JPS62259035A - Lorentz type spectrum oscillator - Google Patents

Lorentz type spectrum oscillator

Info

Publication number
JPS62259035A
JPS62259035A JP10241986A JP10241986A JPS62259035A JP S62259035 A JPS62259035 A JP S62259035A JP 10241986 A JP10241986 A JP 10241986A JP 10241986 A JP10241986 A JP 10241986A JP S62259035 A JPS62259035 A JP S62259035A
Authority
JP
Japan
Prior art keywords
output
frequency drift
frequency
white noise
oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10241986A
Other languages
Japanese (ja)
Other versions
JPH0580976B2 (en
Inventor
Shuntaro Yamazaki
俊太郎 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP10241986A priority Critical patent/JPS62259035A/en
Publication of JPS62259035A publication Critical patent/JPS62259035A/en
Publication of JPH0580976B2 publication Critical patent/JPH0580976B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To take a measurement with high efficiency and high accuracy by adjusting the output frequency and amplitude of a low-frequency drift voltage generator. CONSTITUTION:The output of a white noise source 1 is level-adjusted by the 1st variable attenuator 2 and then inputted to the 1st adder 5. The output of a low-frequency oscillator 3 which uses the low-frequency drift voltage generator is level-adjusted by the 2nd variable attenuator 4 and then inputted to an adder 5, which performs amplitude addition to the white noise. The white noise on which the low-frequency drift component is superposed is amplified 6 and then inputted to a voltage-controlled oscillator (VCO) 7. A Lorentz type spectrum which has a frequency drift appears at the output of the VCO 7. This spectrum width is settable to an optional value by adjusting the quantity of attenuation of the attenuator 2. Further, the speed and size of the frequency drift are adjustable to optional values by adjusting the oscillation frequency of each oscillator 3 and the quantity of attenuation of the attenuator 4. Thus, a measurement is taken with high efficiency and high accuracy.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、コヒーレント光通信装置の開発、評価等を行
なう場合に用いるレーザ光スペクトルのシミュレーショ
ン装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a laser beam spectrum simulation device used in the development and evaluation of coherent optical communication devices.

(従来技術) 光ヘテロダイン、ホモダイン検波によるコヒーレント光
通信方式は光の強度のみを利用する直接検波方式と比較
して高密度な多重通信や長距離通信等が可能であると言
う利点を有している。このコヒーレント光通信で用いら
れる受信器の開発にはレーザ光のスペクトル拡がりと周
波数ドリフトの影響を考慮しなければならない場合が多
い。従来では受信器特に復調回路がスペクトル拡がりと
周波数ドリフトに対してどの程度の影響を受けるかにつ
いて評価実験を行なおうとする場合、実際に2つのレー
ザ光を合波して、ヘテロダイン検波あるいはホモダイン
検波し、これにより得られたビートを復調とする言う方
法がとられてきた。(江村他”外部光帰還形DBRLD
を用いたPSK光ヘテロダイン差動同期検波方式の検討
′”60年度電子通信学会総合全国大会2648) しかしながら、この評価方法は、複数の光源を用いてい
るので光学系を組み立てる煩しさが有る上に、光源固有
のスペクトル幅しか得られないという欠点がある。また
、精度、効率の点でも劣る欠点がある。
(Prior art) Coherent optical communication systems using optical heterodyne and homodyne detection have the advantage of being capable of high-density multiplex communication and long-distance communication compared to direct detection systems that use only the intensity of light. There is. In the development of receivers used in coherent optical communications, it is often necessary to consider the effects of the spectrum spread and frequency drift of laser light. Conventionally, when trying to conduct an evaluation experiment to determine how much the receiver, especially the demodulation circuit, is affected by spectrum broadening and frequency drift, two laser beams are actually combined and heterodyne detection or homodyne detection is performed. However, a method has been adopted in which the beat obtained by this is used as demodulation. (Emura et al. “External light feedback type DBRLD
Study of PSK optical heterodyne differential synchronous detection method using optical heterodyne differential synchronous detection method', 1960 National Conference of the Institute of Electronics and Communication Engineers, 2648) However, this evaluation method uses multiple light sources, so it is troublesome to assemble the optical system. However, it has the disadvantage that only the spectral width specific to the light source can be obtained.It also has the disadvantage of being inferior in terms of accuracy and efficiency.

