JPS62257002A - Method for measuring displacement of rolled material in lateral direction - Google Patents

Method for measuring displacement of rolled material in lateral direction

Info

Publication number
JPS62257002A
JPS62257002A JP61100325A JP10032586A JPS62257002A JP S62257002 A JPS62257002 A JP S62257002A JP 61100325 A JP61100325 A JP 61100325A JP 10032586 A JP10032586 A JP 10032586A JP S62257002 A JPS62257002 A JP S62257002A
Authority
JP
Japan
Prior art keywords
rolled material
displacement
edge
width direction
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61100325A
Other languages
Japanese (ja)
Inventor
Kazuya Asano
一哉 浅野
Yuichiro Asano
浅野 有一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP61100325A priority Critical patent/JPS62257002A/en
Publication of JPS62257002A publication Critical patent/JPS62257002A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To calculate displacement in the lateral direction within a horizontal plane with good accuracy, by detecting the displacements of a rolled material in the lateral and vertical directions thereof by the projection of a slit beam and correcting the displacement in the lateral direction on the basis of the vertical direction. CONSTITUTION:A stri-like laser beam (slit beam) 6 is projected to the visual field 7 of a beam receiving system 10 from the beam projecting optical system 12 of a sensor head 4 at a constant angle. The image of the reflected beam 8 of the slit beam 6 obtained on a rolled material 1 is received by the beam receiving system 10 and an image pickup part 9 and the image receiving signal is processed by an image processor and the position of a cut part 13 by the rolling material edge 1A of the slit beam 6 is calculated to detect the position of the edge 1A. At the same time, the position of the slit beam 6 in the longitudinal direction of the rolled material 1 is calculated from the image receiving signal of the reflected beam 8 by the image processor and the displacement of the rolled material 1 in a vertical direction is detected from said position to correct the edge position to calculate the displacement of the rolled material in the lateral direction within a horizontal plane.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、圧延材の幅方向変位測定方法に係り、特に、
熱間仕上圧延における圧延材の幅方向変位口を測定して
、この測定値により圧延材のオフセンター社(ロール幅
方向中心線と圧延材中心線の差)を零にするべく圧下1
11 allする際に用いるのに好適な、圧延材のエツ
ジを見込む位置に配設された受光系を有する変位検出手
段を用いて、圧延材の幅方向変位を測定するようにし°
た圧延材の幅方向変位測定方法の改良に関する。
The present invention relates to a method for measuring displacement in the width direction of a rolled material, and in particular,
The displacement in the width direction of the rolled material during hot finish rolling is measured, and based on this measurement value, the rolling distance is adjusted to 1 to reduce the off-center distance (difference between the center line in the width direction of the roll and the center line of the rolled material) of the rolled material to zero.
11. The displacement in the width direction of the rolled material is measured using a displacement detection means having a light receiving system arranged at a position looking into the edge of the rolled material, which is suitable for use when rolling the rolled material.
This invention relates to an improvement in a method for measuring displacement in the width direction of rolled material.

