JPS62257919A - Graft copolymer of silylated polystyrene - Google Patents

Graft copolymer of silylated polystyrene

Info

Publication number
JPS62257919A
JPS62257919A JP61102172A JP10217286A JPS62257919A JP S62257919 A JPS62257919 A JP S62257919A JP 61102172 A JP61102172 A JP 61102172A JP 10217286 A JP10217286 A JP 10217286A JP S62257919 A JPS62257919 A JP S62257919A
Authority
JP
Japan
Prior art keywords
polymer
graft copolymer
reaction
molecular weight
styrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61102172A
Other languages
Japanese (ja)
Inventor
Kazuo Yamaguchi
和夫 山口
Akira Hirao
明 平尾
Seiichi Nakahama
中浜 精一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen Chemical Corp
Original Assignee
Tonen Sekiyu Kagaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Sekiyu Kagaku KK filed Critical Tonen Sekiyu Kagaku KK
Priority to JP61102172A priority Critical patent/JPS62257919A/en
Publication of JPS62257919A publication Critical patent/JPS62257919A/en
Pending legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)

Abstract

PURPOSE:To obtain the titled copolymer having narrow molecular weight distribution, by coupling a vinyl polymer segment to a silyl group of a polystyrene having dimethylchlorosilyl group at paraposition. CONSTITUTION:The objective graft copolymer contains (A) a unit of formula I and (B) a unit of formula II (R is H or CH3; R<1> is vinyl, isopropenyl or phenyl; n is 10-2,000; R is CH3 when R<1> is phenyl) as recurring units, wherein the amount of the component B is <40mol%. The objective copolymer can be produced by coupling a living polymer segment of formula III to a polymer having the component A as a recurring unit.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、シリル化ポリスチレ/にポリイソプレンセグ
メントをグラフトしてなる共重合体に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a copolymer prepared by grafting polyisoprene segments onto silylated polystyrene.

従来の技術 パラ位に活性シリル基を有するスチレン系誘導体のアニ
オンリビングポリマーは、既に本発明者らによシ開発さ
れている。しかし、このポリマーのシリル基に、他のビ
ニル化合物の重合体セグメントをカップリングしたグラ
フト共重合体は知られていない。
BACKGROUND OF THE INVENTION Anionic living polymers of styrenic derivatives having an active silyl group at the para position have already been developed by the present inventors. However, a graft copolymer in which a polymer segment of another vinyl compound is coupled to the silyl group of this polymer is not known.

発明が解決しようとする間頌点 本発明は、パラ位にジメチルクロルシリル基を有するポ
リスチレンのシリル基に、ポリイソブレy等のビニルポ
リマーのセグメントをカップリングしてなるグラフト共
重合体全提供することを目的とする。
Node points to be solved by the invention The present invention provides a whole graft copolymer obtained by coupling a segment of a vinyl polymer such as polyisobray to a silyl group of polystyrene having a dimethylchlorosilyl group at the para position. With the goal.

問題点を解決するための手段 発明の要旨 本発明の要旨は、 下記一般式の繰シ返し単位(+L)及び繰υ返し単位(
b)の結合からな)、繰り返し単位(1))が40モル
係未満、好ましくは35〜5モル係のシリル化ポリスチ
レンのグラフト共重合体にある。
Means for Solving Problems Summary of the Invention The summary of the present invention is that repeating unit (+L) and repeating unit (υ) of the following general formula:
b), the repeating unit (1)) is present in a graft copolymer of silylated polystyrene of less than 40 molar units, preferably from 35 to 5 molar units.

一般式 (a) 〔但し、Rは水素原子若しくはメチル基 R1はビニル
、インプロペニル若L<はフェニル基、nは10〜20
00の数であり R1がフェニル基、nは10〜200
0の数であり、R1ががフェニル基の場合、Rはメチル
基である〕グラフト共重合体の製造法 本発明のグラフト共重合体〔以下、ポリマー(1)とい
う〕は、一般式 (a の繰シ返し単位からなるポリマー(117に、式カップ
リングすることによシ、製造することができる。
General formula (a) [However, R is a hydrogen atom or a methyl group, R1 is vinyl, impropenyl or L< is a phenyl group, and n is 10 to 20
00, R1 is a phenyl group, n is 10 to 200
0, and when R1 is a phenyl group, R is a methyl group] Method for producing graft copolymer The graft copolymer of the present invention [hereinafter referred to as polymer (1)] has the general formula (a can be prepared by formula coupling to a polymer (117) consisting of repeating units of

ポリマー(転)という〕の具体例としては、ポリブタジ
ェン、ポリイソプレン、ポリ(α−メチルスチレン)等
が挙げられる。
Specific examples of polymers include polybutadiene, polyisoprene, poly(α-methylstyrene), and the like.

ポリマー(It)は、一般式 の繰り返し単位からなるポリ〔4−(ジメチルシリル)
スチレン]〔以下、ポリマー(叩という〕?塩素化する
ことによシ製造することができる。
The polymer (It) is poly[4-(dimethylsilyl)] consisting of repeating units of the general formula
Styrene (hereinafter referred to as polymer) can be produced by chlorination.

