JPS62259406A - Manufacture of composite magnet - Google Patents

Manufacture of composite magnet

Info

Publication number
JPS62259406A
JPS62259406A JP61096914A JP9691486A JPS62259406A JP S62259406 A JPS62259406 A JP S62259406A JP 61096914 A JP61096914 A JP 61096914A JP 9691486 A JP9691486 A JP 9691486A JP S62259406 A JPS62259406 A JP S62259406A
Authority
JP
Japan
Prior art keywords
silicone oil
magnet
magnetic
pulverized
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61096914A
Other languages
Japanese (ja)
Other versions
JPH0587002B2 (en
Inventor
Toshihiko Yokoyama
横山 俊彦
Tadao Katahira
片平 忠夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP61096914A priority Critical patent/JPS62259406A/en
Publication of JPS62259406A publication Critical patent/JPS62259406A/en
Publication of JPH0587002B2 publication Critical patent/JPH0587002B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0572Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To improve the charging rate, orientation and mechanical strength of a composite magnet by kneading magnetic powder pulverized in the presence of silicone oil and binder. CONSTITUTION:Finely pulverized powder is substituted for inert gas such as argon, and roughly pulverized magnetic material is mixed together with dispersant and silicone oil therewith. As for the magnetic material is used rare earth magnetic material such as 1-5 samarium-cobalt magnet, 2-17 samarium cobalt magnet, Nd-Fe magnet, cerium dithionate magnet material. The dispersant may be any which is inactive for the rare earth magnet powder and dissolves silicone oil or has good dispersibility. That is, when the material is pulverized in predetermined particle diameter, it is executed in the presence of the silicone oil to modify the surface, mixed and kneaded with binder and molded. Thus, magnetic properties and molding mechanical strength are improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気特性及び機械特性に優れ、又経済的にも有
利な複合磁石の製造方法に関するものである。さらに詳
しくは磁性粉末とバインダーを混合混練する際、あらか
じめ該磁性材料をシリコン油の存在下で粉砕し、磁性粉
末の表面を改質せしめる事を特徴とする希土類系複合磁
石の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a composite magnet that has excellent magnetic and mechanical properties and is also economically advantageous. More specifically, the present invention relates to a method for producing a rare earth composite magnet characterized in that, when mixing and kneading magnetic powder and a binder, the magnetic material is ground in the presence of silicone oil in advance to modify the surface of the magnetic powder. be.

〔従来の技術〕[Conventional technology]

磁性粉末と樹脂(バインダー)とを混合混練し。 Mix and knead magnetic powder and resin (binder).

押出成形圧縮成形あるいは射出成形により複合磁石を製
造する事は周知である。複合磁石は焼結磁石の欠点を抑
え1割れや欠けが少なく、二次加工が不要で複雑な形状
や薄肉の形状に適し且つラノアル異方性に浸れた製品が
出来るなどの特徴を持つことから、最近の磁気特性の改
善も伴って1例えば小型モータ、センサー、リレー及び
OA機器への利用が増加してきている。
It is well known to manufacture composite magnets by extrusion, compression molding or injection molding. Composite magnets suppress the drawbacks of sintered magnets, have fewer cracks and chips, do not require secondary processing, are suitable for complex shapes and thin-walled shapes, and can produce products steeped in lanoal anisotropy. With recent improvements in magnetic properties, their use in, for example, small motors, sensors, relays, and OA equipment is increasing.

〔発明が解決しようとする間頂点〕[Apex while the invention is trying to solve]

併し従来の磁石とおいては磁気特性に関して。 However, regarding the magnetic properties of conventional magnets.

その成分として非磁性のバインダー及び添加物が混入さ
れるため、焼結磁石に比べて低くなる欠点があった。
Since non-magnetic binders and additives are mixed in as components, there is a drawback that the price is lower than that of sintered magnets.

この欠点を改善するために従来においては磁性粉末の充
填量を増す事及び磁性粉末の配向度を極力高める事が必
要であった。併し一般に磁性粉末の混入量を多くすると
混練物の溶融粘度が高くなり、成形時には流れが悪くな
シ、成形性が落ちたり、あるいは製品が得られなくなる
。又かろうじて形状を作ったとしても磁性粉末の配向度
が低下し、満足な磁気特性は得られなかった。又1機械
強度も低下し、複合磁石の利点が失われてしまうことが
多かった。
In order to improve this drawback, it has conventionally been necessary to increase the amount of magnetic powder packed and to increase the degree of orientation of the magnetic powder as much as possible. However, in general, when the amount of magnetic powder mixed in is increased, the melt viscosity of the kneaded product increases, resulting in poor flow during molding, poor moldability, or failure to obtain a product. Moreover, even if the shape was barely formed, the degree of orientation of the magnetic powder decreased, and satisfactory magnetic properties could not be obtained. Furthermore, the mechanical strength also decreased, and the advantages of composite magnets were often lost.

