JPS6225679A - Earthquake-proof housing structure - Google Patents

Earthquake-proof housing structure

Info

Publication number
JPS6225679A
JPS6225679A JP16282585A JP16282585A JPS6225679A JP S6225679 A JPS6225679 A JP S6225679A JP 16282585 A JP16282585 A JP 16282585A JP 16282585 A JP16282585 A JP 16282585A JP S6225679 A JPS6225679 A JP S6225679A
Authority
JP
Japan
Prior art keywords
earthquake
racks
damping device
rack
housing structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16282585A
Other languages
Japanese (ja)
Inventor
鈴木 方敏
昇 小山田
久徳 阿比留
藤城 学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP16282585A priority Critical patent/JPS6225679A/en
Publication of JPS6225679A publication Critical patent/JPS6225679A/en
Pending legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Warehouses Or Storage Devices (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は重量物をラックに格納して貯蔵する倉庫の如き
建造物の耐震構造に係るものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an earthquake-resistant structure for buildings such as warehouses in which heavy objects are stored in racks.

(従来の技術) 従来この種の建造物においては小型の場合第9図に示す
ように、重量物(α)を積載したラック(A) ’にそ
れ自体構造物として建屋CB)内に自立させていた。
(Prior art) Conventionally, in the case of a small building of this type, as shown in Fig. 9, a rack (A)' loaded with a heavy object (α) is made to stand on its own inside the building CB) as a structure. was.

また構造物が大型の場合、第10図に示す如き鋼管の束
(h) ’にラック(A)に取付けたアーム(c)に載
架して貯蔵し、天井梁(d)に配設したガイドレール(
−)と床に敷設されたレール(イ)とを案内として紙面
と直角方向に移動可能なスタッカクレーン(y)によっ
て鋼管の束(b)’を出入れするように構成された自動
倉庫の例のように、ラック(A)の頂部と天井梁(d)
とを直接繋いでいた。この場合、ラック(A)は屋根及
び壁を支承していて、建屋の働きをもしていることにな
る。
If the structure is large, a bundle of steel pipes (h)' as shown in Figure 10 may be stored on an arm (c) attached to a rack (A) and placed on a ceiling beam (d). Guide rail (
An example of an automated warehouse configured to take in and out bundles of steel pipes (b)' by means of a stacker crane (y) that can move in a direction perpendicular to the plane of the paper using guides such as -) and rails (a) laid on the floor. As shown, the top of the rack (A) and the ceiling beam (d)
were directly connected. In this case, the rack (A) supports the roof and walls and also functions as a building.

(発明が解決しようとする問題点) 一般に鉄骨構造物の構造設計を行なう場合、地震時の検
討として、鉄骨構造部材及び附帯物等よりなる鋼重、及
び積載物の重量の0.2〜0.3倍の慣性力よりなる水
平力を想定して部材断面を算定するが、前記従来の建造
物においては、通常ラックの自重に対して数倍の積載重
量があるために慣性力が大で、従来の構造では合理的、
且つ経済的な設計という面から自づと限界があった。
(Problems to be Solved by the Invention) Generally, when designing the structure of a steel structure, the steel weight of the steel structure members and accessories, and the weight of the loaded object should be 0.2 to 0. .The cross section of the member is calculated assuming a horizontal force consisting of three times the inertial force, but in the conventional buildings mentioned above, the inertial force is large because the loaded weight is usually several times the weight of the rack itself. , reasonable in the conventional structure,
Moreover, there were limits from the standpoint of economical design.

(問題点を解決するだめの手段) 本発明はこのような問題点を解決するために提案された
ものであって、重量物を積載する複数のラックの上部全
減衰装置で結合してなることを特徴とする耐震建屋構造
に係るものである。
(Means for Solving the Problems) The present invention has been proposed to solve the above problems, and consists of a plurality of racks carrying heavy objects connected by a full damping device in the upper part thereof. This relates to an earthquake-resistant building structure characterized by:

(作 用) 本発明に係る耐震建屋構造においては、重量物全積載す
る複数のラックの上部が減衰装置で結合されているので
、同減衰装置によって地震時における振動エネルギが吸
収され、建屋全体の減衰性が向上するものである。
(Function) In the earthquake-resistant building structure according to the present invention, the upper parts of the plurality of racks that are fully loaded with heavy objects are connected by a damping device, so the vibration energy at the time of an earthquake is absorbed by the damping device, and the entire building is This improves damping properties.