ポリマーQll)は、ジメチルシリルクロリド(以下、
化合物Iという)と、式c H!−c H−@)−M 
gOtのp−ビニルフェニルマグネシウムクロリド(以
下、化合物■という)tFi応させて、式%式% ル)スチレン(以下、化合物■という)を合成した後、
この化合物を重合させることによって得られる。
Polymer Qll) is dimethylsilyl chloride (hereinafter referred to as
compound I) and the formula c H! -c H-@)-M
After reacting gOt with p-vinylphenylmagnesium chloride (hereinafter referred to as compound ■) and tFi to synthesize styrene (hereinafter referred to as compound ■),
It is obtained by polymerizing this compound.

化合物!と化合物■との反応は、−70℃〜+100℃
で1分間〜25時間、通常は溶媒の存在下で行なわれる
。用い得る溶媒としては、テトラヒドロフラン、ジエチ
ルエーテル、ジオキサン等のエーテル系化合物が挙げら
れる。化合物Iと化合物巴の接触割合は、!/■(モル
比)を通常(L9〜10とする。
Compound! The reaction between
The reaction is carried out for 1 minute to 25 hours, usually in the presence of a solvent. Examples of solvents that can be used include ether compounds such as tetrahydrofuran, diethyl ether, and dioxane. The contact ratio between compound I and compound Tomoe is! /■ (mole ratio) is usually (L9 to 10).

上記の反応で得られた化合物111を重合してポリマー
(4)とする重合法は、アニオン重合、ラジカル重合等
が採用できるが、分子量分布が狭く単分散に近いポリマ
ー(In)を得るにはアニオン重合が望ましい。
Anionic polymerization, radical polymerization, etc. can be used as the polymerization method for polymerizing compound 111 obtained in the above reaction to obtain polymer (4), but in order to obtain a polymer (In) with a narrow molecular weight distribution and close to monodisperse, Anionic polymerization is preferred.

アニオン重合の際に用いられる適当なアニオン重合開始
剤としては、n−ブチルリチウム、ナフタレンリチウム
塩、ナフタレンナトリウム塩、ナフタレンカリウム塩、
(α−メチルスチレンオリコマ−)ナトリウム塩、(α
−メチルスチレンオリゴマー)リチウム塩、(α−メチ
ルスチレンオリゴマー)カリウム塩、クミルカリウム塩
等を挙げることができる。
Suitable anionic polymerization initiators used in anionic polymerization include n-butyllithium, naphthalene lithium salt, naphthalene sodium salt, naphthalene potassium salt,
(α-methylstyrene oligomer) sodium salt, (α
-methylstyrene oligomer) lithium salt, (α-methylstyrene oligomer) potassium salt, cumyl potassium salt, and the like.

アニオン重合は、室温で行ってもよいが、望ましくは、
−30℃以下の低温、特に望ましくは一50℃〜−10
0℃の低温で、(LO1〜20時間、望ましくは溶媒の
存在下、で行なわれる。適当な溶媒としては、TIII
F、)ルエン、ヘキサン、シクロヘキサン等が挙げられ
る。それらは二種以上用いてもよい。又、重合反応は、
不居性ガス雰囲気中、減圧下、特に望ましくは高真空下
で行うのが望ましい。
The anionic polymerization may be carried out at room temperature, but preferably
Low temperature below -30℃, especially preferably -50℃~-10℃
It is carried out at a low temperature of 0° C. (LO 1 to 20 hours, preferably in the presence of a solvent. Suitable solvents include TIII
F.) Luene, hexane, cyclohexane and the like. Two or more kinds of them may be used. In addition, the polymerization reaction is
It is preferable to carry out the reaction in an inhospitable gas atmosphere under reduced pressure, particularly preferably under high vacuum.

リビングポリマーの分子量は、化合物III/アニオン
重合開始剤比を変えることKより制御することができ、
その比?上げることKより分子量?増加することができ
る。又、アニオン重合開始剤の種類又は重合温度を変え
ること(よっても分子量の調節は可能である。
The molecular weight of the living polymer can be controlled by changing the compound III/anionic polymerization initiator ratio,
That ratio? Is molecular weight higher than K? can be increased. Furthermore, the molecular weight can also be adjusted by changing the type of anionic polymerization initiator or the polymerization temperature.

上記のようにリビングアニオン重合して得られたポリマ
ー@)は、通常約500〜約50へ000、望ましくは
2. OOO〜2QQ、 000、更に望ましくは5,
000〜10 (1,000の数平均分子t’を持ち、
重量平均分子量(My)/数平均分子量(Mn) = 
1.05〜1.50という非常に狭い分子量分布を持つ
The polymer @) obtained by living anionic polymerization as described above usually has a molecular weight of about 500 to about 50,000, preferably 2. OOO~2QQ, 000, more preferably 5,
000 to 10 (having a number average molecule t' of 1,000,
Weight average molecular weight (My)/number average molecular weight (Mn) =
It has a very narrow molecular weight distribution of 1.05 to 1.50.