【従来の技術1 一般に、板材の圧延においては、圧延材出側において曲
りのない板を出すことが重要な要件である。しかしなが
ら、実際の圧延においては、圧延go−ルfS1度の左
右の差、圧延材の左右の温度差による硬度差、入側板の
板厚の左右の差等の原因により、第10図に示す如く、
圧延機の圧延ロール2の出側で圧延11の曲り(キャン
バと称する)Aを発生することがある。 このキャンバAを修正する方法としては、圧延機の出側
に、例えば複数の幅方向変位計からなるキャンバ測定器
を設け、このキャンバ測定器でキャンバ恒を測定して、
次スタンドのパスでO−ル開度を調整する方法が最も有
効である。しかしながら、特に熱間連続圧延機において
は、スタンド間距離が短いため、スタンド間でキャンバ
足を測定するのが困難であった。 このような問題点を解決する方法として、出願人は、既
に特開昭59−174211で、圧延材の板幅に応じて
開度が調整される圧延様サイドガイドの、圧延材のエツ
ジを見込む位置に受光系を配設し、この受光系に一端が
接続されたファイバスコープの他端に伝送される画像か
ら、圧延材の幅方向変位を測定する方法を提案している
。この方法は、サイドガイドに設置した受光系及び画惟
伝返ファイバにより、圧延材エツジのii!i像のみを
受像し、画像処理によって圧延材エツジ位置を検出1“
るものである。 [発明が解決しようとする問題点] しかしながら、特開昭59−174211で提案したよ
うな方法では、圧延材の上下変動に対する補正礪能がな
いため、第11図に示す如く、圧延材幅方向の実際の変
位が零であっても、圧延材1の上下方向変位が例えば1
1+、h2と変動した場合には、レンズ16の結像面1
7では圧延材エツジ位置がe 、、e 2と変動し、あ
たかも幅方向変位が変動したように検出されてしまうと
いう問題点を有していた。なお、図中7は受光系視野を
示づ。 又、このように圧延材の自発光によりエツジ位置を検出
づる方法を熱間仕上圧延の、例えば後段スタンドに適用
する場合、圧延材は特にエツジ部において冷却率が大き
いためその板温が低下し易く、従って、背景とエツジ部
との輝度の比が小さくなるのに伴い、背景と圧延材との
境界が不明瞭となり、エツジ部の検出精度が低下すると
いう問題点を有していた。 【発明の目的】 本発明は、11を記従来の問題点を解消するべくなされ
たもので、圧延材の上下方向変位や圧延材エツジ部の板
温低下にかかわらず、水平面内の幅方向変位を粘度よく
求めることができる圧延材の幅方向変位測定方法を提供
することを目的とする。 [問題点を解決するための手段] 本発明は、圧延材のエツジを見込む位置に配設された受
光系を有する変位検出手段を用いて、圧延材の幅方向変
位を測定するようにした圧延材の幅方向変位測定方法に
おいて、第1図にその要旨を示す如く、前記変位検出手
段の受光系視野内にスリット光を一定角度で投射し、投
射されたスリット光を圧延材のエツジが切断する位置か
ら、該エツジの位置を検出し、検出されたエツジ位置か
ら、圧延材の幅方向変位を検出すると共に、投射された
スリット光の圧延材長さ方向の位置から、該圧延材の上
下方向変位を検出し、検出された上下方向変位により、
前記幅方向変位を補正して、水平面内の幅方向変位を求
めるようにして、前記目的を達成したものである。
[Prior art 1] Generally, in rolling a plate, it is an important requirement to produce a plate without bending at the exit side of the rolled material. However, in actual rolling, as shown in Fig. 10, due to causes such as a difference in the rolling go-point fS1 degree between the left and right sides, a difference in hardness due to a temperature difference between the left and right sides of the rolled material, and a difference in the thickness of the entry side plate between the left and right sides. ,
Curvature (referred to as camber) A of the rolling roll 11 may occur on the exit side of the rolling roll 2 of the rolling mill. As a method for correcting this camber A, a camber measuring device consisting of, for example, a plurality of width direction displacement meters is installed on the exit side of the rolling mill, and the camber constant is measured with this camber measuring device.
The most effective method is to adjust the O-hole opening degree during the next stand pass. However, especially in continuous hot rolling mills, it has been difficult to measure the camber foot between the stands because the distance between the stands is short. As a method to solve such problems, the applicant has already proposed in Japanese Patent Application Laid-Open No. 59-174211 the edge of the rolled material of a rolling-like side guide whose opening degree is adjusted according to the width of the rolled material. We have proposed a method in which a light-receiving system is disposed at a position, and the displacement in the width direction of a rolled material is measured from an image transmitted to the other end of a fiberscope, one end of which is connected to the light-receiving system. This method uses a light-receiving system installed on the side guide and a picture return fiber to detect the edges of the rolled material. Receives only the i-image and detects the edge position of the rolled material through image processing1"
It is something that [Problems to be Solved by the Invention] However, the method proposed in JP-A-59-174211 does not have the ability to correct vertical fluctuations in the rolled material, so as shown in FIG. Even if the actual displacement of the rolled material 1 is zero, the vertical displacement of the rolled material 1 is, for example, 1.
1+, h2, the imaging plane 1 of the lens 16
7 had a problem in that the edge position of the rolled material fluctuated from e 2 to e 2 and was detected as if the displacement in the width direction had fluctuated. Note that 7 in the figure indicates the field of view of the light receiving system. Furthermore, when applying this method of detecting the edge position by self-luminescence of the rolled material to a post-stand during hot finishing rolling, for example, the cooling rate of the rolled material is particularly high at the edges, so the plate temperature decreases. Therefore, as the ratio of brightness between the background and the edge portion becomes smaller, the boundary between the background and the rolled material becomes unclear, resulting in a problem in that the detection accuracy of the edge portion decreases. Purpose of the Invention The present invention has been made in order to solve the problems of the prior art described in item 11. Regardless of the vertical displacement of the rolled material or the decrease in plate temperature at the edge of the rolled material, the width direction displacement in the horizontal plane An object of the present invention is to provide a method for measuring displacement in the width direction of a rolled material, which can determine the displacement in the width direction of a rolled material with good viscosity. [Means for Solving the Problems] The present invention provides a rolling method that measures the displacement in the width direction of a rolled material using a displacement detection means having a light receiving system disposed at a position looking into the edge of the rolled material. In the method for measuring displacement in the width direction of a material, as shown in FIG. The position of the edge is detected from the position where the edge is located, and the displacement in the width direction of the rolled material is detected from the detected edge position. Detects directional displacement, and detects vertical displacement.
The above object is achieved by correcting the width direction displacement and determining the width direction displacement in the horizontal plane.

