JPS6225693B2 - - Google Patents

Info

Publication number
JPS6225693B2
JPS6225693B2 JP9998982A JP9998982A JPS6225693B2 JP S6225693 B2 JPS6225693 B2 JP S6225693B2 JP 9998982 A JP9998982 A JP 9998982A JP 9998982 A JP9998982 A JP 9998982A JP S6225693 B2 JPS6225693 B2 JP S6225693B2
Authority
JP
Japan
Prior art keywords
resin
weight
graphite
conductive
black
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9998982A
Other languages
Japanese (ja)
Other versions
JPS58218703A (en
Inventor
Koji Nakase
Satoru Ookita
Takehiko Watanabe
Nobuhiko Kamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP9998982A priority Critical patent/JPS58218703A/en
Publication of JPS58218703A publication Critical patent/JPS58218703A/en
Publication of JPS6225693B2 publication Critical patent/JPS6225693B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、高圧ケーブル、通信ケーブル等の
電線関係の用途、燃料タンク、電子部品、包装材
料、自動車部品等のプラスチツク関係の用途、ホ
ース、ベルト、安全靴、床材、スイツチング素
子、イグニツシヨンケーブル、除電ロール等のゴ
ム関係の用途あるいは電極関係の用途等におい
て、今日広範囲に利用されている導電性樹脂組成
物に関する。 〔従来の技術〕 従来より、この種の導電性樹脂組成物として
は、カーボンブラツクや黒鉛等の導電性を有する
固体粉末を樹脂中に混練したものが知られている
が、体積固有抵抗値105Ωcm以下の用途では、例
えばポリエチレン中にカーボンブラツクを混練し
たものはそのままでは押出成型や射出成型の際に
成型が困難であり、ゴム状物質を添加してその混
練性や成型性を改善しており、物性の低下は避け
られない。 そこで、近年、このような導電性樹脂組成物に
配合する固体粉末としてカーボンブラツクの1種
であるケツチエンブラツクが開発され、他のカー
ボンブラツク、例えばアセチレンブラツク、フア
ーネスブラツク、ランプブラツク、サーマルブラ
ツク、チヤンネルブラツク、ロールブラツク、デ
イスクブラツク等と比較して非常に優れた導電性
を発揮し、低添加量で優れた導電性材料を与え、
しかも、混練時における導電性の低下が少ないと
いう特長を有する。そして、今日では、高い導電
性が要求される分野においては、このケツチエン
ブラツクが導電性樹脂組成物に使用する導電性固
体粉末としてその主流を占めている。 また、導電性固体粉末として40〜80重量%のカ
ーボンブラツクを含有するカーボンブラツクとグ
ラフアイトの混合物を使用し、この混合物を熱可
塑性樹脂に対して35〜85重量%の割合で使用する
ことにより、優れた導電性物質を得ることも提案
されている(特開昭第48―4989号公報)。 〔発明が解決しようとする問題点〕 しかしながら、ケツチエンブラツクは他のカー
ボンブラツクに比べて極めて高価であり、また、
樹脂組成物の導電性を向上させる目的でこのケツ
チエンブラツクの配合割合を高くすると、製品コ
ストが高くなるばかりでなく、得られる樹脂組成
物の混練性や成型性が低下し、例えばケツチエン
ブラツクのみを使用した場合には、バンバリー型
ミキサーを用いてポリエチレン樹脂に練り込むこ
とができるのは約25重量%が限度とされており、
この程度の添加量では、高い導電性が要求される
分野において使用される導電性樹脂組成物として
はその導電性が満足し得るものではなかつた。 また、導電性固体粉末としてカーボンブラツク
とグラフアイトの混合物を使用した導電性樹脂組
成物においても、これらカーボンブラツクやグラ
フアイトを単独で使用する場合に比べれば、機械
的強度を低下させることなく熱可塑性樹脂中に配
合し得る導電性固体粉末の割合が増大し、それだ
け導電性を向上させることができるものである
が、反面、熱可塑性樹脂とこれら導電性固体粉末
との間のなじみが悪く、両者を混練する際におけ
る混練性や、得られた樹脂組成物を成型する際の
成型性が悪く、混練時や成型時には可塑剤や溶剤
を使用してペーストを形成し、成型の際あるいは
成型後に脱可塑剤や溶剤除去を行わなければなら
ず、混練時や成型時の作業性が悪いという問題が
ある。 〔問題点を解決するための手段〕 本発明は、かかる観点に鑑みて創案されたもの
で、単に導電性に優れているというだけでなく、
物性の低下を来たすことがなく、しかも、混練性
や成型性に優れ、また、製品コストも安価である