このような不具合を改善する方法の一つとして。As one way to improve this kind of problem.

磁性粉末を各種カッシリング剤で表面処理する事によシ
充填率及び機械強度向上を図る方法が提唱されてきた。
Methods have been proposed to improve the filling rate and mechanical strength by surface treating magnetic powder with various types of cassilling agents.

この方法は磁性粉末の表面を親水性から親油性に変えバ
インダーとの馴じみを良くする効果があり、従って充填
率、配向性0機械強度の改善が出来る。併し、有効であ
るとされているこの方法をとった場合専用の設備が必要
であり。
This method has the effect of changing the surface of the magnetic powder from hydrophilic to lipophilic, making it more compatible with the binder, and therefore improving the filling rate and mechanical strength without orientation. However, this method, which is considered to be effective, requires specialized equipment.

又一工程増える事になり経済的に不利となっていた。This added another step, which was economically disadvantageous.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る製造方法においては複合磁石用の磁性粉末
を得る過程において、磁性材料を所定の粒径に粉砕する
時にシリコン油の存在下でこれを行わしめ8表面改質を
行った後でバインダーと混合混練しかつ成型する工程と
からなる。
In the manufacturing method according to the present invention, in the process of obtaining magnetic powder for a composite magnet, the magnetic material is pulverized to a predetermined particle size in the presence of silicone oil, and after 8 surface modification, the binder is It consists of the steps of mixing, kneading, and molding.

〔作用〕[Effect]

本発明においてはサマリウムコバルト系等の希土類系複
合磁石を製造する時にあらかじめ磁性材料をその粉砕工
程においてシリコン油の存在下で行う事を特徴としにれ
によシ磁気特性、成形性機械強度を改善し、なおかつ経
済的にも有利ならしめたことにある。
In the present invention, when manufacturing rare earth composite magnets such as samarium cobalt, the grinding process of the magnetic material is carried out in the presence of silicone oil, which improves magnetic properties, formability and mechanical strength. Moreover, it was also economically advantageous.

希土類系複合磁石の基材となる希土類磁石粉末は一般に
次の工程に従って得られる。即ち1)合金溶解、2)溶
体化、3)時効、4)粗粉砕、5)微粉砕である。
Rare earth magnet powder, which is the base material of a rare earth composite magnet, is generally obtained according to the following process. That is, 1) alloy melting, 2) solution treatment, 3) aging, 4) coarse pulverization, and 5) fine pulverization.

本発明によれば微粉砕工程において粉砕しながら磁性粉
末の表面をシリコン油で改質せしめるものであり、他に
特別の工程は必要ない。微粉砕機は?ルラックス粉砕機
、アトライター、g−ルミル等が用いられる。
According to the present invention, the surface of the magnetic powder is modified with silicone oil while being pulverized in the pulverization step, and no other special steps are required. What about the fine grinder? Lulux crusher, attritor, g-lumil, etc. are used.

更に具体的には、微粉砕機を窒素、アルゴンなどの不活
性ガスで置換し、この中に分散剤、シリコン油とともに
粗粉砕された磁性材料を投入する。
More specifically, the pulverizer is replaced with an inert gas such as nitrogen or argon, and the coarsely pulverized magnetic material is introduced into the pulverizer together with a dispersant and silicone oil.

磁性材料としては希土類系磁性材料が用いられるが2例
えば1−5系すマリウムコバルト磁石、2−17系サマ
リウムコバルト磁石、 Nd−Fe系磁石。
As the magnetic material, rare earth magnetic materials are used, such as 1-5 series marium cobalt magnets, 2-17 series samarium cobalt magnets, and Nd-Fe series magnets.