ポリマー011)を塩素化してポリマー(■)を製造す
る方法は、望ましくは、四塩化炭素、塩化メチン/、ク
ロロホルム等のノ・ロゲン化炭化水素、ベンゼン、トル
エン、キシレン等の芳香族炭化水素、ペンタン、ヘキサ
ン、ヘプタン、オクタン、シクロヘキサン等の飽和炭化
水素等の溶媒の存在下、ポリマー(ill) ’に塩素
ガスと接触させることにより達成される。塩素化は通常
−100〜+100℃で、1分間−j5o時間行なわれ
る。
The method for producing the polymer (■) by chlorinating the polymer 011) desirably uses carbon tetrachloride, methine chloride/, chloroform hydrocarbons such as chloroform, aromatic hydrocarbons such as benzene, toluene, xylene, etc. This is achieved by contacting the polymer (ill)' with chlorine gas in the presence of a solvent such as a saturated hydrocarbon such as pentane, hexane, heptane, octane, cyclohexane, etc. Chlorination is usually carried out at -100 DEG to +100 DEG C. for 1 minute -j5o hours.

このようにして得られたポリマー(9)は、ポリマー(
110の骨格及び分子量2分子量分布をそのまま保持し
ている。
The polymer (9) thus obtained is a polymer (
The skeleton and molecular weight 2 molecular weight distribution of 110 are maintained as they are.

本発明のポリマー(1)は、ポリマー(It)にポリマ
ー(転)をカップリングすることにより得られる。
Polymer (1) of the present invention is obtained by coupling polymer (trans) to polymer (It).

ポリマー(1)へのポリマー(転)のカップリングによ
るグラフト化反応は、ポリマー(…)とポリマー(転)
のりピングポリマーを接触させることによってなされる
The grafting reaction by coupling the polymer (conversion) to the polymer (1) is a reaction between the polymer (...) and the polymer (conversion).
Gluing is done by contacting polymers.

リビングポリマー(転)は、式aH,−aRR1(但し
、R,R’ は前記と同意義。)の化合物、具体的には
ブタジェン、イソプレン、α−メチルスチレン、を通常
のアニオン重合法に則って重合することにより得られる
The living polymer (conversion) is a compound of the formula aH, -aRR1 (where R and R' have the same meanings as above), specifically butadiene, isoprene, and α-methylstyrene, according to a normal anionic polymerization method. It can be obtained by polymerization.

そこで得られるポリマー(ロ)は、下記式からなシ、M
w / Mn = t 02〜1.50と単分散に近い
The polymer (b) obtained therein is from the following formula, M
w/Mn=t02~1.50, close to monodisperse.

又、下記式におけるnは10〜2. OOO1望ましく
け20〜1.500である〔但し、R,R1は前記と同
意義〕、 ポリマー(If)とりピングポリマー(ロ)とのカップ
リング反応は、本発明における前記アニオン重合法に従
えばよい。幹ポリマーのポリマー(It)への、枝ポリ
マーのポリマー(転)のグラフト化率は、ポリマー(■
)に対して40モル係迄である。これは、グラフト化率
が進行するに従って立体障害が犬きくなって、これ以上
反応が進行しないためと考えられる。
Moreover, n in the following formula is 10 to 2. OOO1 is desirably 20 to 1.500 [however, R and R1 have the same meanings as above], and the coupling reaction between the polymer (If) and the coupling polymer (B) is performed according to the anionic polymerization method of the present invention. good. The grafting rate of the polymer (transfer) of the branch polymer to the polymer (It) of the trunk polymer is the polymer (■
) is up to 40 mol. This is thought to be because as the grafting rate progresses, steric hindrance becomes stronger and the reaction does not proceed any further.

上記のようにして得られた本発明のポリマー(I)は、
通常約1.000〜約1. Q O[1,OOO1望ま
しくはs、 o o o〜500.000、更に望まし
くけ、10.000〜300.000の「n を持ち、
Mw / Mn = 1.05〜1.40と非常に分子
量分布が狭い。
The polymer (I) of the present invention obtained as described above is:
Usually about 1.000 to about 1. Q O[1, OOO1 preferably s, o o o ~ 500.000, more preferably 10.000 ~ 300.000,
The molecular weight distribution is extremely narrow, with Mw/Mn = 1.05 to 1.40.

発明の効果 本発明の共重合体は、エラストマーとして有用であり、
又二種以上のポリマーtブレンドする場合の相溶剤とし
て利用可能である。
Effects of the Invention The copolymer of the present invention is useful as an elastomer,
It can also be used as a compatibilizer when blending two or more types of polymers.

実施例 以下、本発明を実施例によシ詳細に説明する。Example Hereinafter, the present invention will be explained in detail using examples.

アニオン重合実験は、高真空ラインに接続した複数のア
ニオン重合開始剤溶液及びモノマー溶液を凍結、脱気し
て封入したブレーカプルシールを持つアンプル並びに系
内を洗浄した廃アニオン重合開始剤及びリビングポリマ
ーの一部?取り出すスペア−の枝管と接続されたフラス
コからなる第1図に示す装fTh用い、次の方法で行っ
た。
Anionic polymerization experiments were carried out using an ampoule with a breaker pull seal in which multiple anionic polymerization initiator solutions and monomer solutions connected to a high vacuum line were frozen and degassed, and the system was cleaned with waste anionic polymerization initiator and living polymer. Part of? Using the equipment shown in FIG. 1 consisting of a flask connected to a spare branch pipe to be taken out, the following method was used.