導電性樹脂組成物を提供するものである。 すなわち、本発明は、30〜80重量%のポリオレ
フイン系樹脂と、1〜30重量%のカーボンブラツ
ク及び10〜50重量%の黒鉛からなる導電性固体粉
末のいずれか一方又は双方の固体表面を樹脂被覆
して得られた固体―樹脂複合粉末とを含有する導
電性樹脂組成物である。 本発明において使用されるポリオレフイン系樹
脂としては、重合圧力1000気圧以上の高圧下で行
う高圧法により製造される高圧法ポリエチレン、
20〜70Kg/cm3程度の圧力下及び10Kg/cm3程度の圧
力下で製造される中・低圧法ポリエチレン、少量
のプロピレン、ブテン―1、ヘキセン―1を共重
合させたコポリマー、その他酢酸ビニル、アクリ
ル酸、アクリル酸アルキル、酢酸ビニル―塩化ビ
ニル、低級α―オレフイン等とのコポリマー、及
びポリプロピレン、ポリイソブチレン、ポリエン
あるいはこれらの各種コポリマー等を挙げること
ができる。特に、本発明がその効果を発揮するの
はポリエチレン、ポリプロピレンあるいはこれら
の各種コポリマーである。これらのポリオレフイ
ン系樹脂としては、予め種々の添加剤、例えば滑
剤、可塑剤、安定剤等を配合したものを使用して
もよい。 また、本発明において導電性固体粉末として使
用されるカーボンブラツクとしては、従来公知の
ケツチエンブラツク、アセチレンブラツク、フア
ーネスブラツク、ランプブラツク、サーマルブラ
ツク、チヤンネルブラツク、ロールブラツク、デ
イスクブラツク等を挙げることができる。これら
のカーボンブラツクのうち、特に好ましいもの
は、導電性に優れており、低添加量で優れた導電
性材料を与え、かつ、混練時における導電性の低
下が少ないものとして知られているケツチエンブ
ラツクである。 さらに、導電性固体粉末としてカーボンブラツ
クと共に使用される黒鉛としては、天然黒鉛で
も、また、人造黒鉛でもよい。 上記カーボンブラツクはその粒度が15〜60Om
μと細かく、一方、黒鉛は粒子であつてそれ自体
の導電性はカーボンブラツクより高い。本発明に
おいては、両者を併用することにより、単独では
期待し得ない高い導電性を示す樹脂組成物を得る
ことができる。 本発明において導電性固体粉末として使用され
るカーボンブラツク及び黒鉛は、少なくともその
いずれか一方又は双方の固体表面を樹脂で被覆
し、固体―樹脂複合粉末としてポリオレフイン系
樹脂に配合される。 この導電性固体粉末の表面を樹脂で被覆する方
法としては、従来一般に知られている界面重合
法、in situ重合法、液中硬化被覆法、水溶液か
らの相分離法、有機溶液からの相分離法、液中乾
燥法、融解分散冷却法、内包物交換法、粉床法、
気中懸濁被覆法、スプレードライング法、真空蒸
着法、静電合体法等があるが、好ましくは、固体
表面にビニル系単量体をグラフト重合させるか、
あるいは、固体表面に電荷を付与し得る金属塩を
吸着させた後、この金属塩と反対の電荷を有する
オリゴマー及び/又はポリマーの1種又は2種以
上を含有する樹脂溶液又は分散液に接触させる方
法である。 上記カーボンブラツク及び/又は黒鉛の固体表
面にビニル系単量体をグラフト重合させる方法と
しては、ラジカル重合開始剤の存在下で種々の重
合法、例えば、塊状動合法、溶液重合法等で行う
ことができるが、亜硫酸イオンを生成せしめる化
合物の存在下に水性媒質中で導電性固体粉末とビ
ニル系単量体とを懸濁重合させる方法が特に好ま
しく、また、懸濁重合の媒質としては水が一般的
であるが、これに限定されず水とメタノールとの
混合物等他の水性媒質を用いることができる。ま
た、懸濁重合における重合開始剤としては、水性
媒質中において亜硫酸イオンを生成せしめる化合
物、例えば、二酸化イオウガスの吹込み、亜硫酸
水溶液、あるいは、亜硫酸水素ソーダ、亜硫酸水
素アンモン等の亜硫酸塩、さらには、過硫酸カリ
ウム、過硫酸ナトリウム、過硫酸アンモニウム等
の過硫酸塩等を単独又は混合して用いることがで
きる。かくして得られる固体―樹脂複合粉末は、
導電性固体粉末の表面のフリーラジカルに対する
活性点に、重合反応により生成するビニル系樹脂
の一部が化学的にグラフト結合されているもので
ある。 この目的で使用されるビニル系単量体として
は、アクリル酸、メタクリル酸、α―クロルアク
リル酸、イタコン酸、無水マレイン酸、マレイン
酸、フマル酸等の不飽和カルボン酸等のイオン解
離性ビニル系単量体や、塩化ビニル、フツ化ビニ
ルのようなハロゲン化ビニルや、スチレン、α―
メチルスチレンのようなスチレン化合物、酢酸ビ
ニル、プロピオン酸ビニルのような脂肪族ビニル
エステルや、アクリル酸メチル、メチクリル酸ラ
ウリルのような不飽和カルボン酸エステル等の非
イオン解離性ビニル系単量体を挙げることができ
る。これらのビニル系単量体は、導電性固体粉末
の表面でグラフト重合してこの導電性固体粉末の
表面にポリオレフイン系樹脂と相溶性の良い樹脂
被膜を形成するので、導電性固体粉末の分散性が
著しく向上する。そして、この導電性固体粉末の
表面にグラフト重合により樹脂被覆させる際の樹
脂量は、導電性固体粉末に対して0.1〜30重量
%、好ましくは0.5〜15重量%である。 また、カーボンブラツク及び/又は黒鉛の固体
表面に電荷を付与し得る金属塩を吸着させた後こ
の金属塩と反対の電荷を有するオリゴマ―及び/
又はポリマーの1種又は2種以上を含有する樹脂
溶液又は分散液に接触させる方法において、使用
