JPS6225879A - High-frequency inverter - Google Patents

High-frequency inverter

Info

Publication number
JPS6225879A
JPS6225879A JP60163215A JP16321585A JPS6225879A JP S6225879 A JPS6225879 A JP S6225879A JP 60163215 A JP60163215 A JP 60163215A JP 16321585 A JP16321585 A JP 16321585A JP S6225879 A JPS6225879 A JP S6225879A
Authority
JP
Japan
Prior art keywords
capacitor
current
inverter
heating coil
capacitors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60163215A
Other languages
Japanese (ja)
Inventor
Masaaki Fujii
藤井 正昭
Toshihiro Nomura
野村 年弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP60163215A priority Critical patent/JPS6225879A/en
Publication of JPS6225879A publication Critical patent/JPS6225879A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the ripple currents of a capacitor fitted to a DC intermediate circuit by equally dividing a capacitor for resonance connected to an output from an inverter into two and connecting the capacitors divided to the inverter in predetermined relationship. CONSTITUTION:A power supply having commercial frequency is rectified by a rectifying circuit 1, smoothed by a capacitor 2, and fed to an inverter 3. A capacitor for resonance connected on the output side of the inverter 3 is divided equally into two, and a series circuit of the capacitors C1, C2 is connected between a positive pole and a negative pole at DC voltage. A heating coil 5 as load is connected between the middle point of the capacitors C1, C2 and the middle point of transistors Q1, Q2.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は電磁誘導加熱装置における加熱コイルに高周
波電流を供給するための高周波インバータに関し、特に
直流中間回路に挿入するコンデンサ容量を小型化できる
ようにしたものである。
[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to a high-frequency inverter for supplying high-frequency current to a heating coil in an electromagnetic induction heating device, and in particular, to a high-frequency inverter for supplying high-frequency current to a heating coil in an electromagnetic induction heating device. This is what I did.

〔従来技術と問題点〕[Conventional technology and problems]

一般に誘導加熱装置は、加熱コイルが発生する交番磁界
により被加熱体に生じろうず電流積による熱量を用いろ
ものである。この加熱コイルは力率が悪いため力率調整
用コンデンサが接続されて用いられており、結局LC共
振回路が構成されている。
In general, an induction heating device uses the amount of heat generated by the wax current product generated in a heated object by an alternating magnetic field generated by a heating coil. Since this heating coil has a poor power factor, a power factor adjusting capacitor is connected thereto and an LC resonant circuit is formed.

この種の高周波インバータとして、従来第5図に示すシ
ングル・エンド・プッシュプル形が知られている。図に
おいて1は商用周波のM[を直流電圧に変換するための
整流器、2は整流器1の出力側正極、負極間に接続され
平滑作用をするコンデンサ、8はQl 、 Q”のパワ
ートランジスタを交互にオン、オフして高周波に変換す
るためのインバータ、4はパワートランジスタQ1. 
Qlの中点に直である。
As this type of high-frequency inverter, a single-end push-pull type shown in FIG. 5 is conventionally known. In the figure, 1 is a rectifier for converting the commercial frequency M[ into a DC voltage, 2 is a capacitor connected between the positive and negative output terminals of the rectifier 1 and has a smoothing effect, and 8 is a power transistor with Ql and Q'' alternately connected. 4 is a power transistor Q1.
It is directly at the midpoint of Ql.

第6図は第5図に示すインバータ8の出力電圧voと出
力電流ioの波形と、直流中間回路に接続されたコンデ
ンサ2とインバータ3を接続する部分を流れる電流波形
とパワートランジスタQ+ 、 Qgのオンオフ動作と
の関係を示した図である。図において出力電圧voは出
力電流α角だけ進み位相で運転された例を示す。
FIG. 6 shows the waveforms of the output voltage vo and output current io of the inverter 8 shown in FIG. It is a figure showing the relationship with on-off operation. In the figure, an example is shown in which the output voltage vo is operated in phase leading by the output current α angle.