セリウムジノム系磁石材料などが挙げられる。分散剤は
希土類系磁石粉末に対して不活性でシリコン油を溶解す
るかあるいは良く分散せしめるものなら何でもよい。例
えばn−ヘキサン、n−4ブタン、n−オクタンなどの
・ぐラフイン系炭化水素。
Examples include cerium dinom magnet materials. Any dispersant may be used as long as it is inert to the rare earth magnet powder and dissolves or disperses silicone oil well. For example, graphene hydrocarbons such as n-hexane, n-4 butane, and n-octane.

ベンゼン、トルエン、キシレンなどの芳香族炭化水fl
、 、 n −7’ロ/ぐノール81−プロノe 7−
 /l/ f;1 トのアルコール類、塩化エチンン、
トリクロロエタン、四塩化炭素などの塩素化物、酢酸エ
チル、プロピオン酸メチルなどのエステル類、アセトン
Aromatic hydrocarbons such as benzene, toluene, and xylene fl
, , n -7'ro/gunol 81-pronoe 7-
/l/f;1 alcohols, ethyne chloride,
Chlorinated compounds such as trichloroethane and carbon tetrachloride, esters such as ethyl acetate and methyl propionate, and acetone.

MEKなどのケトン類などが挙げられる。シリコン油と
してはツメチルポリシロキサン、メチルフェニルポリシ
ロキサン及びこれらのアルキル変性オイル、アルコール
変性オイルなどが挙げられる。
Examples include ketones such as MEK. Examples of the silicone oil include trimethylpolysiloxane, methylphenylpolysiloxane, alkyl-modified oils thereof, and alcohol-modified oils.

シリコン油の投入量は任意であるが余りに多いと経済的
に不利であり、又余シに少いと効果が得られないので磁
性粉末に対して0.1〜S wt%、好ましくは0.5
〜3 wt%が使用される。処理時間は投入する粗粉砕
品の粒径、所望する微粉砕品の粒径。
The amount of silicone oil to be added is arbitrary, but if it is too large, it is economically disadvantageous, and if it is too little, no effect can be obtained, so it is 0.1 to 1% by weight, preferably 0.5% by weight, based on the magnetic powder.
~3 wt% is used. The processing time depends on the particle size of the coarsely ground product to be fed and the desired particle size of the finely ground product.

用いる?−ルの径、量によシ任意に選択出来るが好まし
くは1分以上である。
Do you use it? - The time can be arbitrarily selected depending on the diameter and amount of the tube, but it is preferably 1 minute or more.

本発明による方法が効果的である理由として。As a reason why the method according to the present invention is effective.

磁性材料が粉砕されていく過程で生ずる破断面が予期し
なり程活性なためにメカノケミカル的な要素が働き、効
率的Kgi性粉末への表面改質が行われたためと考えら
れる。又一般的に希土類系S性粉末は酸化され易く、微
量の酸素の存在下で酸化物を生成する事から、この方法
は効率良く表面処理させるとともに磁性粉末の酸化をも
未然に防止し、磁気特性の向上にも顕著な効果を上げた
ものといえる。
It is thought that this is because the fracture surface generated during the process of pulverizing the magnetic material was unexpectedly active, and mechanochemical factors were activated, resulting in efficient surface modification to Kgi powder. In addition, in general, rare earth-based S-based powders are easily oxidized and produce oxides in the presence of trace amounts of oxygen, so this method not only efficiently treats the surface but also prevents oxidation of magnetic powders. It can be said that this has had a remarkable effect on improving characteristics.

〔実施例〕〔Example〕

実施例−1 2−17系サマリウムコバルト磁性材料の粗粉砕品(3
2meshアンダー) 3 kg、 シリコン油(東し
シリコーンオイルSH20050C3) 60g、及び
イソゾロ・2ノール5tを?ルテックス粉砕機に投入し
、窒素ガスで充分置換した後7分間粉砕を行った。粉砕
品を窒素雰囲気中で乾燥した後、この磁性粉末3kl+
とナイロン12226.7を混合し、二軸押出機で混練
した後ベレート状に加工し射出成形に供した。その結果
を表−1に示した。
Example-1 Coarsely crushed product of 2-17 series samarium cobalt magnetic material (3
2mesh under) 3 kg, silicone oil (Toshi silicone oil SH20050C3) 60g, and isozoro 2-nor 5t? The mixture was placed in a Lutex pulverizer, and after being sufficiently purged with nitrogen gas, pulverization was performed for 7 minutes. After drying the pulverized product in a nitrogen atmosphere, 3kl of this magnetic powder
and nylon 12226.7 were mixed and kneaded in a twin-screw extruder, then processed into a berate shape and subjected to injection molding. The results are shown in Table-1.