このため、ビート周波数帯で発振し、スペクトル拡がり
と周波数ドリフト量が調整できる発振器が有れば効率良
くしかも高精度で復調回路の評価を行なうことが可能と
なる。しかしながら、この様な機能を有する発振器はこ
れまで無かった。
Therefore, if there is an oscillator that oscillates in the beat frequency band and can adjust the spectrum spread and frequency drift amount, it becomes possible to evaluate the demodulation circuit efficiently and with high accuracy. However, until now there has been no oscillator with such a function.

(発明が解決しようとする問題点) 本発明は、従来無かったスペクトル拡がりと周波数ドリ
フト量が調整できる発振器を新たに提供することによっ
てコヒーレント光通信用受信器の評価実験の効率と精度
向上をはかるものである。
(Problems to be Solved by the Invention) The present invention aims to improve the efficiency and accuracy of evaluation experiments for coherent optical communication receivers by providing a new oscillator that can adjust spectrum broadening and frequency drift, which were not available in the past. It is something.

(問題を解決するための手段) 本発明によるローレンツ形スペクトル発振装置は、出力
電力調整機能を有する白色雑音源と出力周波数及び出力
電圧の調整機能を有する低周波ドリフト電圧発生器と、
これら白色雑音源と低周波ドリフト電圧発生器の2つの
出力信号を振幅加算するための加算器と、この加算器の
出力信号を発振周波数制御用の入力信号とする電圧制御
発振器(VCO)とから構成されている。このうち、白
色雑音源の出力は抵抗で発生する熱雑音を高利得アンプ
で増幅したものでありその振幅は、ガウス分布である。
(Means for Solving the Problem) A Lorentzian spectrum oscillator according to the present invention includes a white noise source having an output power adjustment function, a low frequency drift voltage generator having an output frequency and output voltage adjustment function,
An adder for adding the amplitudes of the two output signals of the white noise source and the low frequency drift voltage generator, and a voltage controlled oscillator (VCO) that uses the output signal of this adder as an input signal for controlling the oscillation frequency. It is configured. Among these, the output of the white noise source is the thermal noise generated by the resistor amplified by a high gain amplifier, and its amplitude has a Gaussian distribution.

一般にFM変調において周波数偏移量をガウス分布とし
た場合、変調帯域を観測系の時間分解能に比べて、十分
大きく設定すると、被変調波のスペクトルはローレンツ
形となることが知られている。(湯用他6統計物理学”
PP227〜235岩波書店)本発明は、この原理に着
目して白色雑音源の帯域とVCoの変調帯域を十分広く
設定することにより、vCOの出力信号スペクトルをロ
ーレンツ形にするもので、しかも白色雑音源の出力信号
を調整することによってスペクトル幅を任意の値に設定
するものである。
Generally, when frequency deviation is Gaussian distributed in FM modulation, it is known that if the modulation band is set sufficiently large compared to the time resolution of the observation system, the spectrum of the modulated wave becomes Lorentzian. (Yuyo and other 6 statistical physics)
PP227-235 Iwanami Shoten) The present invention focuses on this principle and sets the band of the white noise source and the modulation band of the VCo sufficiently wide to make the output signal spectrum of the vCO Lorentzian. The spectral width is set to an arbitrary value by adjusting the output signal of the source.

また、前記低周波ドリフト電圧発生器を用いて、vCO
の出力に周波数ドリフトを与えることができるようにし
た。そして、低周波ドリフト電圧発生器の出力周波数と
振幅を調整することによって周波数ドリフトの速度と大
きさく周波数偏移量)を任意に設定することができる。
Furthermore, using the low frequency drift voltage generator, vCO
It is now possible to give a frequency drift to the output. By adjusting the output frequency and amplitude of the low frequency drift voltage generator, the speed and magnitude of frequency drift (frequency deviation) can be set arbitrarily.