【作用] 本発明においては、圧延材のエツジを見込む位置に配設
された受光系を有する変位検出手段を用いて、圧延材の
幅方向変位を測定するに際し、前記変位検出手段の受光
系視野内にスリット光を−。 定角度で投1)J L、、投射されたスリット光を圧延
材のエツジが切断する位置から、該エツジの位置を検出
し、検出されたエツジ位置から、圧延材の幅方向変位を
検出すると共に、投射されたスリット光の圧延材長さ方
向の位置から、前記圧延材の上下方1〜変位を検出し、
検出された上下方向変位により前記幅方向変位を補正し
て水平面内の幅方向変位を求める。従って、圧延材の上
下方向変位やエツジ部における板温の低下にかかわらず
、水平面内の幅方向変位を正確に求めることができる。 【実施PA】 以下、本発明に係る圧延材の幅方向変位測定方法の実施
例について詳細に説明する。 この実施例は、第2図乃至第4図に示されるように、圧
延材1の板幅に応じてその開度が調整される圧延機サイ
ドガイド3に近接して、圧延材エツジ1Aを見込む位け
に配設された受光用光学系(受光系)10を有する圧延
材の幅方向変位測定装置である。 この幅方向変位測定装置には、第4図に示されるように
、レーザを発光する、例えば半導体レーザからなるレー
ザ発光装置11と、発光されたレーザを帯状のレーザ光
(スリット光)6とする投光用光学系12と、圧延材1
上に投射された前記スリット光6の反射光8を受光する
前記受光系10と、受光された反射光8を受縁する、例
えばCODカメラ等からなる@像部9と、が一体化され
たセンサヘッド4が備えられると共に、前記waI&部
9で受像された受画信号により、前記スリット光6の画
像信号を作成する画像処理装置5が備えられる。 以下、実施例の作用について説明する。 まず、センサヘッド4の投光用光学系12から受光系1
0の視野7内に帯状のレーザ光(スリット光)6を一定
角で投射する。そして、圧延材1上に得られる前記スリ
ット光6の反射光8を前記受光系10及び搬椴部9で受
像し、受像信号を画ゆ処理装置5により処理することに
より、前記スリット光6の圧延材エツジ1Aによる切断
部13の画像内における位置を求め、求められた切断部
13の位置により画像内におけるエツジ1Aの位置を検
出する。又それと同時に、画像処理装置5で反射光8の
受働信号から前記スリット光6の圧延I41長さ方向の
位置から、該圧延材1の上下方向変位を検出して、前記
検出されたエツジ位置を補正することにより、前記圧延
材1の水平面内の幅方向変位を求めることができる。 以上の測定手順を更に詳しく説明すると以下の如くとな
る。 即ら、前記[1部9で受像される画像は、第5図に示す
ように、圧延材エツジ1Aを境界とする明暗及びスリッ
ト光6の反射光8を含む明暗のコントラスト画像となる
。 従って、前記藏像部9に接続された画像処理装@5にお
いて、まず、スリット光60反射光8の圧延材長さ方向
の位置を画像のV方向の11度分布より求め、次いでス
リット光位蹟における画像のX方向の輝度分布により、
スリット光6がエツジ1Aにより切断されている切断部
13を求めることができる。なお、以下の説明において
は、この画像上におけるX軸(圧延材幅方向)の中心C
Xから前記切断部13までの距離をX%V軸(圧延材長
さ方向)の中心CYから該切断部13までの距離をYと
する。又、■は画像における、V軸の中心CYから外縁
までの距離、ト(は、同じくx軸の中心Cxから外縁ま
での距離である。 この時のスリット光6、受光系視野7、及び圧延材1の
位置関係は板幅方向から見ると第6図、長さ方向から見
ると第7図に示す如くとなる。従って、これらの位置関
係及び画像からの測定値を用いて、次式(1)により、
受光系視野中心15からの圧延材1の基準高さtloに
対する上下方向変位Δhを求めることができる。 Δh=(C−Y−tanβ) / ((V tana+Ytanβ) −tanα)・
・・・・・・・・(1) ここで、Cは第6図に示すように受光系視野7の中心1
5からその中心15と同じ高さにおけるレーザ光までの
圧延材良さ方向の[1、βは受光系視野7の外縁が画像
中心線CYに対してなり圧延材長手方向の広がり角、α
はスリット光6が鉛直方向に対してなす圧延材長さ方向
の角度である。 なお、実施例では受光系視野7の中心線は鉛直方向に一
致するものとしている。又、第6図の符号14は圧延材
1に対する基準位置、γは前記受光系視野7の圧延材幅
方向の広がり角である。 (1)式によって得られた上下方向変位Δhを考慮して
、次式により、受光系視野中心15の位置から圧延材エ
ツジ1Aまでの幅方向距1!ii、4を次式(2)で算
出すれば、圧延材のエツジ位ff1IAを定量化するこ
とができる。 J2= (C−X・V tan7) / (H−(V tanα+Y tanβ”) )−・
−(2>圧延材1の板幅が一定の場合は、算出された幅
方向距離ぶを圧延材の幅方向変位と考えることができる
。 今、第8図に示ず如く、圧延機の両サイドガイド3に第
2図乃至第4図に示した測定装置を設置し、片側のエツ
ジ位置1Aと受光系中心との変位β1、同様に反対側の
エツジ位置1Aと受光系中心との変位℃2を前述の方法
で(1)、(2)式を用いて求めれば、求められた変位
J11、J12及び両受光系中心の距離りを用いて、次
式から圧延材1の板幅W及び幅方向変位Tを求めること
ができる。 W=L−<Jl+十β2)   ・・・・・・・・・(
3)T= (1/2)・(J21−12) ・・・・・
・(4)このようにづれば、板幅の変化する圧延材1で
あっても非接触で板幅W及び幅方向変位Tを精度良く求
めることができる。 次に、本発明方法と従来方法を比較するため、オフライ
ンの実験設備により、幅1000n、板厚1.6n、長
さ18000uの冷鋼板の幅方向変位を測定した結果を
第9図に示す。本発明によリレーザ光によるスリット光
を該冷鋼板に照射して、その反射位置における上下方向
変位を検出し、検出上下方向変位に基づき幅方向変位を
補正した時の幅方向変位測定誤差は、第9図に実線Bで
示す如くであった。又、同じ〈従来法によって測定した
時の幅方向変位誤差は、第9図に破線りで示す如くであ
った。 図から明らかな如く、従来方法を用いて、鋼板の上下方
向変位を補正しない場合は誤差が大ぎく、十分な粘度で
蛇行h1が測定できないのに対し、本発明方法により測
定した場合は誤差が非常に小さくなり、その有用性は明
らかである。 なお、前記実施例においては、受光系を圧延材のエツジ
を見込む位置に配設するため、圧延材のサイドガイドに
近接してレーザ用光学系と一体とされたセンサヘッドを
配設していたが、配設位置はサイドガイドに近接する場
所に限定されるものではなく、圧延材のエツジを見込む
位置であれば他の位置でもよい。又、この際スリット光
を投射する一光学系と受光系を一体としたセンサヘッド
を設けていたが、スリット光を投射する光学系と受光系
を一体とすることに本発明は限定されるものではなく、
それぞれ別体として適宜の位置に配役できることは明ら
かである。 又、前記実施例においては、スリット光として帯状のレ
ーザ光を例示していたが、スリット光はこのようなレー
ザ光に限定されるものではなく、その反射光から圧延材
のエツジ位置及び上下方向変位を検出できるスリット光
であれば、他の光源から照射されるスリット光を用いる
ことができる。