まず、フラスコ1を10−’ a+Hg  Ic 5時
間保って脱気し、真空ライン8からA点で封じ切り、次
いで一つのアニオン重合開始剤の入ったアンプル3のシ
ールを破り、フラスコ1全含む系内に導びき、系内全十
分に洗浄し、スペア−の枝管7に導びき、その枝管7i
Ci点で封じ切り、系から取り除き、しかる後、所定の
温度に冷却し、所定の温度に冷却された第2のアニオン
重合開始剤溶液が入ったアンプル2のシールを破シ、フ
ラスコ1にアニオン重合開始剤を導き、次いで第1のモ
ノマーをアンプル4から同様にしてフラスコ1に導入し
て所定時間反応させた後、一部の溶液全校管6に導入し
て封じ切シ、リビングポリマーのキャラクタリゼーショ
ンに供した。
First, flask 1 was kept at 10-' a+Hg Ic for 5 hours to degas it, and the vacuum line 8 was sealed off at point A. Then, the seal on ampoule 3 containing one anionic polymerization initiator was broken, and the system containing all of flask 1 was removed. Thoroughly clean the entire system, then lead it to the spare branch pipe 7, and remove the branch pipe 7i.
It is sealed off at point Ci, removed from the system, cooled to a predetermined temperature, the seal of ampoule 2 containing the second anionic polymerization initiator solution cooled to the predetermined temperature is broken, and the anion is added to flask 1. After introducing the polymerization initiator, the first monomer is similarly introduced into the flask 1 from the ampoule 4 and reacted for a predetermined time, and then a portion of the solution is introduced into the entire calibration tube 6 and sealed. subjected to crystallization.

又、グラフト化反応は、第2図に示す装置を用い、次の
要領で行った。装置を真空ラインJに取付けて真空にし
、ブンゼンバーナーでベーキングを繰り返し、20分程
度脱気した後、Aで封じ切る。Eの洗浄用溶媒で装置内
を洗浄し、Dに集めBで封じ切る。?の重合開始剤をO
K導入し、所定の温度に冷却した後、Gのとニルモノマ
ーの溶媒溶液を加える。所定温度で、所定時間放置して
重合した後、ホモポリマーの分析用に重合溶液の一部を
Hに分取し、所定温度に冷却した工のポリマー(n)の
溶媒溶液1aに加えて所定時間放置することによジグラ
フト化反応を完結させる。次いで装置を開放し、ポリマ
ーのキャラクタリゼーションに供した。
The grafting reaction was carried out using the apparatus shown in FIG. 2 in the following manner. Attach the device to vacuum line J to create a vacuum, repeat baking with a Bunsen burner, deaerate for about 20 minutes, and then seal with A. Wash the inside of the device with the washing solvent E, collect in D, and seal with B. ? The polymerization initiator is O
After introducing K and cooling to a predetermined temperature, a solvent solution of G and nil monomer is added. After polymerization by standing at a predetermined temperature for a predetermined time, a part of the polymerization solution was separated into H for homopolymer analysis, and added to the solvent solution 1a of the polymer (n) cooled to a predetermined temperature. The digrafting reaction is completed by standing for a period of time. The device was then opened and subjected to polymer characterization.

実施ff1J 1 p−ビニルフェニルマグネシウムクロリドの合致 200−のフラスコにマグネシウム金属4.89y(I
12o1モル)とテトラヒドロフラン(TIF)40−
を入れ、次いでエチレンプロミド1.2dを加えマグネ
シウムを活性化する。
Implementation ff1J 1 Add 4.89y of magnesium metal (I
12o1 mol) and tetrahydrofuran (TIF)40-
and then add 1.2 d of ethylene promide to activate the magnesium.

これKp−クロロスチレン14.49 t (α105
モル)とTHF、60−からなる溶液を滴下させながら
、徐々に加熱し最終的KFi還流させる。
This Kp-chlorostyrene 14.49 t (α105
A solution consisting of mol) and THF, 60- is added dropwise while gradually heating to reflux the final KFi.

1時間掛けて滴下を終了させ、更に15分間反応を継続
させた後、冷却し、p−ビニルフェニルマグネシウムク
ロリドの溶液を調製した。
The dropwise addition was completed over 1 hour, and the reaction was continued for an additional 15 minutes, and then cooled to prepare a solution of p-vinylphenylmagnesium chloride.

4−(ジメチルシリル)スチレンの合成300−のフラ
スコに、ジメチルシリルクロリド19.0 Of ((
1201モル)とTHF80−を入れ、これに上記で得
られたp−ビニルフェニルマグネシウムクロリドの溶液
を、室温で1時間掛けて滴下する。更に室温で5時間攪
拌全行ない、反応を完結させ12時間静置した。
Synthesis of 4-(dimethylsilyl)styrene Into a 300-ml flask, add 19.0 Of dimethylsilyl chloride ((
1201 mol) and THF80- are added, and the solution of p-vinylphenylmagnesium chloride obtained above is added dropwise thereto over 1 hour at room temperature. The mixture was further stirred at room temperature for 5 hours to complete the reaction, and left to stand for 12 hours.