される金属塩としては、例えば、Agl、FeCl3
Fe2O3、MgCl2、AlCl3、Fe(OH)3、FeSO4
Na2SO4等の陽電荷付与物質、あるいは、BaCl2
の陰極電荷付与物質を挙げることができ、また、
使用されるオリゴマ―及び/又はポリマーの1種
又は2種以上を含有する樹脂溶液又は分散液とし
ては、例えば、アクリル系、メタクリル系重合体
又は共重合体分散液、アクリルースチレン系共重
合体分散液、エチレン―アクリル系共重合体分散
液、エポキシ樹脂水溶液、フエノール樹脂水溶液
等を挙げることができる。これらの樹脂水溶液又
は樹脂分散液として好ましいものは、ポリオレフ
イン系樹脂に対して相溶性を有する樹脂の水溶液
又は分散液であり、このようなものとしては、例
えば、エチレン・アクリル系共重合体水溶液や、
ブチル、ラウリル、ステアリル等のエステル基を
有するアクリル系共重合体エマルジヨン等があ
る。このようにして得られる固体―樹脂複合粉末
の樹脂量は、導電性固体粉末に対して0.1〜30重
量%、好ましくは0.5〜15重量%である。 なお、導電性固体粉末を樹脂被覆するのは、カ
ーボンブラツク及び黒鉛の双方であつてもよく、
また、いずれか一方であつてもよい。 本発明の導電性樹脂組成物を構成するポリオレ
フイン系樹脂、カーボンブラツク及び黒鉛の配合
割合は、この導電性樹脂組成物に対して要求され
る導電性能、混練性や成型性等の物性等により変
更されるものであるが、本発明の目的を達成する
上で、通常、ポリオレフイン系樹脂30〜80重量
%、カーボンブラツク1〜30重量%及び黒鉛10〜
50重量%であり、好ましくはポリオレフイン系樹
脂45〜70重量%、カーボンブラツク10〜25重量%
及び黒鉛15〜40重量%である。ポリオレフイン系
樹脂が30重量%より少ないと、導電性能について
は満足し得る物性を与えるが、成型性、特に押出
成型性が悪くなり、また、80重量%を越えると導
電性能において満足できる物性が得られない。ま
た、黒鉛が10重量%より少ないと、高価なケツチ
エンブラツクに代えて黒鉛を併用することによる
経済的効果に乏しく、また、50重量%を越えると
導電性の向上という効果よりもむしろ押出成型性
の低下が顕著になる。さらに、カーボンブラツク
の添加量が1重量%より少ないと導電性の向上を
図るのが難しくなり、また、40重量%よりも多く
なると成型性に問題が生じる。 なお、導電性の面から考慮すると、カーボンブ
ラツクとしてアセチレンブラツクを使用する場合
には5重量%以上、フアーネスブラツクやサーマ
ルブラツクを使用する場合には10重量%以上が望
ましい。 本発明において、導電性固体粉末を被覆した際
の樹脂量はポリオレフイン系樹脂の一部として計
算し、また、カーボンブラツクや黒鉛については
添加した固体―樹脂複合粉末からこの樹脂量を差
引いて計算した。 上記ポリオレフイン系樹脂、カーボンブラツク
及び黒鉛を含有する導電性樹脂組成物の調製は、
上記配合割合の範囲内でコニーダ、バンバリーミ
キサー、ミキシングロール、加圧ニーダ等の適宜
のブレンダーを用いて常法により均一に混合し混
練し、ペレツト状に成型するのが好ましく、これ
らのペレツトは、プレス成型、押出成型、射出成
型、シーテイング等により所望の製品に成型され
る。また、この導電性樹脂組成物の成型に際して
は、ポリオレフイン系樹脂に通常使用される難燃
剤、顔料、可塑剤、安定剤、酸化防止剤、紫外線
吸収剤、架橋剤、湿潤剤、その他カーボンブラツ
クや黒鉛とポリオレフイン系樹脂との間の密着性
を向上させるための改質剤等を使用することがで
きる。 〔実施例〕 以下、本発明を実施例及び比較例に基づいて具
体的に説明する。 実施例1〜11及び比較例1及び2 平均粒径30μケツチエンブラツク100重量部を
水1200重量部中に懸濁させ、これにオレイン酸ソ
ーダ0.7重量部と、ラウリルメタクリレート7.3重
量部と、FeCl3・6H200.3重量部と、過硫酸カリ
ウム0.7重量部と、亜硫酸水素ナトリウム0.7重量
部とを添加し、55℃で5時間撹拌しながら反応さ
せ、次いで濾過して水洗後乾燥し、ケツチエンブ
ラツクの表面にラウリルメタクリレートポリマー
が被覆したケツチエンブラツク・ラウリルメタク
リレートポリマー複合粉末107重量部を得た。こ
の複合粉末の樹脂量は6.5重量%であつた。 また、平均粒径6μの天然黒鉛粉末100重量部
を水400重量部中に懸濁させ、これにオレイン酸
ソーダ0.2重量部と、ラウリルメタクリレート7.5
重量部と、6重量%亜硫酸水溶液11.7重量部とを
添加し、60℃で3時間撹拌しながら反応させるこ
とにより、黒鉛の表面にラウリルメタクリレート
ポリマーが被覆した黒鉛・ラウリルメタクリレー
トポリマー複合粉末106.8重量部を得た。この複
合粉末の樹脂量は6.4重量%であつた。 次に、ポリエチレン(昭和電工(株)製商品名:シ
ヨウレツクスF6050C)と、上記ケツチエンブラ
ツク・ラウリルメタクリレートポリマー複合粉末
と、上記黒鉛・ラウリルメタクリレートポリマー
複合粉末とを第1表の割合で配合し、練りロール
により150℃で混練して実施例1〜11及び比較例
1及び2の導電性樹脂組成物を調製した。得られ
た各実施例及び各比較例の樹脂組成物について、
ホツトプレスを用いてプレス温度200℃、プレス
圧40Kg/cm2の条件で厚さ1mmのシートを成型し、
その体積固有抵抗値を測定した。結果を第1表に