[Function] In the present invention, when measuring the width direction displacement of a rolled material using a displacement detection means having a light receiving system disposed at a position looking into the edge of the rolled material, the light receiving system field of view of the displacement detection means is A slit light inside. Throw at a constant angle 1) J L, Detect the position of the edge of the rolled material from the position where the edge of the rolled material cuts the projected slit light, and detect the widthwise displacement of the rolled material from the detected edge position. At the same time, detecting the vertical displacement of the rolled material from the position of the projected slit light in the longitudinal direction of the rolled material,
The width direction displacement in the horizontal plane is determined by correcting the width direction displacement using the detected vertical direction displacement. Therefore, the width direction displacement in the horizontal plane can be accurately determined regardless of the vertical displacement of the rolled material or the decrease in plate temperature at the edge portion. [Implementation PA] Hereinafter, an example of the method for measuring width direction displacement of a rolled material according to the present invention will be described in detail. In this embodiment, as shown in FIGS. 2 to 4, a rolled material edge 1A is located close to a rolling mill side guide 3 whose opening degree is adjusted according to the width of the rolled material 1. This is an apparatus for measuring widthwise displacement of a rolled material having a light receiving optical system (light receiving system) 10 disposed at a position. As shown in FIG. 4, this width direction displacement measuring device includes a laser emitting device 11 that emits laser light and is made of, for example, a semiconductor laser, and the emitted laser beam is converted into a band-shaped laser beam (slit light) 6. Light projection optical system 12 and rolled material 1
The light receiving system 10, which receives the reflected light 8 of the slit light 6 projected above, and the image section 9, which receives the received reflected light 8 and is made of, for example, a COD camera, are integrated. A sensor head 4 is provided, and an image processing device 5 is provided which creates an image signal of the slit light 6 based on the received image signal received by the waI& section 9. The effects of the embodiment will be explained below. First, from the light emitting optical system 12 of the sensor head 4 to the light receiving system 1
A band-shaped laser beam (slit beam) 6 is projected at a constant angle within a field of view 7 of 0. Then, the reflected light 8 of the slit light 6 obtained on the rolled material 1 is received by the light receiving system 10 and the carrier section 9, and the received image signal is processed by the image processing device 5. The position of the cut portion 13 by the rolled material edge 1A in the image is determined, and the position of the edge 1A in the image is detected from the determined position of the cut portion 13. At the same time, the image processing device 5 detects the vertical displacement of the rolled material 1 from the position of the slit light 