生成した塩tP別し、THF’)蒸留により除去した後
、100 mHg  の減圧下20〜30℃でジメチル
シリルクロリドを留出させ、更に減圧下加熱し、4−(
ジメチルシリル)スチレン2!L9F(116モル)を
得た。このものを精留により純度99.2 %の4−(
ジメチルシリル)スチレン(沸点:58℃/2gIsH
g)を得た。
After separating the generated salt tP and removing it by THF') distillation, dimethylsilyl chloride was distilled off at 20 to 30°C under a reduced pressure of 100 mHg, and further heated under reduced pressure to obtain 4-(
dimethylsilyl) styrene 2! L9F (116 mol) was obtained. This product was purified by rectification to obtain 4-(
dimethylsilyl) styrene (boiling point: 58℃/2gIsH
g) was obtained.

このもののIH−IJMHのケミカルシフト値は、下記
の通シであった。
The IH-IJMH chemical shift values of this product were as shown below.

IH−NMR(Tys/cat、)δ:α33ppm(
a16H。
IH-NMR (Tys/cat,) δ: α33ppm (
a16H.

SiC旦3)、4.40ppm(m:IH,Si旦)、
a19ppm(d: ” Hc i s r c旦−O
H,:r= 11MZ)、5.69ppm(d: IH
,trans、C旦−CH,、T=17H2)、6.6
7ppm(2d; 111.−CHI−(H)、7.1
7〜7.5J)I)m(m;4H,C11H4−) 4−(ジメチルシリル)スチレンのアニオン重合 図面に示す装置で、THF溶媒の存在下、上記で得られ
た4−(ジメチルシリル)スチレン&47ミlJモル、
α−メチルスチレンオリゴマージカリウム塩(1194
ミリモル(K イオンとして)を用いて、−78Cで4
分間重合を行った後、メタノール水溶液で反応を停止せ
しめ、メタノールで再沈澱を繰り返してポリマーを得た
。ポリマーのキャラクタリゼーションを行った結果、数
平均分子[I C600、重量平均分子i (MW) 
/数平均分子i1(Mn)=1.13の単分散に近いポ
リマーであることが判明した。
SiC Dan 3), 4.40 ppm (m: IH, Si Dan),
a19ppm (d: ”
H, :r= 11MZ), 5.69ppm (d: IH
,trans,Cdan-CH,,T=17H2),6.6
7ppm (2d; 111.-CHI-(H), 7.1
7-7.5J) I) m(m; 4H, C11H4-) Anionic polymerization of 4-(dimethylsilyl)styrene In the apparatus shown in the figure, 4-(dimethylsilyl) obtained above in the presence of THF solvent. Styrene & 47 ml J moles,
α-methylstyrene oligomer dipotassium salt (1194
4 at -78C using mmol (as K ions)
After polymerization was carried out for a minute, the reaction was stopped with an aqueous methanol solution, and reprecipitation was repeated with methanol to obtain a polymer. As a result of characterizing the polymer, the number average molecule [IC600, weight average molecule i (MW)
It was found that this was a nearly monodisperse polymer with /number average molecule i1 (Mn)=1.13.

IH−NMR分析の結果、4−(ジメチルシリル)スチ
レンのケミカルシフト値と一致し、従ってこのポリマー
は、ポリ〔4−(ジメチルシリル)スチレン〕であるこ
とが判った。
As a result of IH-NMR analysis, the chemical shift value coincided with that of 4-(dimethylsilyl)styrene, and therefore, this polymer was found to be poly[4-(dimethylsilyl)styrene].

塩素化反応 50−のナス型フラスコに、上記で得られたポリ〔4−
(ジメチルシリル)スチレン〕a29562(モノマー
換算1.82ミリモル)、溶媒として脱水四塩化炭素5
−を入れ、2.3規定の塩素の四塩化炭素溶液2mg(
1,26当量)を加えた。−20℃で30分間攪拌した
後、四塩化炭素を減圧除去し、ポリマーのIH−NMR
分析を行った。最後にベンゼン溶液から凍結乾燥全行な
い、工R分析及び元素分析2行った。ポリマーの単離収
率け8Q、6%であった。
The above obtained poly[4-
(dimethylsilyl)styrene] a29562 (monomer equivalent: 1.82 mmol), dehydrated carbon tetrachloride 5 as a solvent
- and 2 mg of 2.3N chlorine in carbon tetrachloride solution (
1.26 equivalents) were added. After stirring at -20°C for 30 minutes, carbon tetrachloride was removed under reduced pressure, and the IH-NMR of the polymer was
Analysis was carried out. Finally, everything was freeze-dried from the benzene solution, and engineering R analysis and elemental analysis 2 were performed. The isolated yield of polymer was 8Q, 6%.

工R分析の結果、2100 cm−”及び8800F+
−”のSiHの吸収が、又”H−NMR分析の結果から
4、3 ppmのS1旦のピークが完全に消失してbる
上、その積分値も計算値と良く一致しているので、反応
は定量的に進行したものと考えられる。
As a result of engineering R analysis, 2100 cm-” and 8800F+
-" SiH absorption, and the results of H-NMR analysis show that the S1 peak at 4.3 ppm has completely disappeared, and its integral value also agrees well with the calculated value. It is considered that the reaction proceeded quantitatively.

