JPS62257030A - Photometric apparatus of camera - Google Patents

Photometric apparatus of camera

Info

Publication number
JPS62257030A
JPS62257030A JP61099936A JP9993686A JPS62257030A JP S62257030 A JPS62257030 A JP S62257030A JP 61099936 A JP61099936 A JP 61099936A JP 9993686 A JP9993686 A JP 9993686A JP S62257030 A JPS62257030 A JP S62257030A
Authority
JP
Japan
Prior art keywords
photodiode
layer
photometry
type
photometric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61099936A
Other languages
Japanese (ja)
Inventor
Hajime Kanazawa
元 金沢
Tokuichi Tsunekawa
恒川 十九一
Hiroshi Omura
大村 宏志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61099936A priority Critical patent/JPS62257030A/en
Publication of JPS62257030A publication Critical patent/JPS62257030A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Exposure Control For Cameras (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To enhance response while reducing the capacity possessed by a photodiode, by setting the thickness of the I-layer of the photodiode to a predetermined value or more. CONSTITUTION:A photodiode is used as a photometric element for performing the photometry of an image pickup surface and the photometry of the light reflected from the surface of a photographic film or shutter film. This photodiode is a PIN type one having such a structure that a transparent electrode 2, a P-layer 3 made of P-type a-Si : H, an I-layer 17 made of a-Si : H showing an intrinsic semiconductive characteristic, a N-layer 5 made of N-type a-Si : H and a metal electrode 6 made of Al or the like are successively laminated to a transparent substrate 1 and the thickness of the I-layer 17 is set to 10,000 Angstrom .

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、カメラの測光装置、特にアモルファス水素化
又はフッ素化シリコン層を有するフォトダイオードを用
いる1眼レフレツクスカメラの測光装置に関するもので
あるう 〔発明のR景〕 従来、アモルファス水素化シリコン(以ドa−8i:)
iとする)又はフッ素化シリコン(以下a−8i:Fと
する)′!!−用いたフォトダイオードは、第5図のよ
うに透明基板1上にITOやS n O,などからなる
透明電極2、P型a −S;: H(a−8i :F)
からなる2層3、真性半導体%注を示すa−8i :H
(a−8i :F)からなる1層4、n型a−8i :
H(a−st :F) ;bhらなる1層5、Atなど
からなる金属電極6をJ@に積層した構造や、第5図の
ように金属基板7上i(P)@3、し114.1層5、
透明電極2t−順tで積層した構造、ショットキーバリ
アを利用したものなどが提案され、このうち第5図、第
6図に示したPinタイプのフォトダイオードは太陽電
池や光センサーに広く用いられていて、透明電極2側か
ら光が入射されるPinタイプのフォトダイオード洗お
ける1層4は、光励起によって生成されたキャリアが、
P+’1lj3と1層5のフェルミエネルギーの差によ
って生ずる電界によりドリフトする領域であり、通常4
000〜7000^の厚さがこのような用途において最
適とされている。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a photometric device for a camera, in particular a photometric device for a single-lens reflex camera using a photodiode with an amorphous hydrogenated or fluorinated silicon layer. [R view of the invention] Conventionally, amorphous hydrogenated silicon (hereinafter referred to as a-8i:)
i) or fluorinated silicon (hereinafter referred to as a-8i:F)'! ! - The photodiode used had a transparent electrode 2 made of ITO, SnO, etc. on a transparent substrate 1 as shown in FIG.
2 layers consisting of 3, a-8i indicating intrinsic semiconductor %Note: H
1 layer 4 consisting of (a-8i:F), n-type a-8i:
A structure in which a single layer 5 made of H(a-st:F);bh, a metal electrode 6 made of At or the like is stacked on J@, or a structure in which i(P)@3 on a metal substrate 7 as shown in FIG. 114.1 layer 5,
Structures in which transparent electrodes are laminated in 2t-order t order and structures using Schottky barriers have been proposed, and among these, the pin-type photodiode shown in Figures 5 and 6 is widely used in solar cells and optical sensors. The first layer 4 of the pin-type photodiode, into which light enters from the transparent electrode 2 side, has carriers generated by optical excitation.
This is a region that drifts due to the electric field caused by the difference in Fermi energy between P+'1lj3 and 1st layer 5, and is usually 4
A thickness of 000 to 7000^ is considered optimal for such applications.