(実施例) 第1図に本発明の第1の実施例を示す。高利得アンプを
用いた白色雑音源1の出力は、第1の可変減衰器2によ
りレベル調整された後、第1の加算器5へ入力される。
(Example) FIG. 1 shows a first example of the present invention. The output of a white noise source 1 using a high gain amplifier is level-adjusted by a first variable attenuator 2 and then input to a first adder 5 .

また低周波ドリフト電圧発生器として用いた低周波発振
器3の出力は、第2の可変減衰器4によりレベル調整さ
れた後、第1の加算器5へ入力され、白色雑音と振幅加
算される。この低周波ドリフト成分が重畳された白色雑
音は増幅器6により増幅された後、VCO7へ入力され
る。VCO7の出力には周波数ドリフトを持ったローレ
ンツ形スペクトルが現れる。このスペクトル幅は第1の
可変減衰器2の減衰量を調整することにより任意の値に
設定できる。また周波数ドリフトの速度と大きさは各々
低周波発振器3め発振周波数と第2の可変減衰器4の減
衰量を調整することにより任意の値に調整できる。
Further, the output of the low frequency oscillator 3 used as a low frequency drift voltage generator is level-adjusted by the second variable attenuator 4, and then input to the first adder 5, where the amplitude is added to white noise. The white noise on which the low frequency drift component is superimposed is amplified by the amplifier 6 and then input to the VCO 7 . A Lorentzian spectrum with frequency drift appears in the output of the VCO 7. This spectral width can be set to any value by adjusting the amount of attenuation of the first variable attenuator 2. Further, the speed and magnitude of the frequency drift can be adjusted to arbitrary values by adjusting the third oscillation frequency of the low frequency oscillator and the attenuation amount of the second variable attenuator 4, respectively.

第2図に、第1の実施例の系で得られたスペクトルの実
測値を示す。測定条件を以下のとおりである。
FIG. 2 shows the measured values of the spectrum obtained with the system of the first example. The measurement conditions are as follows.

この測定では、スペクトル形状の観測が目的なので低周
波発振器3は使用せず白色雑音源1の出力をVCO7へ
直接入力した。
In this measurement, since the purpose was to observe the spectral shape, the low frequency oscillator 3 was not used, and the output of the white noise source 1 was input directly to the VCO 7.

第2図の観測結果は、ローレンツ形スペクトルの理論値
(実線)と良く一致していることを示している。
The observed results shown in Figure 2 are in good agreement with the theoretical value of the Lorentzian spectrum (solid line).

第3図に本発明の第2の実施例を示す。第2の実施例は
、第1の実施例の系から増幅器6を取り除いたものであ
る。この実施例は第1の実施例より得られるスペクトル
幅の範囲は狭くなるが、構成が簡単となる利点が有る。
FIG. 3 shows a second embodiment of the invention. The second embodiment is obtained by removing the amplifier 6 from the system of the first embodiment. Although this embodiment has a narrower spectrum width range than the first embodiment, it has the advantage of a simpler configuration.

従って比較的狭スペクトル幅に対する評価実験を行なう
時に有効な系と言える。
Therefore, it can be said that this system is effective when conducting evaluation experiments for relatively narrow spectral widths.

(発明の効果) 以上詳しく述べた様に本発明による装置を用いれば、任
意のスペクトル幅と周波数ドリフトを有するローレンツ
形スペクトルを電気的に発生させることができる。これ
により、従来コヒーレント光通信用復調回路を評価する
場合に用いていた光学系が不要となるため高効率かつ高
精度の測定が行なえる様になる。
(Effects of the Invention) As described in detail above, by using the apparatus according to the present invention, a Lorentzian spectrum having an arbitrary spectral width and frequency drift can be electrically generated. This eliminates the need for the optical system conventionally used to evaluate demodulation circuits for coherent optical communications, making it possible to perform highly efficient and highly accurate measurements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例を示す図、第2図は第1
の実施例のスペクトルの実測値を示す図、第3図は第2
の実施例を示す図である。 図において 1、白色雑音源    2.第1の可変減衰器3、低周
波発振器   4.第2の可変減衰器5、第1の加算器
 6.増幅器  7.VCOである。 1:白色雑音源 2:第1の可変減衰器 6:増幅器 3:低周波発振器   7:VCO 4:第2の可変減衰器 5:第1の加算器 第1図 第3図
FIG. 1 is a diagram showing a first embodiment of the present invention, and FIG. 2 is a diagram showing a first embodiment of the present invention.
Figure 3 is a diagram showing the measured values of the spectra of Examples.
It is a figure showing an example of. In the figure 1. White noise source 2. First variable attenuator 3, low frequency oscillator 4. Second variable attenuator 5, first adder 6. Amplifier 7. It is a VCO. 1: White noise source 2: First variable attenuator 6: Amplifier 3: Low frequency oscillator 7: VCO 4: Second variable attenuator 5: First adder Fig. 1 Fig. 3