このような装置においていま直流中間回路のコンデンサ
2とインバータ8を接続する部分人を流れる電流iaは
、第6図のようにパワートランジスタQIがオフしてか
ら次にパワートランジスタQtがオンし、さらにオフす
るまでの期間は、電流が流れず出力電流ioにみあう大
きな交流成分を含む直流電流が流れる。すなわち、ia
は直流成分の中に、出力電流ioの周波数を基本調波を
する大きなリップル電流(高調波)を含んでいる。この
リップル電流が、直流中間回路のコンデンサ2に流れる
ため、コンデンサ2はこのリップル電流に耐えうるよう
に選定しなければならず、インバータ出力の負荷側(L
C共振回路)から要求される容量〔UF〕に対して、必
要以上にコンデンサの数を増やして容量を大きくしなけ
ればならないという問題点があった。
In such a device, the current ia flowing through the part connecting the capacitor 2 and the inverter 8 of the DC intermediate circuit is as follows: as shown in FIG. 6, the power transistor QI turns off, then the power transistor Qt turns on, and then During the period until it is turned off, no current flows, and a direct current containing a large alternating current component matching the output current io flows. That is, ia
The DC component includes a large ripple current (harmonic) that is a fundamental harmonic of the frequency of the output current io. This ripple current flows to capacitor 2 of the DC intermediate circuit, so capacitor 2 must be selected to withstand this ripple current.
There was a problem in that the number of capacitors had to be increased more than necessary to increase the capacitance [UF] required by the C resonant circuit.

〔発明の目的〕[Purpose of the invention]

この発明は、かかる点に着目したものであり、直流中間
回路に設けられるコンデンサのリップル電流を低減でき
るインバータを提供することを目的とする。
The present invention has focused on this point, and an object of the present invention is to provide an inverter that can reduce the ripple current of a capacitor provided in a DC intermediate circuit.

〔発明の要点〕[Key points of the invention]

この発明は、インバータの出力に接続される共振用コン
デンサを均等に2分割して、インバータとの接続を工夫
することにより、直流中間回路に接hlされるコンデン
サのリップル電流を少なくして、コンデンサ容量を小さ
くしようとするものである。
This invention reduces the ripple current of the capacitor connected to the DC intermediate circuit by dividing the resonance capacitor connected to the output of the inverter into two equal parts and improving the connection with the inverter. This is an attempt to reduce the capacity.

〔発明の実施例〕[Embodiments of the invention]

第1図はこの発明の実施例を示すもので、第5図に示す
符号と同一のものは同一部材である。共振用コンデンサ
4を均等に2分割してコンデンサCs 、 C!の直列
回路を直流電圧の正極、負極間に接続する。そしてコン
デンサC1と02の中点とトランジスタQl 、 Q!
の中点間に負荷である加熱コイル5を接続する。
FIG. 1 shows an embodiment of the present invention, and the same reference numerals as shown in FIG. 5 are the same members. The resonance capacitor 4 is equally divided into two to form capacitors Cs and C! Connect the series circuit between the positive and negative poles of the DC voltage. And the midpoint between capacitors C1 and 02 and transistors Ql, Q!
A heating coil 5, which is a load, is connected between the midpoints of .