6 in the longitudinal direction of the rolled I41 from the active signal of the reflected light 8, and determines the detected edge position. By correcting, the width direction displacement in the horizontal plane of the rolled material 1 can be determined. The above measurement procedure will be explained in more detail as follows. That is, as shown in FIG. 5, the image received by the [1 section 9] is a contrast image of brightness and darkness bounded by the rolled material edge 1A and including the reflected light 8 of the slit light 6. Therefore, in the image processing device @5 connected to the image processing unit 9, first, the position of the slit light 60 and the reflected light 8 in the longitudinal direction of the rolled material is determined from the 11 degree distribution in the V direction of the image, and then the slit light position is Due to the brightness distribution in the X direction of the image in the grass,
The cut portion 13 where the slit light 6 is cut by the edge 1A can be found. In addition, in the following explanation, the center C of the X axis (rolled material width direction) on this image
Let the distance from X to the cut section 13 be X%. Let the distance from the center CY of the V axis (lengthwise direction of the rolled material) to the cut section 13 be Y. Also, ■ is the distance from the center CY of the V axis to the outer edge in the image, and g is the distance from the center Cx of the x axis to the outer edge. The positional relationship of the material 1 is as shown in Fig. 6 when viewed from the width direction, and Fig. 7 when viewed from the length direction. Therefore, using these positional relationships and the measured values from the image, the following equation ( According to 1),
The vertical displacement Δh of the rolled material 1 from the center 15 of the field of view of the light receiving system with respect to the reference height tlo can be determined. Δh=(C-Y-tanβ)/((V tana+Ytanβ)-tanα)・
・・・・・・・・・(1) Here, C is the center 1 of the field of view 7 of the light receiving system as shown in FIG.
5 to the laser beam at the same height as the center 15 in the rolled material quality direction [1, β is the spread angle in the longitudinal direction of the rolled material when the outer edge of the light receiving system field of view 7 is relative to the image center line CY, α
is the angle in the longitudinal direction of the rolled material that the slit light 6 makes with respect to the vertical direction. In the embodiment, it is assumed that the center line of the field of view 7 of the light receiving system coincides with the vertical direction. Further, reference numeral 14 in FIG. 6 is a reference position with respect to the rolled material 1, and .gamma. is the spread angle of the field of view 7 of the light receiving system in the width direction of the rolled material. Considering the vertical displacement Δh obtained by equation (1), the following equation is used to calculate the width direction distance 1! from the position of the center of field of view of the light receiving system 15 to the rolled material edge 1A! By calculating ii and 4 using the following equation (2), the edge position ff1IA of the rolled material can be quantified. J2= (C-X・V tan7)/(H-(V tanα+Y tanβ”))−・