ところでこのようなPinタイプの7ォトダイオードは
、 1)分光感&が比況tA’; Ef、に近く、可視光セ
ンサーとして用いる時、赤外カントフィルターが不必要
である。
By the way, such a Pin type 7 photodiode has the following characteristics: 1) The spectral sensitivity & is close to the ratio tA'; Ef, and when used as a visible light sensor, an infrared cant filter is unnecessary.

1i)i)の結果、カメラの側光に用いらnている赤外
カットフィルター付の結晶シリコンフォトダイオードよ
り感度が太さい。
1i) As a result of i), the sensitivity is greater than that of the crystalline silicon photodiode with an infrared cut filter, which is used for the side light of the camera.

jll)透明部材に形成可能で、またバターニングも8
易な薄膜である。
jll) Can be formed on transparent materials, and can also be patterned with 8
It is an easy thin film.

1■)結晶シリコンよりコストが安いっなどの精良から
、カメラの測光素子として用いる提案がなされている。
1) Due to its advantages such as being cheaper than crystalline silicon, it has been proposed to be used as a photometric element in cameras.

しで・しなからi)−の厚さが4000〜7000Aで
ある従来のPanタイプのa−8i :u(a−6i 
:F)フォトダイオードは、接合各号が犬さく、第7図
のような対収圧縮方式の測光回路では応答性が遅いため
、撮影前の測光のテークにより露光量k 老1+御する
記憶式測光方式に用いることは出来るものの、撮影と同
時に7ヤソタ幕や写真フィルム面刀・らの反射元金測光
して露光量を制御するダイレクト測光方式に用いること
が困難であった。すなわち、このような従来のフォトダ
イオードのi層の厚さは電力を効嘉よく取り出すために
最適化された厚さであり、第7図のような短絡光を流の
みを必要とする測光回路では必ずしも最適ではない。
Conventional Pan type a-8i: u(a-6i
:F) The photodiode has a memory type that controls the exposure amount by adjusting the photometry before taking a photo, since each junction of the photodiode is weak and the response is slow in the photometry circuit of the compression type shown in Figure 7. Although it can be used for photometry, it has been difficult to use it for direct photometry, which controls the amount of exposure by measuring the reflected light of a 7-point curtain or photographic film at the same time as shooting. In other words, the thickness of the i-layer of such a conventional photodiode is optimized for efficient extraction of power, and the thickness of the i-layer of such a conventional photodiode is optimized for efficient extraction of power. It's not necessarily optimal.

〔発明の目的〕[Purpose of the invention]

本発明はa−8i :)i又はa−8i:Fからなるフ
ォトダイオードの容量を小さくし応S社を著しく向上さ
せることKよシ、1眼レフレツクスカメラの記憶式測光
とタ゛イレクト測光を1つのフォトダイオードで兼用さ
せ、安価でしかもカメラの小型化を図ることがでさるカ
メラの測光装置を提供することを目的とするものである
The present invention reduces the capacity of a photodiode consisting of a-8i:)i or a-8i:F, and significantly improves the photometry of the O-S company. It is an object of the present invention to provide a photometry device for a camera that is inexpensive and can be miniaturized by using a single photodiode.

〔発明の概要〕[Summary of the invention]

本発明によるカメラの測光装置は、少なくとも1000
0Å以上の4さにアモルファス水素化又はフッ素化シリ
コン1層を形成したフォトダイオードで、撮影−面の測
光と写真フィルム面またはシャッター幕より反射される
光の測光を行なうようシでしたことを特徴とするもので
ある。
The camera photometry device according to the invention has at least 1000
A photodiode with a single layer of amorphous hydrogenated or fluorinated silicon formed on a 4-layer film with a diameter of 0 Å or more, and is characterized by being able to measure the light from the photographing surface and the light reflected from the photographic film surface or shutter curtain. That is.