示す。 また、上記各実施例及び各比較例の樹脂組成物
について、二軸押出機(池貝鉄工(株)製:PCM―
30)を使用し、スクリユー回転数約50r.p.m.で、
温度200℃、230℃及び260℃の成型条件で押出成
型を行い、その押出成型性を調べると共に、シー
ト製造装置(田辺プラスチツク製:VS―50)を
使用し、スクリユー回転数20〜40r.p.m.で温度
250℃の成型条件でシーテイングを行い、そのシ
ート成型性を調べた。結果を第1表に示す。 実施例 12 上記ケツチエンブラツク又は黒鉛の100重量部
を水1000重量部中に入れ、撹拌しながらこれに電
荷付与物質としてFeCl3・6H200.5重量部を添加
し、次いで、エチレン・アクリル共重合体水溶液
(製鉄化学(株)製商品名:ダイクセン)5重量部を
添加して1時間接触させ、濾過、乾燥して樹脂量
4.8重量%の固体―樹脂複合粉末105重量部を得
た。この固体―樹脂複合粉末を用いて得られた導
電性樹脂組成物について、上記各実施例と同様に
して求めた体積固有抵抗値、混練性及び成型性を
第1表に示す。 実施例 13 上記実施例1〜11で使用した固体―樹脂複合粉
末を使用し、ポリオレフイン系樹脂としてポリプ
ロピレン(宇部興産(株)製グレード名:F109T)を
用いて得られた導電性樹脂組成物について、上記
各実施例と同様にして求めた体積固有抵抗値、混
練性及び成型性を第1表に示す。 実施例 14 実施例1〜11で使用したケツチエンブラツク・
ラウリルメタクリレートポリマー複合粉末と未処
理黒鉛とを使用し、実施例1〜11で使用したポリ
オレフイン系樹脂を用いて得られた導電性樹脂組
成物について、上記各実施例と同様にして求めた
体積固有抵抗値、混練性及び成型性を第1表に示
す。 比較例3及び4 未処理ケツチエンブラツクと未処理黒鉛とを使
用し、実施例1〜11で使用したポリオレフイン系
樹脂を用いて得られた導電性樹脂組成物につい
て、上記各実施例と同様にして求めた体積固有抵
抗値、混練性及び成型性を第1表に示す。
[Industrial Application Fields] This invention is applicable to electric wire-related applications such as high-voltage cables and communication cables, plastic-related applications such as fuel tanks, electronic parts, packaging materials, and automobile parts, hoses, belts, safety shoes, and flooring materials. The present invention relates to conductive resin compositions that are widely used today in rubber-related applications such as switching elements, ignition cables, and static elimination rolls, and electrode-related applications. [Prior Art] Conventionally, as this type of conductive resin composition, one in which conductive solid powder such as carbon black or graphite is kneaded into a resin has been known. For applications below 5 Ωcm, for example, it is difficult to mold carbon black mixed into polyethylene by extrusion molding or injection molding, so it is necessary to add a rubbery substance to improve the kneading and molding properties. Therefore, a decrease in physical properties is unavoidable. Therefore, in recent years, Ketchen black, which is a type of carbon black, has been developed as a solid powder to be added to such conductive resin compositions, and other carbon blacks such as acetylene black, furnace black, lamp black, and thermal black have been developed. , channel black, roll black, disk black, etc., it exhibits extremely superior conductivity, and provides excellent conductivity with a low additive amount.