(発明の効果) このように本発明によれば前記減衰装置によって地震時
における振動エネルギが吸収され、建屋全体の減衰性が
向上するので、地震時の応答量も少なくなり、部材断面
、鋼重が低減され、構造上合理的で且つ経済的な設計が
可能となる。
(Effects of the Invention) As described above, according to the present invention, the vibration energy at the time of an earthquake is absorbed by the damping device, and the damping performance of the entire building is improved. This allows for a structurally rational and economical design.

(実施例) 以下本発明を図示の実施例について説明する。(Example) The present invention will be described below with reference to the illustrated embodiments.

第1図は左右のラックmmの振動特性(固有周期、振動
モード)が異なる場合に本発明を適用した実施例全示す
もので、両ラック(1mの頂部にトラス(21(2”)
を架構し、相対するトラス(2+(2’)の節点(31
(3’)間に減衰装置としてのオイルダンパ(C)がビ
ンを介して水平に連結されている。
Figure 1 shows all the embodiments in which the present invention is applied when the vibration characteristics (natural period, vibration mode) of the left and right racks (mm) are different.
The opposite truss (2+(2') node (31
An oil damper (C) as a damping device is horizontally connected between (3') via a bottle.

第2図は左右のラック(1)(1)の振動特性が同じ場
合に本発明を適用した実施例上水し、両ラック(1)(
1)の頂部にトラス(21(2’)を相対する節点(3
1(3’)が上下に対問するように架構し、同節点+3
1(3’)間に減衰装置(C)がピンを介して垂直に連
結されている。
Figure 2 shows an example in which the present invention is applied when the left and right racks (1) (1) have the same vibration characteristics.
1) and the truss (21 (2')) is placed at the opposing node (3).
The frame is constructed so that 1 (3') intersects above and below, and the same node +3
1 (3'), a damping device (C) is vertically connected via a pin.

8g7図及び第8図は前記減衰装置(c)として使用さ
れるオイルダンパ(4)及び粘性ダン/” (51’に
示すものである。
Figures 8g7 and 8 show an oil damper (4) and a viscous damper (51') used as the damping device (c).

而して前記オイルダンパ(4)はダンパオイル(4α)
の充填されたシリンダ(4b)に、オリフィスC40)
k育するピストン(4d)及びピストンロンド(4#)
ffi可摺動的に嵌装して構成されている。なおオイル
ダンパ(4)にばねを内蔵してもよく、或いはまたオイ
ルダンパ(4)とばねと全前記節点(3K 3’ )間
に併設してもよい。
The oil damper (4) is damper oil (4α).
into the cylinder (4b) filled with orifice C40)
k growing piston (4d) and piston rondo (4#)
ffi is configured to be slidably fitted. Note that a spring may be built into the oil damper (4), or may be provided between the oil damper (4), the spring, and all the nodes (3K 3').

粘性ダンパ(5)は、一方の節点(3)に対する取付部
(5α)を有する受皿(5h)に充填された高粘性体(
5c)中に、他方の節点(3′)に対する連結部(5d
) k有する棒状、若しくけ仮状部材(5t)を浸して
構成される。なお粘性ダンパ(5)にばね全内蔵しても
よく、或いは粘性ダンパ(5)とばねと全前記節点+3
1(3’)間に併設してもよい。
The viscous damper (5) is made of a high viscosity material (
5c), the connection part (5d) to the other node (3')
) It is constructed by dipping a rod-shaped or temporary cage-shaped member (5t) with k. Note that the viscous damper (5) may have the entire spring built-in, or the viscous damper (5), the spring, and all the above nodes + 3
It may also be installed between 1 (3').

篇3図は第1図の構造全モデル化したもので、両ラック
fi+(1)の剛性に1.に2及び積載物(6)の重量
w、、w2を変えて、(K、神に2.W1←W2)両ラ
ック(1)(11の振動特性を変えた場合である。
Figure 3 is a complete model of the structure shown in Figure 1, with the rigidity of both racks fi+(1) set at 1. This is a case where the vibration characteristics of both racks (1) and (11) are changed by changing the weights w, , w2 of 2 and the load (6) (K, 2.W1←W2).

従って地震時には両ラック(11(11の頂部の水平変
位に差異が生じるので、第3図に示すように両ラック(
IHI)の頂部間に減衰装fit (c)が水平に設置
されることによって高い減衰性を発揮し、振動エネルギ
全吸収し、地震時のラックの応答を小さく抑えることが
できる。
Therefore, in the event of an earthquake, there will be a difference in the horizontal displacement of the tops of both racks (11), so as shown in Figure 3, both racks (
By installing the damping device FIT (c) horizontally between the tops of the IHI), it exhibits high damping performance, absorbs all vibration energy, and can suppress the response of the rack during an earthquake.