〔発明の実施例〕[Embodiments of the invention]

以ド本発明を図面に示す実施例に基づいて詳細に説明す
る。
The present invention will now be described in detail based on embodiments shown in the drawings.

第1図は本発明による測光装置の一実施例を示す断面図
で、図中、8は撮影レンズ、9はハーフミジー又は一部
透過のパターンミラーからなるクイックリターンミラー
、10は小ミラー、11は測光光学系、12は測光素子
、13はピント板、14はペンタプリズム、15は接眼
レンズ、16は写真フィルム金示し、図示の如く配置さ
れている。
FIG. 1 is a sectional view showing an embodiment of the photometric device according to the present invention, in which 8 is a photographing lens, 9 is a quick return mirror consisting of a half-midgee or partially transparent pattern mirror, 10 is a small mirror, and 11 is a A photometric optical system, 12 is a photometric element, 13 is a focusing plate, 14 is a pentaprism, 15 is an eyepiece lens, and 16 is a photographic film, and is arranged as shown in the figure.

撮影レンズ8金透過した彼写体からの光束tは、撮影前
においてクイックリターンミラー9に到達し、一部の光
束tζが反射してピント板13、ペンタプリズム14お
よび接眼レンズ15に導かれるとともに、他の光束t、
が透過する。クイックリターンミラー9を透過した光束
1.は小ミラー10Vcより反射され、測光光学系11
と経て、1:l光女子12に入射1−1紀(H式価光し
τ、ン、善に測光情報が該測光素子1またら不図示の記
憶式測光回路に出力される。
The light beam t from the photographic object that passes through the photographic lens 8 gold reaches the quick return mirror 9 before photographing, and a part of the light beam tζ is reflected and guided to the focusing plate 13, pentaprism 14, and eyepiece lens 15. , other luminous flux t,
is transmitted. Light flux transmitted through quick return mirror 9 1. is reflected from the small mirror 10Vc, and the photometric optical system 11
Then, when the 1-1 period (H type light) is incident on the 1:1 optical element 12, photometric information is outputted from the photometric element 1 or to a memory-type photometric circuit (not shown).

一方、撮影中に訃いてはクイックリターンミラー9と小
ミラー10が図中破線で示す位オシて移動して、光束t
が写真フィルム16に到達し撮影が行なわれる。その際
、写真フィルム16で反射された光束4は、測光光学系
11を経て測光素子12に入射し、ダイレクト測光に必
要な測光情報が該測光素子12から不図示のダイレクト
側光回路に出力される。
On the other hand, if something happens during photography, the quick return mirror 9 and the small mirror 10 will move as shown by the broken lines in the figure, causing the luminous flux t.
reaches the photographic film 16 and photography is performed. At this time, the light beam 4 reflected by the photographic film 16 passes through the photometric optical system 11 and enters the photometric element 12, and the photometric information necessary for direct photometry is output from the photometric element 12 to a direct-side optical circuit (not shown). Ru.

測光素子12は、第2図に示すようK、透明基板1上に
、透明電極2、P型a−8i : )l 、Sl、ら々
る2層3、真性半導休符4!iを示すa−8i:f(か
らなるi層17、” W & Si ;)17)−らな
るn +75、AM冴からなる金属′電極6を順に横1
した悄造のPin型フォトダイオードであって、IJ 
i 層17の厚さtlooooAとしたものである。
As shown in FIG. 2, the photometric element 12 has a transparent electrode 2, a P-type a-8i: )l, Sl, 2 layers 3, and an intrinsic semiconducting rest 4 on a transparent substrate 1, as shown in FIG. a-8i: f (i layer 17 consisting of ``W &Si;) 17) - n +75, metal electrode 6 consisting of AM Sae, horizontally 1
This is a pin-type photodiode made by Yuzukuri, which has an IJ
The thickness of the i layer 17 is tlooooA.