Moreover, it has the feature that there is little decrease in conductivity during kneading. Nowadays, in fields where high conductivity is required, this Ketchen Black is the predominant conductive solid powder used in conductive resin compositions. In addition, by using a mixture of carbon black and graphite containing 40 to 80% by weight of carbon black as a conductive solid powder, and using this mixture at a ratio of 35 to 85% by weight with respect to the thermoplastic resin. It has also been proposed to obtain an excellent conductive material (Japanese Patent Application Laid-Open No. 48-4989). [Problems to be solved by the invention] However, the butcher black is extremely expensive compared to other carbon blacks, and
If the blending ratio of ketchen black is increased for the purpose of improving the conductivity of the resin composition, not only will the product cost increase, but the kneading properties and moldability of the resulting resin composition will decrease. When only 25% by weight is used, the maximum amount that can be kneaded into polyethylene resin using a Banbury mixer is approximately 25% by weight.
With this amount added, the conductivity was not satisfactory for a conductive resin composition used in fields where high conductivity is required. Furthermore, even in conductive resin compositions that use a mixture of carbon black and graphite as conductive solid powder, it is possible to heat them up without reducing mechanical strength compared to when carbon black or graphite is used alone. The ratio of conductive solid powder that can be blended into the plastic resin increases, and the conductivity can be improved accordingly, but on the other hand, the compatibility between the thermoplastic resin and these conductive solid powders is poor, The kneadability when kneading the two and the moldability when molding the obtained resin composition are poor, and a paste is formed using a plasticizer or solvent during kneading or molding. The problem is that the deplasticizer and solvent must be removed, resulting in poor workability during kneading and molding. [Means for Solving the Problems] The present invention was devised in view of this point of view, and it not only has excellent conductivity, but also has excellent conductivity.
It is an object of the present invention to provide a conductive resin composition that does not cause deterioration in physical properties, has excellent kneading properties and moldability, and is inexpensive in product cost. That is, in the present invention, the solid surface of one or both of conductive solid powders consisting of 30 to 80% by weight of polyolefin resin, 1 to 30% by weight of carbon black, and 10 to 50% by weight of graphite is coated with resin. This is a conductive resin composition containing a solid-resin composite powder obtained by coating. The polyolefin resin used in the present invention includes high-pressure polyethylene produced by a high-pressure method at a polymerization pressure of 1000 atmospheres or more;
Medium- and low-pressure polyethylene produced under pressures of about 20 to 70 Kg/cm 3 and 10 Kg/cm 3 , copolymers made by copolymerizing small amounts of propylene, butene-1, and hexene-1, and other vinyl acetate. Examples include copolymers of acrylic acid, alkyl acrylates, vinyl acetate-vinyl chloride, lower α-olefins, and polypropylene, polyisobutylene, polyenes, and various copolymers thereof. In particular, the present invention exhibits its effects on polyethylene, polypropylene, or various copolymers thereof. These polyolefin resins may be blended with various additives such as lubricants, plasticizers, stabilizers, etc. in advance. Further, examples of the carbon black used as the conductive solid powder in the present invention include conventionally known ketone black, acetylene black, furnace black, lamp black, thermal black, channel black, roll black, disk black, etc. I can do it. Among these carbon blacks, particularly preferred is ketthiene, which is known to have excellent conductivity, provide an excellent conductive material with a small amount of addition, and cause little decrease in conductivity during kneading. It's black. Furthermore, the graphite used together with carbon black as the conductive solid powder may be natural graphite or artificial graphite. The above carbon black has a particle size of 15~60Om.
On the other hand, graphite is a particle and has higher conductivity than carbon black. In the present invention, by using both together, it is possible to obtain a resin composition that exhibits high conductivity that cannot be expected when used alone. Carbon black and graphite used as conductive solid powders in the present invention have at least one or both solid surfaces coated with a resin, and are blended into a polyolefin resin as a solid-resin composite powder. Methods for coating the surface of this conductive solid powder with resin include the commonly known interfacial polymerization method, in situ polymerization method, in-liquid curing coating method, phase separation method from an aqueous solution, and phase separation method from an organic solution. method, submerged drying method, melting dispersion cooling method, inclusion exchange method, powder bed method,
There are air suspension coating methods, spray drying methods, vacuum evaporation methods, electrostatic coalescence methods, etc., but preferably, vinyl monomers are graft-polymerized on the solid surface, or
Alternatively, after adsorbing a metal salt capable of imparting a charge to the solid surface, the solid surface is brought into contact with a resin solution or dispersion containing one or more oligomers and/or polymers having an opposite charge to that of the metal salt. It's a method. As a method for graft polymerizing the vinyl monomer onto the solid surface of the carbon black and/or graphite, various polymerization methods such as bulk motion method and solution polymerization method may be used in the presence of a radical polymerization initiator. However, a method in which a conductive solid powder and a vinyl monomer are subjected to suspension polymerization in an aqueous medium in the presence of a compound that generates sulfite ions is particularly preferred, and water is used as the medium for suspension polymerization. Other aqueous media can be used, such as, but not limited to, a mixture of water and methanol. In addition, as a polymerization initiator in suspension polymerization, a compound that generates sulfite ions in an aqueous medium, such as the injection of sulfur dioxide gas, an aqueous solution of sulfite, or a sulfite such as sodium hydrogen sulfite or ammonium hydrogen sulfite; , potassium persulfate, sodium persulfate, ammonium persulfate, and other persulfates can be used alone or in combination. The solid-resin composite powder thus obtained is