81!4図は両ラックけ)(1)の剛性に3.に4、積
載荷zW3.W4−1rlL <、(K3=に41w3
===w4)両ランク(Inの振r#J特性に差がなく
、従って地震時には両ランク(])(1)の振動特性に
差がない場合で、地震時に両ラック(11(11は同一
の動き金して相対変位を生起しない。
81!4 Figure shows both racks) The rigidity of (1) and 3. 4. Load zW3. W4-1rlL <, (41w3 to K3=
===w4) There is no difference in the vibration r#J characteristics of both ranks (In), and therefore there is no difference in the vibration characteristics of both ranks (]) (1) during an earthquake, and both racks (11 (11 is The same movement amount does not cause relative displacement.

従って第1図及び第3図に示すように両ラック(11(
11間に減衰装&に設置しても、振動エネルギを吸収す
ることはできない。
Therefore, as shown in Figures 1 and 3, both racks (11 (
Even if a damping device is installed between 11 and 11, vibration energy cannot be absorbed.

そこで第4図に示すように減衰装置(c)を前記ラック
(11(11の頂部間に垂直に配設するものである。な
お、このときの同減衰装ff1t(c)の支点間距離を
δ。とする。
Therefore, as shown in Fig. 4, the damping device (c) is arranged vertically between the tops of the racks (11). Let δ be.

かくして地震時に第5図に示すように、前記両ラック(
11(11が左方に同じように変位した場合、前記減衰
装置(c)の支点間距離δ はδ (δ〉δ )ott
Thus, in the event of an earthquake, both racks (
11 (If 11 is similarly displaced to the left, the distance δ between the supporting points of the damping device (c) is δ (δ>δ)ott
.

と伸び、逆に第6図に示すように前記両ラック(1)(
1)が右方に同じように変位した場合、前記減衰装置(
C)の支点間距離はδ2(δ2くδ。)と縮むこととな
る。
, and conversely, as shown in Figure 6, both racks (1) (
1) is similarly displaced to the right, the damping device (
The distance between the supporting points in C) will be reduced to δ2 (δ2 × δ.).

即ち地震動によりラック(11(11が変位すれば、前
記減衰装置(c)の支点間には必らず何らかの相対変位
全生起することとなり、地震時にはこの部分で高い減衰
性能が発揮され、振動エネルギが吸収されることによっ
て、ラック(11(11の地震応答を小さく抑えること
ができる。
In other words, if the rack (11) is displaced due to earthquake motion, some kind of relative displacement will necessarily occur between the supporting points of the damping device (c), and in the event of an earthquake, high damping performance is exhibited in this part, and the vibration energy is By absorbing this, the seismic response of the rack (11) can be suppressed to a small level.

このように前記実施例によれば、重量物全積載した複数
のラック(11の頂部間に、地震時の振動により発生す
る相対変位が減衰装置(c)の両端に作用するように、
同減衰装f(c)t−設置することにょって地震による
振動エネルギ全吸収し、建屋全体の減衰性全回上させる
ことができる。従って地震時のラック(1)の応答量も
小さくなり、部材断面、鋼重が低減で辣、経済的な設計
が可能となる。
In this way, according to the embodiment, the relative displacement caused by vibration during an earthquake acts on both ends of the damping device (c) between the tops of the plurality of racks (11) fully loaded with heavy objects.
By installing the same damping system f(c)t-, it is possible to completely absorb the vibration energy caused by the earthquake and increase the damping performance of the entire building. Therefore, the amount of response of the rack (1) in the event of an earthquake is also reduced, and the cross section and steel weight of the members are reduced, making it possible to design a smart and economical design.

以上本発明を実施列について説明したが、本発明は勿論
このような実施例にだけ局限されるものではなく、本発
明の精神全逸脱しない範囲内で種々の設計の改変を施し
うるものである。
Although the present invention has been described above with reference to a series of embodiments, the present invention is of course not limited to such embodiments, and can be modified in various ways without departing from the spirit of the present invention. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は夫々本発明に係る耐震建屋構造の各
実施例上水す縦断面図、第3図は第1図に示す実施例全
モデル化した構造図、第4図は第2図に示す実施例全モ
デル化した構造図、第5図及び第6図はその地震時の挙
動を示す説明図、第7図及び第8図は夫々オイルJンパ
並に粘性グンパの縦断面図、第9図及び?;10図は夫
々従来のランク全πする倉庫の縦断面図である。 (CI)・・・減衰装置    (1)・・ラック(2
K 2’ )・・・トラス   f31 < 3’)・
・・トラスの節点復代理人  弁理士  岡 本 重 
文外2名 第1図    第2図 第7図
Figures 1 and 2 are longitudinal sectional views of each example of the earthquake-resistant building structure according to the present invention, Figure 3 is a structural diagram of the entire example shown in Figure 1, and Figure 4 is a structural diagram of the entire example shown in Figure 1. Figure 2 shows the structure of the entire modeled example, Figures 5 and 6 are explanatory diagrams showing its behavior during an earthquake, and Figures 7 and 8 are longitudinal sections of the oil Jumpa and viscous Gunpa, respectively. Figure, Figure 9 and ? ; Figure 10 is a vertical sectional view of a conventional warehouse with all ranks. (CI)...Attenuation device (1)...Rack (2
K2')...Truss f31 <3')・
...Truss node sub-agent Patent attorney Shige Okamoto
Figure 1 Figure 2 Figure 7