なお、IH−NMR分析の結果、a、 s 3ppm 
Vchつた5iOH8のピークが総てα63 ppmに
移動しているが、これはケイ素原子に塩素が結合した結
果、低磁場にシフトしたものと考えられる。
In addition, as a result of IH-NMR analysis, a, s 3ppm
The peaks of Vch and 5iOH8 have all shifted to α63 ppm, and this is thought to be due to the shift to the lower magnetic field as a result of chlorine bonding to silicon atoms.

元素分析の結果は下記の通りであった。The results of elemental analysis were as follows.

OHC1 分析値(%)    61.78   &66   t
a96計算値部)    62.81    &85 
 1&94以上の結果から、得られたポリマーは下記の
構造からなり、そのMn=12,800であることが判
明した。
OHC1 analysis value (%) 61.78 &66 t
a96 calculated value part) 62.81 &85
From the results of 1 & 94, it was found that the obtained polymer had the following structure, and its Mn=12,800.

CHI−8i−OHs ■ t グラフト化反応 インプレン3α97ミリモルのTHF溶液を重合開始剤
としてのクミルカリウム[L980ミリモルのTHIF
溶液を一78℃で4時間接触させた。得られたりピング
ポリイソプレンのMn(GPCり=2,580(ポリス
チレン換算)であシ、IH−NMRKよりへ4結合であ
ることを確認した。
CHI-8i-OHs ■ t Grafting reaction Imprene 3α 97 mmol of THF solution was added to cumyl potassium [L980 mmol of THIF as a polymerization initiator]
The solution was left in contact for 4 hours at -78°C. The Mn of the obtained polyisoprene (GPC ratio = 2,580 (polystyrene equivalent)) was confirmed to be 4-bonded by IH-NMRK.

次に、上記で得られたボIJ C4−(ジメチルクロロ
シリル)スチレン〕(−s1ct基トl、”’(Q、4
95ミリモル)のTHF’溶液を、上記で得られたりピ
ングポリイソプレン〔ポリ(4−(ジメチルクロロシリ
ル)スチレン) o −51ct基に対して1.67倍
当量〕溶液と一78℃で24時間接触させた。その後直
ちに、未反応の−81(!を基によるゲル化を防ぐため
に、メチルリチウムのエーテル溶液を適当量加えて、未
反応の一51ct基をメチル化し、更にメタノール?加
えてリビングポリインプレンと反応させた。
Next, the above-obtained BoIJC4-(dimethylchlorosilyl)styrene](-s1ct group, "'(Q, 4
A THF' solution of 95 mmol) was mixed with the above-obtained polyisoprene [poly(4-(dimethylchlorosilyl)styrene) 1.67 times equivalent to -51ct group] solution at -78°C for 24 hours. brought into contact. Immediately thereafter, in order to prevent gelation due to unreacted -81(!) groups, an appropriate amount of an ether solution of methyllithium was added to methylate the unreacted -81(!) groups, and methanol was further added to form living polyimprene. Made it react.

適当量のTH?を減圧除去した後、多量のメタノールに
注ぎ、ポリマーを分離乾燥して収量全測定すると共にG
PO測定を行った。
Appropriate amount of TH? After removing the polymer under reduced pressure, pour it into a large amount of methanol, separate and dry the polymer, and measure the total yield.
PO measurement was performed.

LS−GPOにより共重合体のMn  を求めたところ
72.600となった。幹ポリマーの分子量(Mn =
12,800 )、−分子中の81H基の数(60個)
及びポリイソプレンの分子i(Mn=2,580)から
グラフト化率全計算すると30係となった。従って、こ
こで得られたグラフト共重合体は下記の(a)セグメン
) (1:+)セグメントが結合した共重合体であるこ
とが判明した。
The Mn of the copolymer was determined by LS-GPO and found to be 72.600. Molecular weight of the backbone polymer (Mn =
12,800), -Number of 81H groups in the molecule (60)
The total grafting rate was calculated from the polyisoprene molecule i (Mn=2,580) to be 30. Therefore, the graft copolymer obtained here was found to be a copolymer in which the following (a) segment) (1:+) segment was bonded.

(a)          (b) lcH! 実施例2,3 実施例1におけるグラフト化反応におけるイソプレン、
ポリ〔4−(ジメチルクロロ)スチレン〕の使用量及び
重合開始剤の種類2表に示すように変えた以外は、実施
列1と同様にしてグラフト化反応を行った。それらの結
果を表に示した。
(a) (b) lcH! Examples 2 and 3 Isoprene in the grafting reaction in Example 1,
A grafting reaction was carried out in the same manner as in Example 1, except that the amount of poly[4-(dimethylchloro)styrene] used and the type of polymerization initiator were changed as shown in Table 2. The results are shown in the table.