-(2>If the plate width of the rolled material 1 is constant, the calculated widthwise distance can be considered as the widthwise displacement of the rolled material. The measuring device shown in FIGS. 2 to 4 is installed on the side guide 3, and the displacement β1 between the edge position 1A on one side and the center of the light receiving system, and the displacement ℃ between the edge position 1A on the opposite side and the center of the light receiving system are similarly measured. 2 using equations (1) and (2) using the method described above, the plate width W of rolled material 1 and The width direction displacement T can be determined. W=L−<Jl+10β2) ・・・・・・・・・(
3) T= (1/2)・(J21-12)...
- (4) According to this method, even for the rolled material 1 whose plate width changes, the plate width W and width direction displacement T can be determined with high precision without contact. Next, in order to compare the method of the present invention and the conventional method, Fig. 9 shows the results of measuring the widthwise displacement of a cold steel plate having a width of 1000n, a thickness of 1.6n, and a length of 18000u using off-line experimental equipment. According to the present invention, when the cold steel plate is irradiated with a slit beam of laser light, the vertical displacement at the reflection position is detected, and the widthwise displacement is corrected based on the detected vertical displacement, the widthwise displacement measurement error is as follows: It was as shown by the solid line B in FIG. Furthermore, the width direction displacement error when measured by the same conventional method was as shown by the broken line in FIG. As is clear from the figure, when the conventional method is used and the vertical displacement of the steel plate is not corrected, the error is large and meandering h1 cannot be measured with sufficient viscosity, whereas when measured using the method of the present invention, there is no error. It becomes very small and its usefulness is obvious. In the above embodiment, in order to arrange the light receiving system at a position that looks into the edge of the rolled material, the sensor head integrated with the laser optical system was arranged close to the side guide of the rolled material. However, the arrangement position is not limited to a place close to the side guide, but may be any other position as long as the edge of the rolled material can be seen. Further, in this case, a sensor head was provided in which an optical system for projecting slit light and a light receiving system were integrated, but the present invention is limited to integrating an optical system for projecting slit light and a light receiving system. not,
It is clear that they can be cast in appropriate positions as separate entities. In addition, in the above embodiment, a band-shaped laser beam was used as an example of the slit light, but the slit light is not limited to such a laser beam, and the edge position and vertical direction of the rolled material can be determined from the reflected light. Slit light emitted from another light source can be used as long as the slit light can detect displacement.