本実施例に使用される測光素子(i層−の厚さ1000
0A)12と、従来のPin7ji 7 、t トダイ
オード(i層の厚さs o o o A )とを夫々通
常カミラの測光に用いる第7図に示す回路に接続し、こ
の回路からの出力直が、光照射されてから安定するまで
の時間、すなわち光に対する応答速度を測定した。なお
、照射光源として短絡光電流が5X10  A流れる照
度のYel low LED f用いた。その結果、1
層の厚さが10000Åの測光素子の応答速度は5.6
μ式、1層の厚さが500OAの測光素子の応答速度は
10μ禦であった。
Photometric element used in this example (thickness of i-layer: 1000
0A) 12, a conventional Pin7ji 7, and a t diode (i-layer thickness: s o o o A) are connected to the circuit shown in Fig. 7, which is normally used for Camilla photometry, and the direct output from this circuit is The time from irradiation to stabilization, that is, the response speed to light, was measured. As the irradiation light source, a yellow low LED f with an illuminance through which a short-circuit photocurrent of 5×10 A flows was used. As a result, 1
The response speed of a photometric element with a layer thickness of 10000 Å is 5.6
The response speed of a μ-type photometric element with a single layer thickness of 500 OA was 10 μm.

すなわち、i層の厚さを10000Åとすることにより
、応答速度は約2倍速くなった。
That is, by setting the thickness of the i-layer to 10,000 Å, the response speed became approximately twice as fast.

また、i層’k10000AとすることKよシ容を値数
外に分光感度特性も変るが、第4図に示すように大幅な
変化はない。
Further, the spectral sensitivity characteristics change in addition to the value of K due to the i-layer 'k10000A, but as shown in FIG. 4, there is no significant change.

以上・ホベた如く本実施例によれば、測光素子12のi
層を10000Åにして容量を小さくし、応答注會速く
しているので、撮影前における記憶副光と、撮影中((
おけるダイレクト測光とを同一のフォトダイオードで行
うことが可能となった。
As described above, according to this embodiment, the i of the photometric element 12 is
The layer is made 10,000 Å thick to reduce the capacitance and speed up the response time, so it reduces the memory side light before shooting and during shooting ((
This makes it possible to perform direct photometry using the same photodiode.

また、この種のフォトダイオードは、撞々の部材に形成
可能であるため、測光面を多数の測光領域に分割したシ
、徨々の形状に容易に形成でさるといったダイオードの
特長を生かすことかでさる。
In addition, since this type of photodiode can be formed on a continuous member, it is possible to take advantage of the features of diodes, such as dividing the photometric surface into a large number of photometric regions and easily forming them into various shapes. It's a monkey.

なお、測光素子12は、上記実施例に限定されるもので
はなく、第3図に示すようK、金属基板7上に2層3、
i 417、n im 5、透明電極2を順に積層した
構造であってもよく、またアモルファス水素化シリコy
(a−6t:H)に代えてアモルファスフッ素化シリコ
ン(a−8i:F)t−用いてもよい。
Note that the photometric element 12 is not limited to the above embodiment, and as shown in FIG.
It may be a structure in which i 417, n im 5, and transparent electrode 2 are laminated in order, or amorphous hydrogenated silicon y
(a-6t:H) may be replaced with amorphous fluorinated silicon (a-8i:F)t-.

また、P 、@ 3にa−8i:H二Cやnl−5に微
細晶化Stを用いてもよい。
Further, a-8i:H2C may be used for P and @3, and microcrystallized St may be used for nl-5.