このような構成において、いまパワートランジスタQ1
がオンされパワートランジスタQ!がオフされていると
、第2図に示すように加熱コイル5に流れる電流ioは
直流中間回路の正極側からパワートランジスタQl l
加熱コイル5を通して直流中間回路の負極側に流れる電
流11と、共振用コンデンサ0里に蓄積されたエネルギ
ーの放電のためにパワートランジスタQ1%加熱コイル
5、コンデンサC1の経路で流れる電流isとの和とな
る。このときコンデンサ0” I C’の容量を全く同
じにすれば電流値においてit=igとなり加熱コイル
5を流れる電流ioはio = 2 X itとなる。
In such a configuration, now the power transistor Q1
is turned on and the power transistor Q! is turned off, the current io flowing through the heating coil 5 flows from the positive electrode side of the DC intermediate circuit to the power transistor Ql
The sum of the current 11 flowing through the heating coil 5 to the negative electrode side of the DC intermediate circuit and the current is flowing in the path of the power transistor Q1% heating coil 5 and the capacitor C1 for discharging the energy stored in the resonance capacitor 0. becomes. At this time, if the capacitance of the capacitor 0"IC' is made exactly the same, the current value will be it=ig, and the current io flowing through the heating coil 5 will be io=2Xit.

ついで、パワートランジスタQ怠がオンしiQtがオフ
のときは第8図に示すように加熱コイルの電流ioは直
流中間回路の正極電圧側からコンデンサC+、加熱コイ
ル5、パワートランジスタQ!を通して直流中間回路の
負極電圧側に流れる電流izと、共振用コンデンサC2
に蓄積されたエネルギーのために、コンデンサC!、加
熱コイル5、パワートランジスタQ”% コンデンサQ
’tの経路で流れる電流itとの和で求められる。コン
デンサの容量がQs = C*であれば電流値において
11=i冨となるので、同様に加熱コイルを流れる電流
ioはio= 2 itとなる。
Then, when the power transistor Q is on and iQt is off, the heating coil current io flows from the positive voltage side of the DC intermediate circuit to the capacitor C+, the heating coil 5, and the power transistor Q!, as shown in FIG. The current iz flowing to the negative voltage side of the DC intermediate circuit through the resonance capacitor C2
Due to the energy stored in the capacitor C! , heating coil 5, power transistor Q”% capacitor Q
It is determined by the sum of the current it flowing along the path 't. If the capacitance of the capacitor is Qs = C*, the current value will be 11=i-th, so similarly the current io flowing through the heating coil will be io=2 it.

したがって第1図において直流中間回路に接続されたコ
ンデンサ2とインバータ3を接続する部分を流れる電流
iaは第4図に示すような波形となる。この電流波形は
、第6図に示すiaと甚だ相違し、加熱コイル5に流れ
る電流ioの周波数を基本調波として生じる交流成分を
含んでおらず、2倍の周波数を主成分とするリップル電
流となることがわかる。しかも第1図の電流iaは第5
図における電流と比らべて交流成分の振幅が大幅に小さ
くなっており、その結果リップル電流も小さくなる。
Therefore, in FIG. 1, the current ia flowing through the portion connecting the capacitor 2 connected to the DC intermediate circuit and the inverter 3 has a waveform as shown in FIG. This current waveform is significantly different from ia shown in FIG. 6, and does not include an AC component generated as a fundamental harmonic of the frequency of the current io flowing through the heating coil 5, but is a ripple current whose main component is twice the frequency. It can be seen that Moreover, the current ia in Fig. 1 is 5th
The amplitude of the AC component is significantly smaller than the current in the figure, and as a result, the ripple current is also smaller.

またコンデンサを2個にしたことによってコンデンサの
抵抗が低下して加熱コイルに流れる電流が増加する。
Also, by using two capacitors, the resistance of the capacitor decreases and the current flowing through the heating coil increases.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、加熱コイルに直列に接続される共振
用コンデンサを2分割し、2aの半導体スイッチの直列
回路の両端に2個のコンデンサを直列に接続し、それぞ
れの回路のそれぞれの中点間に負荷である加熱コイルを
挿入したので、直流中間回路からインバータまでを流れ
るリップル電流を著しく減少させろことができ、その結
果直流中間回路に設けたコンデンサを大幅に小型化する
ことができる。
According to this invention, the resonance capacitor connected in series to the heating coil is divided into two parts, two capacitors are connected in series to both ends of the series circuit of the semiconductor switch 2a, and the midpoint of each circuit is Since a heating coil serving as a load is inserted in between, the ripple current flowing from the DC intermediate circuit to the inverter can be significantly reduced, and as a result, the capacitor provided in the DC intermediate circuit can be significantly downsized.