A portion of the vinyl resin produced by the polymerization reaction is chemically grafted onto the free radical active sites on the surface of the conductive solid powder. Vinyl monomers used for this purpose include ionically dissociable vinyl monomers such as unsaturated carboxylic acids such as acrylic acid, methacrylic acid, α-chloroacrylic acid, itaconic acid, maleic anhydride, maleic acid, and fumaric acid. system monomers, vinyl halides such as vinyl chloride and vinyl fluoride, styrene, α-
Non-ionically dissociable vinyl monomers such as styrene compounds such as methylstyrene, aliphatic vinyl esters such as vinyl acetate and vinyl propionate, and unsaturated carboxylic acid esters such as methyl acrylate and lauryl methacrylate. can be mentioned. These vinyl monomers graft-polymerize on the surface of the conductive solid powder to form a resin film on the surface of the conductive solid powder that is highly compatible with the polyolefin resin, thereby improving the dispersibility of the conductive solid powder. is significantly improved. The amount of resin when coating the surface of the conductive solid powder with resin by graft polymerization is 0.1 to 30% by weight, preferably 0.5 to 15% by weight, based on the conductive solid powder. In addition, after adsorbing a metal salt capable of imparting an electric charge to the solid surface of carbon black and/or graphite, oligomers and/or
Or in the method of contacting with a resin solution or dispersion containing one or more types of polymers, examples of metal salts used include Agl, FeCl 3 ,
Fe2O3 , MgCl2 , AlCl3 , Fe(OH) 3 , FeSO4 ,
Examples include positive charge imparting substances such as Na 2 SO 4 or cathodic charge imparting substances such as BaCl 2 , and
Examples of the resin solution or dispersion containing one or more oligomers and/or polymers include acrylic and methacrylic polymer or copolymer dispersions, and acrylic-styrene copolymers. Examples include dispersions, ethylene-acrylic copolymer dispersions, epoxy resin aqueous solutions, and phenolic resin aqueous solutions. Preferred aqueous solutions or dispersions of these resins are aqueous solutions or dispersions of resins that are compatible with polyolefin resins, such as aqueous solutions of ethylene-acrylic copolymers and aqueous dispersions of resins. ,
Examples include acrylic copolymer emulsions having ester groups such as butyl, lauryl, and stearyl. The amount of resin in the solid-resin composite powder thus obtained is 0.1 to 30% by weight, preferably 0.5 to 15% by weight, based on the conductive solid powder. Note that the conductive solid powder may be coated with both carbon black and graphite.
Moreover, either one may be used. The blending ratio of polyolefin resin, carbon black, and graphite constituting the conductive resin composition of the present invention is changed depending on the physical properties such as electrical conductivity, kneadability, moldability, etc. required for this conductive resin composition. However, in order to achieve the purpose of the present invention, usually 30 to 80% by weight of polyolefin resin, 1 to 30% by weight of carbon black, and 10 to 10% by weight of graphite are used.
50% by weight, preferably polyolefin resin 45-70% by weight, carbon black 10-25% by weight
and graphite 15-40% by weight. If the polyolefin resin content is less than 30% by weight, it will give satisfactory physical properties in terms of electrical conductivity, but moldability, especially extrusion moldability will deteriorate, and if it exceeds 80% by weight, satisfactory properties in terms of electrical conductivity will not be obtained. I can't. In addition, if the graphite content is less than 10% by weight, the economic effect of using graphite in place of the expensive butt-en-black will be poor, and if it exceeds 50% by weight, the effect of extrusion molding will be less than the effect of improving conductivity. The decline in sex becomes noticeable. Furthermore, if the amount of carbon black added is less than 1% by weight, it will be difficult to improve the conductivity, and if it is more than 40% by weight, problems will arise in moldability. From the viewpoint of conductivity, it is desirable that the carbon black be at least 5% by weight when acetylene black is used, and at least 10% by weight when furnace black or thermal black is used. In the present invention, the amount of resin when coated with conductive solid powder was calculated as part of the polyolefin resin, and carbon black and graphite were calculated by subtracting this amount of resin from the added solid-resin composite powder. . Preparation of the conductive resin composition containing the above polyolefin resin, carbon black and graphite is as follows:
It is preferable to uniformly mix and knead in a conventional manner using an appropriate blender such as a co-kneader, a Banbury mixer, a mixing roll, a pressure kneader, etc. within the range of the above-mentioned blending ratio, and form the pellets into pellets. The desired product is formed by press molding, extrusion molding, injection molding, sheeting, etc. In addition, when molding this conductive resin composition, flame retardants, pigments, plasticizers, stabilizers, antioxidants, ultraviolet absorbers, crosslinking agents, wetting agents, and other materials such as carbon black and other materials commonly used in polyolefin resins are added. A modifier or the like can be used to improve the adhesion between graphite and polyolefin resin. [Examples] The present invention will be specifically described below based on Examples and Comparative Examples. Examples 1 to 11 and Comparative Examples 1 and 2 100 parts by weight of Ketchen black with an average particle size of 30μ was suspended in 1200 parts by weight of water, and 0.7 parts by weight of sodium oleate, 7.3 parts by weight of lauryl methacrylate, and FeCl Add 00.3 parts by weight of 3・6H 2 , 0.7 parts by weight of potassium persulfate, and 0.7 parts by weight of sodium bisulfite, react at 55°C with stirring for 5 hours, then filter, wash with water and dry. 107 parts by weight of a black/lauryl methacrylate polymer composite powder having a lauryl methacrylate polymer coated on the surface of the black was obtained. The amount of resin in this composite powder was 6.5% by weight. In addition, 100 parts by weight of natural graphite powder with an average particle size of 6 μm was suspended in 400 parts by weight of water, and 0.2 parts by weight of sodium oleate and 7.5 parts by weight of lauryl methacrylate were added.