比較例−1 実施例−1においてシリコン油を使用しない以外は全〈
実施例−1と同様の方法で行った。その結果を表−1に
示した。
Comparative Example-1 All except for not using silicone oil in Example-1.
It was carried out in the same manner as in Example-1. The results are shown in Table-1.

比較例−2 比較例−1の方法で得られた磁性粉末3に!9をスA−
ミキサーに投入し、窒素雰囲気下で100℃に昇温し、
攪拌下にチタンカップリング剤(イソプロピルトリイソ
ステアワイルチタネート)の!−プロ・pノール10係
溶液30(lを5分間で滴下した。
Comparative Example-2 To magnetic powder 3 obtained by the method of Comparative Example-1! 9 to SuA-
Pour into a mixer and raise the temperature to 100°C under a nitrogen atmosphere.
of titanium coupling agent (isopropyl triisostearyl titanate) under stirring! -30 (l) of a 10-pro-p-nol solution was added dropwise over 5 minutes.

この後10分間攪拌を続け、つづいて窒素ガスを吹き込
みながら脱溶媒を行った。その後オーブンで100℃×
1時間保持した。このものを実施例−1と同様の方法で
混練、成形を行った。結果を表−IK示した。
After that, stirring was continued for 10 minutes, and then the solvent was removed while blowing nitrogen gas. Then in the oven at 100℃
It was held for 1 hour. This material was kneaded and molded in the same manner as in Example-1. The results are shown in Table IK.

以下余日 実施例−2−3 バインダーを変えた以外は全〈実施例その1と同様の方
法で行った。なお混合量は実施例その−1の場合に対し
て体積で同一とした。結果をシリコン油無しの場合と比
較させて(比較例3−4)表−2に示した。
Example 2-3 The following was carried out in the same manner as in Example 1 except that the binder was changed. Note that the mixing amount was the same in terms of volume as in the case of Example 1-1. The results are shown in Table 2 in comparison with the case without silicone oil (Comparative Example 3-4).

以下余日 実施例−5 実施例−1において磁性材料を2−17系サマリウムコ
バルト(東北金属LM30BK相当品)3 kg、ナイ
ロン12を1911用いた以外は実施例−1と全く同じ
方法で行った。又比較例として実施例−5においてンリ
コン油を用いない場合(比較例−6)とともに(表−3
)に結果を示した。
The following is an example 5 for the rest of the day. It was carried out in exactly the same manner as in example 1, except that in example 1, 3 kg of 2-17 type samarium cobalt (equivalent to Tohoku Metals LM30BK) and 1911 nylon 12 were used as the magnetic materials. . In addition, as a comparative example, in Example-5, the case where licorice oil was not used (Comparative example-6) and (Table-3
) shows the results.

以下金白 〔効果〕 以上述べたごとく本発明によれば非常に効果的な表面処
理法を見出した事によシ1表面処理操作の煩しさを解消
出来、磁気特性に優れた複合磁石を得る事が出来た。そ
の工業的価値は極めて大きい。
As described above, according to the present invention, a very effective surface treatment method has been discovered, and as a result, it is possible to eliminate the troublesome surface treatment operation and obtain a composite magnet with excellent magnetic properties. I was able to do it. Its industrial value is extremely large.

Claims (3)

【特許請求の範囲】[Claims] (1)磁性粉末とバインダーを混練かつ成形して複合磁
石を得る製造方法において、シリコン油の存在下で粉砕
してなる磁性粉末とバインダーを混練することを特徴と
する複合磁石の製造方法。
(1) A method for producing a composite magnet by kneading and molding magnetic powder and a binder, the method comprising kneading the magnetic powder obtained by pulverization and the binder in the presence of silicone oil.
(2)前記シリコン油が磁性粉末に対して0.5〜3.
0重量%である特許請求の範囲第1項記載の複合磁石の
製造方法。
(2) The silicone oil is 0.5 to 3.
The method for manufacturing a composite magnet according to claim 1, wherein the content is 0% by weight.
(3)前記シリコン油が、ジメチルポリシロキサンメチ
ル、フェニルポリシロキサン及びこれらのアルキル変性
オイル又はアルコール変性オイルである特許請求の範囲
第1項記載の複合磁石の製造方法。
(3) The method for manufacturing a composite magnet according to claim 1, wherein the silicone oil is dimethylpolysiloxane methyl, phenylpolysiloxane, or an alkyl-modified oil or alcohol-modified oil thereof.
JP61096914A 1986-04-28 1986-04-28 Manufacture of composite magnet Granted JPS62259406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61096914A JPS62259406A (en) 1986-04-28 1986-04-28 Manufacture of composite magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61096914A JPS62259406A (en) 1986-04-28 1986-04-28 Manufacture of composite magnet