Claims (1)

【特許請求の範囲】[Claims] 出力電力調整機能を有する白色雑音源と、出力周波数及
び出力電圧の調整機能を有する低周波ドリフト電圧発生
器と、これら白色雑音源と低周波ドリフト電圧発生器の
2つの出力信号を振幅加算するための加算器と、この加
算器の出力信号を発振周波数制御用の入力信号とする電
圧制御発振器とから構成されることを特徴とするローレ
ンツ形スペクトル発振装置。
A white noise source with an output power adjustment function, a low frequency drift voltage generator with an output frequency and output voltage adjustment function, and for adding the amplitudes of the two output signals of the white noise source and the low frequency drift voltage generator. 1. A Lorentzian spectrum oscillator comprising: an adder; and a voltage-controlled oscillator that uses the output signal of the adder as an input signal for controlling the oscillation frequency.
JP10241986A 1986-05-02 1986-05-02 Lorentz type spectrum oscillator Granted JPS62259035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10241986A JPS62259035A (en) 1986-05-02 1986-05-02 Lorentz type spectrum oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10241986A JPS62259035A (en) 1986-05-02 1986-05-02 Lorentz type spectrum oscillator

Publications (2)

Publication Number Publication Date
JPS62259035A true JPS62259035A (en) 1987-11-11
JPH0580976B2 JPH0580976B2 (en) 1993-11-11

Family

ID=14326926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10241986A Granted JPS62259035A (en) 1986-05-02 1986-05-02 Lorentz type spectrum oscillator

Country Status (1)

Country Link
JP (1) JPS62259035A (en)

Also Published As

Publication number Publication date
JPH0580976B2 (en) 1993-11-11

Similar Documents

Publication Publication Date Title
CN105576478B (en) The Fourier mode locking optical-electronic oscillator of rapid frequency-sweeping
US5687261A (en) Fiber-optic delay-line stabilization of heterodyne optical signal generator and method using same
US5367529A (en) Apparatus and method for improved time synchronization of pulsed laser systems
US9768873B2 (en) Amplification-free electro-optical oscillator
CN108768539B (en) Photon type microwave frequency-halving method and photon type microwave frequency-halving device
EP1016891B1 (en) Optical pulse generation system for generating optical pulses having high duty ratio
JP2004077479A (en) System and method for laser ranging
US5544183A (en) Variable wavelength light source
CN111934781B (en) Device for realizing Gaussian white noise phase modulation line width broadening of laser
US3258597A (en) Laser heterodyne communication system
JP4107603B2 (en) Laser radar equipment
JP3174075B2 (en) Method and apparatus for measuring selectivity of adjacent channel
JPS6142446B2 (en)
JPS62259035A (en) Lorentz type spectrum oscillator
KR100642531B1 (en) Frequency hop pilot technique for a control system that reduces distortion produced by electrical circuits
JPS62268221A (en) Lorentz type spectrum oscillator
US7324256B1 (en) Photonic oscillator
JP3891361B2 (en) Frequency synthesizer
JPS62159928A (en) Frequency response measuring instrument for optical reception system
US2632865A (en) Circular sweep circuit
JPH0453114B2 (en)
SU811501A1 (en) Device for measuring inhomogeneity of frequency characteristics of communication chennel
JPH0480629A (en) Measuring device for frequency noise of laser
JP3018615B2 (en) Frequency stabilized laser light source
JPH0482191B2 (en)