106.8 parts by weight of graphite/lauryl methacrylate polymer composite powder in which the surface of graphite is coated with lauryl methacrylate polymer by adding 11.7 parts by weight of 6% by weight aqueous sulfite solution and reacting at 60°C with stirring for 3 hours. I got it. The resin content of this composite powder was 6.4% by weight. Next, polyethylene (product name: SHOREX F6050C manufactured by Showa Denko Co., Ltd.), the above-mentioned KETSUCHEN BLACK-lauryl methacrylate polymer composite powder, and the above-mentioned graphite-lauryl methacrylate polymer composite powder were blended in the proportions shown in Table 1, The conductive resin compositions of Examples 1 to 11 and Comparative Examples 1 and 2 were prepared by kneading at 150°C using a kneading roll. Regarding the obtained resin compositions of each example and each comparative example,
A sheet with a thickness of 1 mm was formed using a hot press at a press temperature of 200℃ and a press pressure of 40Kg/ cm2 .
The volume resistivity value was measured. The results are shown in Table 1. In addition, for the resin compositions of each of the above examples and comparative examples, a twin screw extruder (manufactured by Ikegai Iron Works Co., Ltd.: PCM-
30) at a screw rotation speed of approximately 50 r.pm.
Extrusion molding was carried out under molding conditions of temperatures of 200℃, 230℃ and 260℃, and the extrusion moldability was investigated.The screw rotation speed was 20 to 40r.pm using sheet manufacturing equipment (Tanabe Plastics: VS-50). at temperature
Sheeting was performed under molding conditions of 250°C, and the sheet moldability was investigated. The results are shown in Table 1. Example 12 100 parts by weight of the above ketone black or graphite were placed in 1000 parts by weight of water, 00.5 parts by weight of FeCl 3 6H 2 was added thereto as a charge imparting substance, and then ethylene/acrylic copolymer Add 5 parts by weight of a combined aqueous solution (trade name: Deiksen, manufactured by Seitetsu Kagaku Co., Ltd.) and let it come into contact for 1 hour, filter and dry to determine the amount of resin.
105 parts by weight of a 4.8% by weight solid-resin composite powder was obtained. Table 1 shows the volume resistivity, kneadability, and moldability of the conductive resin composition obtained using this solid-resin composite powder in the same manner as in the above examples. Example 13 About a conductive resin composition obtained by using the solid-resin composite powder used in Examples 1 to 11 above and using polypropylene (grade name: F109T, manufactured by Ube Industries, Ltd.) as the polyolefin resin. Table 1 shows the volume resistivity values, kneading properties, and moldability obtained in the same manner as in the above examples. Example 14 Butt chain black used in Examples 1 to 11
For conductive resin compositions obtained using the lauryl methacrylate polymer composite powder and untreated graphite and the polyolefin resin used in Examples 1 to 11, the volume specificity was determined in the same manner as in each of the above Examples. Table 1 shows the resistance value, kneadability and moldability. Comparative Examples 3 and 4 Conductive resin compositions obtained using untreated butcher black and untreated graphite and the polyolefin resin used in Examples 1 to 11 were treated in the same manner as in each of the above examples. Table 1 shows the volume resistivity, kneadability, and moldability determined by the following methods.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明によれば、導電性固体粉末としてのカー
ボンブラツク及び黒鉛は少なくともそのいずれか
一方の固体表面が樹脂被覆されて固体―樹脂複合
粉末として使用されるので、ポリオレフイン系樹
脂との間の分散性や密着性が著しく向上し、混練
性や成型性の低下を招くことなくその導電性の向
上を達成することができ、しかも、高度の導電性
を有する導電性樹脂組成物を廉価に提供すること
ができる。
According to the present invention, at least one of the solid surfaces of carbon black and graphite as conductive solid powders is coated with a resin and used as a solid-resin composite powder. To provide, at a low price, a conductive resin composition which can significantly improve adhesion and conductivity without deteriorating kneading properties or moldability, and has a high degree of conductivity. I can do it.