〔発明の効果〕〔Effect of the invention〕

以上説明してさたようンζ本発明によれば、フォトダイ
オードのi rm全1000OA以上の4さとすること
でフォトダイオードの持つ容量が小さくなって応答性が
速くなるため記憶式副光とダイレクト測光とを同一のフ
ォトダイオードで行なうことが可能となるといった効果
が得られるう
According to the present invention, by setting the photodiode's Irm to 4, which is more than 1000OA in total, the capacity of the photodiode becomes smaller and the response becomes faster. This has the effect of making it possible to perform both photometry and photometry using the same photodiode.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による測光装置の一実施例を示す側面図
、第2図、第3図は本発明に用いたフォトダイオードの
断面図、第4図は分光感度特性を示す図表、第5図、第
6図は従来のフォトダイオードの断面図、第7図は対数
圧縮回路を示す回路図である。 8・・・撮影レンズ 9・・・クイックリターンミラー
10・・・小ミラー    11・・・測光光学系12
・・・測光素子    13・・・ピント板14・・・
ペンタプリズム 15・・・接眼レンズ16・・・写真
フィルム。 111図 第2図    第3図 第4図 這−1(nm) 第5図   第6図 第7図
FIG. 1 is a side view showing an embodiment of a photometric device according to the present invention, FIGS. 2 and 3 are cross-sectional views of a photodiode used in the present invention, FIG. 4 is a chart showing spectral sensitivity characteristics, and FIG. 6 is a sectional view of a conventional photodiode, and FIG. 7 is a circuit diagram showing a logarithmic compression circuit. 8...Photographing lens 9...Quick return mirror 10...Small mirror 11...Photometry optical system 12
...Photometering element 13...Focusing plate 14...
Pentaprism 15... Eyepiece 16... Photographic film. Figure 111 Figure 2 Figure 3 Figure 4 -1 (nm) Figure 5 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】[Claims] 少なくとも10000Å以上の厚さにアモルフアス水素
化又はフッ素化シリコンi層を形成したフォトダイオー
ドで、撮影画面の測光と、写真フィルム面またはシャッ
ター幕より反射される光の測光を行なうようにしたこと
を特徴とするカメラの測光装置。
A photodiode in which an amorphous hydrogenated or fluorinated silicon i-layer is formed to a thickness of at least 10,000 Å, and is capable of measuring the light of the photographic screen and the light reflected from the photographic film surface or the shutter curtain. Photometering device for cameras.
JP61099936A 1986-04-30 1986-04-30 Photometric apparatus of camera Pending JPS62257030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61099936A JPS62257030A (en) 1986-04-30 1986-04-30 Photometric apparatus of camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61099936A JPS62257030A (en) 1986-04-30 1986-04-30 Photometric apparatus of camera

Publications (1)

Publication Number Publication Date
JPS62257030A true JPS62257030A (en) 1987-11-09

Family

ID=14260603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61099936A Pending JPS62257030A (en) 1986-04-30 1986-04-30 Photometric apparatus of camera

Country Status (1)

Country Link
JP (1) JPS62257030A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01126583A (en) * 1987-11-11 1989-05-18 Hitachi Ltd Radiation detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01126583A (en) * 1987-11-11 1989-05-18 Hitachi Ltd Radiation detector

Similar Documents

Publication Publication Date Title
US20080055443A1 (en) Image pickup device including a solar cell and apparatus therefor
JPS63108771A (en) Electronic camera
US4593987A (en) Method and device for automatic exposure control by programs
US4034396A (en) Light sensor having good sensitivity to visible light
JPS62257030A (en) Photometric apparatus of camera
US4958185A (en) Photographing apparatus
JPS6173033A (en) Color exposure device
JP3281991B2 (en) Liquid crystal display
CN114018417A (en) Multi-region color temperature detection method and device
JP2018142838A (en) Imaging element, imaging device, and photograph device
US4005441A (en) Photometric device of through the lens type exposure meter in a single-lens reflex camera
US4682873A (en) Photometric device for camera
JP2825966B2 (en) Solid-state imaging device with micro lens
JP2006146081A (en) Ranging device and imaging apparatus
JPS6177375A (en) Color sensor
JPH0345588B2 (en)
JPS63501395A (en) Large area low capacitance photodiode and distance measuring device using it
JPH11121728A (en) Solid-state image pick-up device
JPH0545071B2 (en)
JPS58168039A (en) Photometric device for camera
JP2676742B2 (en) Light receiving element for camera photometry
JPS5922371A (en) Semiconductor photodetector and its manufacture
TW202230759A (en) Light condensing structure with enhanced photosensitive effect including a substrate, an embedded layer, a first electrode layer, a second electrode layer, a dielectric layer and an interconnect structure
JPS58111490A (en) Solid-state image pickup device
JPS6169042A (en) Photometric device of camera