実施PJ a y s 実施列1のグラフト化反応において、イソプレンに代え
てブタジェン(実施例4)又はα−メチルスチレン(実
施例5)?、クミルヵリウムに代えてn−ブチルリチウ
ムと、それぞれ表に示す量用いた以外は、ブタジェン及
びα−メチルスチレンのリビング重合を行ない、それぞ
れ表に示すMn(GPO,ポリスチレン換算)のポリブ
タジェン及びポリα−メチルスチレンを得た。
Implementation Project In the grafting reaction of Example 1, butadiene (Example 4) or α-methylstyrene (Example 5) was used instead of isoprene? , living polymerization of butadiene and α-methylstyrene was carried out, except that n-butyllithium was used in place of cumylpotassium in the amounts shown in the table, and polybutadiene and polyα- Methylstyrene was obtained.

次に、実施列1で得られたポリ〔4−(ジメチルクロロ
シリル)スチレン〕と上記で得たポリブタジェン又はポ
リα−メチルスチレンを、実施例1と同様圧してグラフ
ト反応を行なわせ、表に示す分子量1分子量分布及びグ
ラフト化率全持つグラフト共重合体を得た。
Next, the poly[4-(dimethylchlorosilyl)styrene] obtained in Example 1 and the polybutadiene or polyα-methylstyrene obtained above were subjected to pressure in the same manner as in Example 1 to perform a graft reaction. A graft copolymer having a molecular weight distribution of 1 and a total grafting rate as shown was obtained.

上記の結果から、(a)セグメントはそれぞれ実施例1
のそれと同じであり、(b)セグメントは下記の通りで
あった。
From the above results, (a) segments are respectively Example 1
The (b) segment was as follows.

実施例4       実施例5 (b)           (b) 1 ホ モ     イソプレン   5CL97  
   クミルカリウム   [1980グラフト   
  −51ct      α495        
         (L67竺2 ホ モ     イ
ンプレン   S五4B    n−ブチルリチウム 
 l1619グラフト     −BICl     
 1.01                  (α
40と3 ホ モ     インプレン   4α57
    n−ブチルリチウム  1764グラフ)  
    −8in!      [1961(α63轟
4 ホ モ     ブタジェン   6Q、10  
 n−ブチルリチウム  LL990グラフト    
 −81C1[LaB5              
 (7−06当5 ホ モ    α−メチルスチレン
  2(145n−ブチルリチウム  l1871グラ
フト     −a1ct      α487   
             (1,79嬉2  a)i
n:ape(ポリスチレン換算)    b)  Mn
 : 1日−G丁C)ポリ〔モノマー〕のMnから計算 「n 88   2.150   2.5aOa)  L45
   −創 −165,0OOC)  72,600b
)  1.28  13077   4.400   
5,220リ 1.07   −31)  85  1
62.tlooc)  94,300b)  t19 
  CL2787   4.200   5.410a
)  1.08   −jl)  8B   245,
000c)  92,800b)  t17   CL
2787    へ340    へ800°”)  
1.10   −創 −23a000°>  79.6
00b)  i、20   t13[1932、,50
02,700a)  1.09   −、i)  −1
72,000c)  59.800b)  t25  
 l130
Example 4 Example 5 (b) (b) 1 Homo Isoprene 5CL97
Cumil Potassium [1980 Graft
-51ct α495
(L67jiku2 homo imprene S54B n-butyl lithium
l1619 graft-BICl
1.01 (α
40 and 3 homo inprene 4α57
n-butyllithium 1764 graph)
-8in! [1961 (α63 Todoroki 4 Ho Mo Butadien 6Q, 10
n-butyllithium LL990 graft
-81C1[LaB5
(7-06 To 5 homo α-methylstyrene 2 (145n-butyllithium l1871 graft -a1ct α487
(1,79 happy 2 a) i
n: ape (polystyrene equivalent) b) Mn
: 1st - G C) Calculated from Mn of poly[monomer] "n 88 2.150 2.5aOa) L45
- Creation -165,0OOC) 72,600b
) 1.28 13077 4.400
5,220 li 1.07 -31) 85 1
62. tlook) 94,300b) t19
CL2787 4.200 5.410a
) 1.08 -jl) 8B 245,
000c) 92,800b) t17 CL
2787 to 340 to 800°”)
1.10 -Wound -23a000°> 79.6
00b) i, 20 t13 [1932, ,50
02,700a) 1.09 -, i) -1
72,000c) 59.800b) t25
l130

