPS63145782A (en) Formation of thin film
JPH0665744A (en) Production of diamond-like carbon thin film
JPS60122794A (en) Low pressure vapor phase synthesis method of diamond
JPS63277767A (en) Method for synthesizing high-pressure phase boron nitride in gaseous phase
JPH05306192A (en) Method and device for synthesizing diamond film
JPH10265955A (en) Formation of carbonaceous highly functional material thin film by electron beam-excited plasma cvd
JPH0674505B2 (en) Carbon film forming method and apparatus
JPS6265997A (en) Method and apparatus for synthesizing diamond
Lee et al. An Insight into Grain Refinement Mechanism of Ultrananocrystalline Diamond Films Obtained by Direct Current Plasma‐Assisted Chemical Vapor Deposition
Nariman Engineering design and analysis of low-pressure diamond with novel applications
JPH04103777A (en) Base material having hard carbon film
JPS60127299A (en) Gas-phase synthesis of diamond