Publications (2)

Publication Number Publication Date
JPS62259406A true JPS62259406A (en) 1987-11-11
JPH0587002B2 JPH0587002B2 (en) 1993-12-15

Family

ID=14177628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61096914A Granted JPS62259406A (en) 1986-04-28 1986-04-28 Manufacture of composite magnet

Country Status (1)

Country Link
JP (1) JPS62259406A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01115957A (en) * 1987-10-28 1989-05-09 Toray Silicone Co Ltd Silicone rubber magnetic powder particle
US5143542A (en) * 1989-12-22 1992-09-01 Ishihara Sangyo Kaisha, Ltd. Process for producing magnetic metal powder for magnetic recording
CN106024243A (en) * 2016-07-20 2016-10-12 宁波永久磁业有限公司 Dispersion method for sintering neodymium-iron-boron powder and sintered neodymium-iron-boron magnet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49110528A (en) * 1973-02-23 1974-10-21
JPS5769707A (en) * 1980-10-20 1982-04-28 Toshiba Corp Manufacture of permanent magnet alloy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49110528A (en) * 1973-02-23 1974-10-21
JPS5769707A (en) * 1980-10-20 1982-04-28 Toshiba Corp Manufacture of permanent magnet alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01115957A (en) * 1987-10-28 1989-05-09 Toray Silicone Co Ltd Silicone rubber magnetic powder particle
US5143542A (en) * 1989-12-22 1992-09-01 Ishihara Sangyo Kaisha, Ltd. Process for producing magnetic metal powder for magnetic recording
CN106024243A (en) * 2016-07-20 2016-10-12 宁波永久磁业有限公司 Dispersion method for sintering neodymium-iron-boron powder and sintered neodymium-iron-boron magnet

Also Published As

Publication number Publication date
JPH0587002B2 (en) 1993-12-15

Similar Documents

Publication Publication Date Title
CN103081038B (en) Rare earth element permanent magnet and the manufacture method of rare earth element permanent magnet
JP2018090892A (en) Rare-earth-iron-nitrogen-based magnetic powder and method for producing the same
JPS62259406A (en) Manufacture of composite magnet
JP2005272986A (en) Rare earth-transition metal-nitrogen-based magnet alloy powder, manufacturing method therefor and rare-earth bond magnet using it
JPH0913151A (en) Rare earth-iron-nitrogen base magnetic material and its production
JPS62282418A (en) Manufacture of composite magnet
JPS59140335A (en) Manufacture of rare earth-cobalt sintered magnet of different shape
JPH05258928A (en) Permanent magnet and powder thereof and manufacturing method thereof
JPH07176413A (en) Manufacture of rare earth element magnet
JPH10233306A (en) Rare-earth permanent magnet and preparation thereof
JP2545603B2 (en) Method for manufacturing anisotropic sintered magnet
JPS6353202A (en) Production of rare earth element-iron type plastic magnetic material
JPS59179703A (en) Manufacture of rare earth cobalt alloy powder having two-phase separation type coercive force producing mechanism
JPS62185304A (en) Manufacture of composite magnet
JP4840192B2 (en) Magnet manufacturing apparatus and manufacturing method
JPS6353203A (en) Production of rare earth element-iron type plastic magnetic material
JPH01215902A (en) Manufacture of powder for powder compacting magnetic parts
JP4099203B1 (en) Magnet manufacturing apparatus and manufacturing method
JPH04119605A (en) Manufacture of sintered permanent magnet, sintered permanent magnet power and bonded magnet made of the power
JPH11135311A (en) Rare earth-iron-nitrogen magnetic material, its manufacture, and bond magnet using the same
JPH0570881A (en) Production of sintered compact of fe-ni-p alloy soft-magnetic material
JPS5816002A (en) Production of resin bound permament magnet
JPH10112405A (en) Rare-earth bonded magnet and its manufacture
JP2585443B2 (en) Manufacturing method of resin-bonded permanent magnet molding
JPS6398106A (en) Manufacture of magnet