【発明の効果】【Effect of the invention】

以上説明した辿り、本発明によれば、圧延材の上下方向
変位にかかりらザ、水平面内の幅方向変位を精度良く求
めることができる。従って、本発明により求められた幅
方向変位を用いれば、圧延材のオフセンタmを零にする
圧下制御等を精度良く行うことができる等の優れた効果
を有する。
As explained above, according to the present invention, it is possible to accurately determine the width direction displacement in the horizontal plane based on the vertical displacement of the rolled material. Therefore, by using the widthwise displacement obtained according to the present invention, it is possible to have excellent effects such as the ability to accurately perform rolling control and the like to bring the off-center m of the rolled material to zero.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る圧延材の幅方向変位測定方法の
要旨を示ず流れ図、第2図は、本発明の実施例である、
帯状のレーザ光の画像上における位置から圧延材の上下
方向変位を検出するようにされた幅方向変位測定装置の
構成及び設置状態を示す平面図、第3図は、同じく側面
図、第4図は、前記実施例の投受光系の配置構成を示す
斜視図、第5図は、前記実施例の装置における受像画像
の例を示す線図、第6図は、前記装置による高さ方向変
位の測定原理を説明するための側面図、第7図は、同じ
く正面図、第8図は、前記装置を用いた幅方向位2測定
の原理を説明するための平面図、第9図は、本発明方法
と従来方法により測定した幅方向変位測定誤差の例を比
較して示す線図、第10図は、圧延時に発生するキャン
バを説明するための平面図、第11図は、圧延材のエツ
ジを見込む位置に配設された受光系を有する変位検出手
段における、上下方向変位による幅方向変位測定誤差の
発生状況を示ず正面図である。 1・・・圧延材1 1A・・・圧延材エツジ、 4・・・センサヘッド、 5・・・画像処理装置、 6・・・帯状のレーザ光(スリット光)、7・・・受光
系視野、 8・・・反射光、 9・・・踊会部、 10・・・受光用光学系(受光系)、 12・・・投光用光学系、 13・・・スリット光のエツジによる切断部、14・・
・圧延材の1rJ1位置、 15・・・受光系視野の中心、 16・・・受光系レンズ、 17・・・受光系レンズの結像面。
FIG. 1 is a flowchart without showing the gist of the method for measuring widthwise displacement of a rolled material according to the present invention, and FIG. 2 is an example of the present invention.
FIG. 3 is a plan view showing the configuration and installation state of a width direction displacement measuring device that detects the vertical displacement of a rolled material from the position on the image of the belt-shaped laser beam, and FIG. 4 is a side view as well. is a perspective view showing the arrangement of the light emitting and receiving system of the embodiment, FIG. 5 is a diagram showing an example of a received image in the device of the embodiment, and FIG. 6 is a diagram showing the displacement in the height direction by the device of the embodiment. FIG. 7 is a side view for explaining the measurement principle; FIG. 8 is a plan view for explaining the principle of measuring two width directions using the device; A diagram comparing examples of width direction displacement measurement errors measured by the invention method and the conventional method. FIG. 10 is a plan view for explaining camber that occurs during rolling. FIG. 11 is a diagram showing the edge of the rolled material. FIG. 7 is a front view showing the occurrence of a width direction displacement measurement error due to vertical displacement in a displacement detection means having a light receiving system disposed at a position looking forward; FIG. DESCRIPTION OF SYMBOLS 1... Rolled material 1 1A... Rolled material edge, 4... Sensor head, 5... Image processing device, 6... Band-shaped laser beam (slit light), 7... Light receiving system field of view , 8... Reflected light, 9... Dance part, 10... Light receiving optical system (light receiving system), 12... Light projecting optical system, 13... Cutting part by edge of slit light , 14...
- 1rJ1 position of the rolled material, 15... Center of field of view of the light receiving system, 16... Light receiving system lens, 17... Image forming surface of the light receiving system lens.