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明におけるアニオン重合を行う装置の一列
の概念図、第2図は本発明におけるグラフト化反応?行
う装置の−144の概念図である。第3図は実施例2に
おけるポリイソプレンの、第4図は実施例2におけるグ
ラフト共重合体の、第5図は実施例3におけるポリイン
プレンの、第6図は実施列3におけるグラフト共重合体
のGPCチャートをそれぞれ示す。 第1図において、 1・・・フラスコ、2,3・・・アニオン重合開始剤封
入アンプル、4.5・・・七ツマー封入アンプル、6.
7・・・枝管、8・・・真空ライン、9・・・コック、
10・・・マグネット 第2図において、 C・・・フラスコ、D・・・洗浄液の受器、E・・・洗
浄用液用アンプル、?・・−重合開始剤用アンプル、G
・・・ビニルモノマー用アンプル、■・・・サンプル用
受器、工・・・ポリ〔4−(ジメチルクロロシリル)ス
チレン〕用アンプル、J・・・真空ライン接続コック
Figure 1 is a conceptual diagram of a line of equipment for anionic polymerization in the present invention, and Figure 2 is a diagram showing the grafting reaction in the present invention. It is a conceptual diagram of -144 of the apparatus which performs. Figure 3 shows the polyisoprene in Example 2, Figure 4 shows the graft copolymer in Example 2, Figure 5 shows the polyimprene in Example 3, and Figure 6 shows the graft copolymer in Example 3. The combined GPC charts are shown respectively. In FIG. 1, 1... flask, 2, 3... ampoule containing an anionic polymerization initiator, 4.5... ampoule containing seven polymers, 6.
7... Branch pipe, 8... Vacuum line, 9... Cock,
10... Magnet In Figure 2, C... Flask, D... Receiver for cleaning liquid, E... Ampoule for cleaning liquid, ? ...- Ampoule for polymerization initiator, G
... Ampoule for vinyl monomer, ■... Receiver for sample, Engineering... Ampoule for poly[4-(dimethylchlorosilyl)styrene], J... Vacuum line connection cock

Claims (1)

【特許請求の範囲】 下記一般式の繰り返し単位(a)及び繰り返し単位(b
)の結合からなり、繰り返し単位(b)が40モル%未
満のシリル化ポリスチレンのグラフト共重合体。 一般式 (a)▲数式、化学式、表等があります▼ (b)▲数
式、化学式、表等があります▼ 〔但し、Rは水素原子若しくはメチル基、R^1はビニ
ル、イソプロペニル若しくはフェニル基、nは10〜2
000の数であり、R^1がフェニル基の場合、Rはメ
チル基である。〕
[Claims] Repeating unit (a) and repeating unit (b) of the following general formula
), and the repeating unit (b) is less than 40 mol%. General formula (a) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (b) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ [However, R is a hydrogen atom or a methyl group, and R^1 is a vinyl, isopropenyl, or phenyl group , n is 10-2
000, and when R^1 is a phenyl group, R is a methyl group. ]
JP61102172A 1986-05-06 1986-05-06 Graft copolymer of silylated polystyrene Pending JPS62257919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61102172A JPS62257919A (en) 1986-05-06 1986-05-06 Graft copolymer of silylated polystyrene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61102172A JPS62257919A (en) 1986-05-06 1986-05-06 Graft copolymer of silylated polystyrene

Publications (1)

Publication Number Publication Date
JPS62257919A true JPS62257919A (en) 1987-11-10

Family

ID=14320280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61102172A Pending JPS62257919A (en) 1986-05-06 1986-05-06 Graft copolymer of silylated polystyrene

Country Status (1)

Country Link
JP (1) JPS62257919A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS592607U (en) * 1982-06-29 1984-01-09 日産自動車株式会社 Trailing arm type rear suspension
JPS598511A (en) * 1982-07-07 1984-01-17 Mazda Motor Corp Rear suspension of automobile

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS592607U (en) * 1982-06-29 1984-01-09 日産自動車株式会社 Trailing arm type rear suspension
JPS598511A (en) * 1982-07-07 1984-01-17 Mazda Motor Corp Rear suspension of automobile

Similar Documents

Publication Publication Date Title
US4316973A (en) Novel telechelic polymers and processes for the preparation thereof
US4342849A (en) Novel telechelic polymers and processes for the preparation thereof
EP0243006B1 (en) Block-graft copolymers and process for producing the same
JPH05504164A (en) Polymerization of olefin-containing monomers using anionic initiators
JP3388865B2 (en) Method for producing isobutylene polymer having olefin group
JP2001139647A (en) Star block copolymer
JPH0672173B2 (en) Graft polymer and method for producing the same
JPS62257919A (en) Graft copolymer of silylated polystyrene
JPH058924B2 (en)
JPH06298881A (en) Production of block copolymer
US6756448B2 (en) Styrene copolymer
JP3221755B2 (en) New functionalized polyolefins
JPH0551632B2 (en)
JPH03190911A (en) Star type copolymer and production thereof
JPH0551612B2 (en)
Stewart et al. Anionic functional initiators. 1: 3‐dimethylaminopropyllithium as an initiator for the synthesis of Bi‐and difunctional polybutadienes
JPH0641221A (en) Poly@(3754/24)3-methyl-4-hydroxystyrene) and its production
JP3558763B2 (en) Method for producing graft polymer
JPS62257907A (en) Chalorinated 4-(dialkylsilyl)styrene polymer
JP3816609B2 (en) Silica dispersibility improver comprising polymer having pyridyl group
JPS62201917A (en) Living block copolymer
JP2004161986A (en) Living polymer of methacrylic acid (alkyl-substituted) aziridinylalkyl ester and method for producing the same
JPH0721098B2 (en) Block-graft copolymer composition
JPH04335003A (en) Poly(4-ethynylstyrene), intermediate therefor, and block copolymer thereof
RU2147023C1 (en) Method of preparing new polylithium derivatives of carbosilane compounds of dendrite structure