Claims (1)

【特許請求の範囲】[Claims] 重量物を積載する複数のラックの上部を減衰装置で結合
してなることを特徴とする耐震建屋構造。
An earthquake-resistant building structure characterized by connecting the upper parts of multiple racks that carry heavy objects with a damping device.
JP16282585A 1985-07-25 1985-07-25 Earthquake-proof housing structure Pending JPS6225679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16282585A JPS6225679A (en) 1985-07-25 1985-07-25 Earthquake-proof housing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16282585A JPS6225679A (en) 1985-07-25 1985-07-25 Earthquake-proof housing structure

Publications (1)

Publication Number Publication Date
JPS6225679A true JPS6225679A (en) 1987-02-03

Family

ID=15761947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16282585A Pending JPS6225679A (en) 1985-07-25 1985-07-25 Earthquake-proof housing structure

Country Status (1)

Country Link
JP (1) JPS6225679A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6384489U (en) * 1986-11-20 1988-06-02
JPH05286514A (en) * 1992-04-09 1993-11-02 Nkk Corp Multistoried automatic warehouse
JP2001099227A (en) * 1999-09-28 2001-04-10 Takenaka Komuten Co Ltd Elastoplastic type rotating vibration control damper and vibration control method using the same
WO2014141905A1 (en) * 2013-03-13 2014-09-18 西部電機株式会社 Multi-tier shelf group, automated warehouse, and method for adding vibration suppression mechanism thereto
JP2014196188A (en) * 2013-03-29 2014-10-16 鹿島建設株式会社 Seismic control structure of rack shelf

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6384489U (en) * 1986-11-20 1988-06-02
JPH05286514A (en) * 1992-04-09 1993-11-02 Nkk Corp Multistoried automatic warehouse
JP2001099227A (en) * 1999-09-28 2001-04-10 Takenaka Komuten Co Ltd Elastoplastic type rotating vibration control damper and vibration control method using the same
WO2014141905A1 (en) * 2013-03-13 2014-09-18 西部電機株式会社 Multi-tier shelf group, automated warehouse, and method for adding vibration suppression mechanism thereto
JP2014196188A (en) * 2013-03-29 2014-10-16 鹿島建設株式会社 Seismic control structure of rack shelf

Similar Documents

Publication Publication Date Title
US6397528B1 (en) Coupled truss systems with damping for seismic protection of buildings
US20090211179A1 (en) Damping for tall structures
JPS6225679A (en) Earthquake-proof housing structure
IT201800002453A1 (en) ANTI-SEISMIC DEVICE
JP3828695B2 (en) Seismic control wall of a three-story house
JPS6064191A (en) Furnace
TWI496729B (en) Goods storage rack
JPS63315772A (en) Earthquakeproof building
US5590506A (en) Earthquake-resistant architectural system
CN216739200U (en) Shock attenuation steel box girder and bridge structure system
JP2733917B2 (en) Damping device
JP2004010294A (en) Automated storage and retrieval system
JPS6225678A (en) Earthquake-proof structure of building
US6202365B1 (en) Suspended deck structure
Ackroyd Design of flexibility-connected unbraced steel building frames
JPS62273374A (en) Dynamic earthquakeproof method and device utilizing weight of building body
Tanaka et al. Recent applications of structural control systems to high-rise buildings
JP4030447B2 (en) Unit type building with seismic isolation device
JPH04176974A (en) Building structure
JPS60223576A (en) Earthquake dampening apparatus
JP2787204B2 (en) Connecting passage of building with vibration control function
CN113668711B (en) Three-dimensional vibration isolation/vibration support with horizontal bidirectional and vertical deformation decoupling
JPS6366987B2 (en)
JPH0745784B2 (en) Earthquake resistant wall
JPS62148775A (en) Vibrationproof structure of structure