Claims (1)

【特許請求の範囲】 1 30〜80重量%のポリオレフイン系樹脂と、1
〜30重量%のカーボンブラツク及び10〜50重量%
の黒鉛からなる導電性固体粉末のいずれか一方又
は双方の固体表面を樹脂被覆して得られた固体―
樹脂複合粉末とを含有することを特徴とする導電
性樹脂組成物。 2 固体―樹脂複合粉末は、カーボンブラツク及
び/又は黒鉛の固体表面にビニル系単量体をグラ
フト重合させて得られたものである特許請求の範
囲第1項記載の導電性樹脂組成物。 3 固体―樹脂複合粉末は、カーボンブラツク及
び/又は黒鉛の固体表面に電荷を付与し得る金属
塩を吸着させた後、この金属塩と反対の電荷を有
するオリゴマ―及び/又はポリマーの1種又は2
種以上を含有する樹脂溶液又は分散液に接触させ
ることにより、その固体表面を樹脂被覆してなる
ものである特許請求の範囲第1項記載の導電性樹
脂組成物。 4 カーボンブラツクがケツチエンブラツクであ
る特許請求の範囲第1項ないし第3項のいずれか
に記載の導電性樹脂組成物。
[Scope of Claims] 1. 30 to 80% by weight of polyolefin resin;
~30% by weight carbon black and 10-50% by weight
A solid obtained by coating the solid surface of one or both of conductive solid powders made of graphite with a resin.
A conductive resin composition characterized by containing a resin composite powder. 2. The conductive resin composition according to claim 1, wherein the solid-resin composite powder is obtained by graft polymerizing a vinyl monomer onto the solid surface of carbon black and/or graphite. 3. The solid-resin composite powder is produced by adsorbing a metal salt capable of imparting an electric charge onto the solid surface of carbon black and/or graphite, and then adsorbing one or more oligomers and/or polymers having an opposite electric charge to the metal salt. 2
2. The conductive resin composition according to claim 1, wherein the solid surface of the conductive resin composition is coated with a resin by contacting with a resin solution or dispersion containing at least one species. 4. The conductive resin composition according to any one of claims 1 to 3, wherein the carbon black is butcher black.
JP9998982A 1982-06-12 1982-06-12 Conductive resin composition Granted JPS58218703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9998982A JPS58218703A (en) 1982-06-12 1982-06-12 Conductive resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9998982A JPS58218703A (en) 1982-06-12 1982-06-12 Conductive resin composition

Publications (2)

Publication Number Publication Date
JPS58218703A JPS58218703A (en) 1983-12-20
JPS6225693B2 true JPS6225693B2 (en) 1987-06-04

Family

ID=14262050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9998982A Granted JPS58218703A (en) 1982-06-12 1982-06-12 Conductive resin composition

Country Status (1)

Country Link
JP (1) JPS58218703A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900002983B1 (en) * 1985-04-11 1990-05-03 Furukawa Electric Co Ltd Lead alloy foil for laminated tape
JPS62226505A (en) * 1986-03-27 1987-10-05 新日鐵化学株式会社 Conductive resin board material
JPH01319213A (en) * 1988-06-16 1989-12-25 Ntn-Rulon Corp Composition of electrically conductive sliding material
JP2002293968A (en) * 2001-04-02 2002-10-09 Bridgestone Corp Semiconductive elastic body and electrophotographic device
JP4759852B2 (en) * 2001-06-01 2011-08-31 Nok株式会社 Rubber composition for electromagnetic wave shielding

Also Published As

Publication number Publication date
JPS58218703A (en) 1983-12-20

Similar Documents

Publication Publication Date Title
CN110408149B (en) High-cold-resistance polyvinyl chloride cable material and preparation method thereof
JPH0380807B2 (en)
EP0168134B1 (en) Thermoplastic fluorine-containing resin compositions
US3969431A (en) Reinforcement of vinyl chloride resins with suspension emulsion interpolymers
US4655964A (en) Conductive nylon molding materials
JPS6225693B2 (en)
JPH03152110A (en) Electrically conductive plastic composite, method of its production and use thereof
JPS642615B2 (en)
JPS61218648A (en) Electrically conductive resin composition
GB2141719A (en) Ethylene polymer compositions
US5104741A (en) Plasticized articles having vinyl resin-based products in contact with polymeric or polymer coated substrates
JPS6325622B2 (en)
JPH0247501B2 (en)
JPH0353341B2 (en)
JPS58222135A (en) Electrically conductive resin composition
JPS5925806A (en) Preparation of novel polymer composition
JPH059460B2 (en)
EP0061133B1 (en) Improved polyvinyl chloride and preparation thereof
JPS60166338A (en) Rubber-modified styrenic resin composition having improved appearance, impact strength and heat resistance
US3654197A (en) Sulphur-crosslinkable molded substances
JPS6341932B2 (en)
KR790001005B1 (en) Synthetic resin composition containing specially treated active filler
CA1220589A (en) Blends of grafted acrylate polymers and mass-made abs- type resins
JPS5853643B2 (en) Method for producing new polymer particles
CN114539570A (en) Application and preparation method of powdered styrene butadiene rubber PVC (polyvinyl chloride) auxiliary agent