Claims (1)

【特許請求の範囲】[Claims] (1)圧延材のエッジを見込む位置に配設された受光系
を有する変位検出手段を用いて、圧延材の幅方向変位を
測定するようにした圧延材の幅方向変位測定方法におい
て、 前記変位検出手段の受光系視野内にスリット光を一定角
度で投射し、 投射されたスリット光を圧延材のエッジが切断する位置
から、該エッジの位置を検出し、 検出されたエッジ位置から、圧延材の幅方向変位を検出
すると共に、 投射されたスリット光の圧延材長さ方向の位置から、該
圧延材の上下方向変位を検出し、 検出された上下方向変位により、前記幅方向変位を補正
して、水平面内の幅方向変位を求めることを特徴とする
圧延材の幅方向変位測定方法。
(1) In a method for measuring widthwise displacement of a rolled material, the displacement in the widthwise direction of the rolled material is measured using a displacement detection means having a light receiving system arranged at a position looking into the edge of the rolled material, Projecting a slit light into the field of view of the light receiving system of the detection means at a constant angle, detecting the position of the edge of the rolled material from the position where the edge of the rolled material cuts the projected slit light, and detecting the position of the edge of the rolled material from the detected edge position. Detecting the displacement in the width direction of the rolled material, detecting the displacement in the vertical direction of the rolled material from the position of the projected slit light in the longitudinal direction of the rolled material, and correcting the displacement in the width direction based on the detected vertical displacement. 1. A method for measuring displacement in the width direction of a rolled material, characterized in that the displacement in the width direction in a horizontal plane is determined.
JP61100325A 1986-04-30 1986-04-30 Method for measuring displacement of rolled material in lateral direction Pending JPS62257002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61100325A JPS62257002A (en) 1986-04-30 1986-04-30 Method for measuring displacement of rolled material in lateral direction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61100325A JPS62257002A (en) 1986-04-30 1986-04-30 Method for measuring displacement of rolled material in lateral direction

Publications (1)

Publication Number Publication Date
JPS62257002A true JPS62257002A (en) 1987-11-09

Family

ID=14271018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61100325A Pending JPS62257002A (en) 1986-04-30 1986-04-30 Method for measuring displacement of rolled material in lateral direction

Country Status (1)

Country Link
JP (1) JPS62257002A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001020253A1 (en) * 1999-09-12 2001-03-22 Alphatech Co., Ltd. Method and apparatus for searching for object with speckle pattern light

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5455468A (en) * 1977-10-12 1979-05-02 Sumitomo Metal Ind Method of measuring size and shape of large shape steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5455468A (en) * 1977-10-12 1979-05-02 Sumitomo Metal Ind Method of measuring size and shape of large shape steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001020253A1 (en) * 1999-09-12 2001-03-22 Alphatech Co., Ltd. Method and apparatus for searching for object with speckle pattern light

Similar Documents

Publication Publication Date Title
US5129010A (en) System for measuring shapes and dimensions of gaps and flushnesses on three dimensional surfaces of objects
EP2492634B1 (en) Method of measuring flatness of sheet and method of manufacturing steel sheet using same
US20050089210A1 (en) Flatness measurement system for metal strip
KR100856276B1 (en) Detecting device for thickness of rolled material
JPS62257002A (en) Method for measuring displacement of rolled material in lateral direction
JP2009109355A (en) Apparatus and method for distance measurement, and apparatus for thickness measurement using distance measurement apparatus
JPS5822903A (en) Rolling monitoring device of plate material
WO1985004245A1 (en) Optical article dimension measuring system
JP2966681B2 (en) A method of detecting the position of a plate using a TV camera
JP3132207B2 (en) Method and apparatus for detecting shape of running strip and rolling apparatus
KR0129054B1 (en) Measuring method and apparatus for plate transformation of steel plate
JPH0370166B2 (en)
JPH02254303A (en) Detector for strip-shaped material
JPH0117768B2 (en)
JPS63120205A (en) Inclination moire type shape measuring method
JPH05296728A (en) Breadth measurement method for steel plate
JP3149875B2 (en) Hot rolled sheet width control method
JP3705872B2 (en) Method and apparatus for detecting the amount of meander of a rolled sheet
JP2000009435A (en) Plate edge position detecting device, method for measuring plate width, and method for measuring meandering amount of plate
JPH07218227A (en) Method and apparatus for measuring sectional shape
JPH04160304A (en) Detecting apparatus of warp in widthwise direction of plate
JPH01224615A (en) Plate curvature detecting device
JPH04167911A (en) Device for controlling plate bending in hot roughing mill
JPH06331345A (en) Strip-shaped body shape measuring instrument
TW202405408A (en) Device and method for detecting wavy defect of edge of steel band