また加熱コイルに流れる電流を増加させることができる
Furthermore, the current flowing through the heating coil can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示す回路図、第2.8図お
よび第4図はこの発明の詳細な説明するための回路図お
よび波形図、第5図は従来の装置を示す回路図、第6図
は従来の装置の動作を説明するための波形図である。 2・・・コンデンサ、3・・・インバータ、5・・・加
熱コイル、Ql、 Ql・・半導体スイッチ、Qt 、
 Ct・・・共振用コンデンサ。 第′1図 第3図 第4図 第5図 第6図
Fig. 1 is a circuit diagram showing an embodiment of the present invention, Figs. 2.8 and 4 are circuit diagrams and waveform diagrams for explaining the invention in detail, and Fig. 5 is a circuit diagram showing a conventional device. , FIG. 6 is a waveform diagram for explaining the operation of the conventional device. 2... Capacitor, 3... Inverter, 5... Heating coil, Ql, Ql... Semiconductor switch, Qt,
Ct...Resonance capacitor. Figure '1 Figure 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 1)直流電源の正極、負極間に2個の半導体スイッチの
直列回路を接続してなる高周波インバータにおいて、前
記直列回路の両端に2個のコンデンサを直列に接続し、
この2個のコンデンサの中点と前記2個の半導体スイッ
チの中点との間に負荷を接続したことを特徴とする高周
波インバータ。
1) In a high frequency inverter in which a series circuit of two semiconductor switches is connected between the positive and negative poles of a DC power source, two capacitors are connected in series at both ends of the series circuit,
A high frequency inverter characterized in that a load is connected between the midpoint of these two capacitors and the midpoint of the two semiconductor switches.
JP60163215A 1985-07-24 1985-07-24 High-frequency inverter Pending JPS6225879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60163215A JPS6225879A (en) 1985-07-24 1985-07-24 High-frequency inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60163215A JPS6225879A (en) 1985-07-24 1985-07-24 High-frequency inverter

Publications (1)

Publication Number Publication Date
JPS6225879A true JPS6225879A (en) 1987-02-03

Family

ID=15769488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60163215A Pending JPS6225879A (en) 1985-07-24 1985-07-24 High-frequency inverter

Country Status (1)

Country Link
JP (1) JPS6225879A (en)

Similar Documents

Publication Publication Date Title
US7656686B2 (en) Switching power supply circuit
US5181159A (en) AC to DC converter having an enhanced power factor
US20080025052A1 (en) Switching power supply circuit
JPH06205585A (en) Three phase ac-to-dc converter
JPH0591740A (en) Power source circuit
JPH0442912B2 (en)
JP3367539B2 (en) DC power supply
JPS6225879A (en) High-frequency inverter
JPH0588067B2 (en)
JP2768813B2 (en) Inverter microwave oven drive circuit
JP3635515B2 (en) Power circuit
JP3610842B2 (en) Power supply device
US5041960A (en) Frequency doubler and/or self-oscillating inverter
JPH0678535A (en) Dc power supply equipment
JPS6349875B2 (en)
JPH0530680A (en) Rectifier power source
JP2794229B2 (en) High frequency drive for electromagnetic cooker
JP4306234B2 (en) Switching power supply
JP2701172B2 (en) Resonant converter
JP2003348834A (en) Single-phase step-up/down converter
JPH08186982A (en) Dc power supply
JPH083197Y2 (en) DC power supply circuit
JPS6290899A (en) Electric source for microwave discharge light source
JP2002247861A (en) Method and apparatus for obtaining ac constant- frequency constant-voltage power source by boosting chopper and double resonance circuit
JP2731093B2 (en) Power supply