JPS62256363A - Manufacture of lithium cell - Google Patents

Manufacture of lithium cell

Info

Publication number
JPS62256363A
JPS62256363A JP61101851A JP10185186A JPS62256363A JP S62256363 A JPS62256363 A JP S62256363A JP 61101851 A JP61101851 A JP 61101851A JP 10185186 A JP10185186 A JP 10185186A JP S62256363 A JPS62256363 A JP S62256363A
Authority
JP
Japan
Prior art keywords
electrolyte
positive electrode
solvent
electrode active
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61101851A
Other languages
Japanese (ja)
Inventor
Kazunobu Matsumoto
和伸 松本
Tatsu Nagai
龍 長井
Kozo Kajita
梶田 耕三
Toshikatsu Manabe
真辺 俊勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP61101851A priority Critical patent/JPS62256363A/en
Publication of JPS62256363A publication Critical patent/JPS62256363A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • H01M4/08Processes of manufacture

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To make the contact area between an electrolyte and a positive electrode larger, and to reduce the current density and polarization, by pressurizing to form a positive electrode active substance powder after wetting in an electrolyte or electrolyte solvent, or by depressurizing and degasing the positive electrode active substance powder in an electrolyte or electrolyte solvent after pressurizing to form it. CONSTITUTION:A positive electrode active substance powder is wet in an electrolyte or electrolyte solvent, and then pressurized to form it, or it is pressurized to form, then soaked in the electrolyte or electrolyte solvent, and deprssurized and degased. Therefore, spaces among the particles of the pressurized body are occupied by the electrolyte or electrolyte solvent remaining no bubbles, so that the positive electrode and the electrolyte contact in a broad area. As the positive electrode, titanium disulfide, molybdenum disulfide, or the like is used, while as the negative electrode, lithium or lithium alloy is used. As the electrolyte, is used an organic electrolyte of a single, or two or more electrolytes solved by an electrolyte solvent of a single or plural mixture of organic solvents such as propylene carbonate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はリチウム電池の製造方法に係り、さらに詳しく
はその正極の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a lithium battery, and more particularly to improvement of a positive electrode thereof.

〔従来の技術〕[Conventional technology]

従来、リチウム電池の正極は、正極活物質粉末を加圧成
形することによって作製されていた(例えば、J、 E
lectrochew、 Soc、+131 (6) 
+ 1343 (1984) ) 。
Conventionally, the positive electrode of a lithium battery has been produced by pressure molding a positive electrode active material powder (for example, J, E
electrochew, Soc, +131 (6)
+1343 (1984)).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、上記のように正極活物質粉末を加圧成形する
ことによって作製された正極は、正極内部の粒子と粒子
との隙間に気泡が存在するため、電解液が浸透できない
部分があった。
However, in the positive electrode produced by pressure-molding the positive electrode active material powder as described above, there were parts where the electrolytic solution could not penetrate due to the presence of air bubbles in the gaps between the particles inside the positive electrode.

そのため、正極と電解液との接触面積が小さくなって、
電流密度が高くなり、分極が大きくなって、正極の利用
率が低下するという問題があった。
Therefore, the contact area between the positive electrode and the electrolyte becomes smaller,
There was a problem in that the current density increased, polarization increased, and the utilization rate of the positive electrode decreased.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、正極活物質粉末をあらかじめ電解液または電
解液溶媒で湿らせておいてから加圧成形して、加圧成形
体中に気泡が存在しな(なるようにするか、または正極
活物質粉末を加圧成形したのち、電解液または電解液溶
媒中で減圧脱気処理することにより、加圧成形体中に気
泡が存在しなくなるようにして、電解液と正極との接触
面積を大きくし、電流密度を低くし、分極を小さくして
、正極の利用率を向上させたものである。
In the present invention, the positive electrode active material powder is pre-moistened with an electrolyte or an electrolyte solvent and then pressure-molded so that no air bubbles are present in the press-molded product, or the positive electrode active material powder is After the material powder is pressure-molded, it is degassed under reduced pressure in an electrolyte or an electrolyte solvent to eliminate air bubbles in the press-molded product and increase the contact area between the electrolyte and the positive electrode. However, the current density is lowered, polarization is reduced, and the utilization rate of the positive electrode is improved.

本発明において、正極活物質粉末を湿らすための湿潤処
理または正極活物質を加圧成形したのちの成形体の減圧
脱気処理を、電解液または電解液溶媒で行うのは、従来
の加圧成形体中に存在していた気泡を電解液または電解
液溶媒で置換するためであり、そうすることによって加
圧成形体をそのまま正極として電池組立に供することが
できるからである。
In the present invention, the wetting treatment for moistening the positive electrode active material powder or the vacuum degassing treatment of the molded body after pressure molding the positive electrode active material using an electrolyte or an electrolyte solvent is different from conventional pressurization. This is to replace the air bubbles present in the molded body with the electrolytic solution or electrolyte solvent, and by doing so, the press-molded body can be used as a positive electrode for battery assembly.

本発明において、正極活物質としては、例えば二硫化チ
タン(TiS2)、二硫化モリブデン(MoS2)、三
硫化モリブデン(MoS3)、硫化ジルコニウム(Zr
S2)、二硫化ニオブ(Nbs2)、三硫化リンニッケ
ル(NiPS3)、バナジウムセレナイド(VSez)
、五酸化バナジウム(V2O3)、十三酸化バナジウム
(V6O13)、リチウムコバルト酸化物(LiCo0
2)などが用いられる。また、負極にはリチウムまたは
リチウム合金が用いられる。リチウム合金としては、例
えばりチウム−アルミニウム、リチウム−鉛、リチウム
−インジウム、リチウム−ガリウム−インジウム、リチ
ウム−マグネシウム、リチウム−亜鉛などのリチウム合
金が用いられる。
In the present invention, examples of positive electrode active materials include titanium disulfide (TiS2), molybdenum disulfide (MoS2), molybdenum trisulfide (MoS3), and zirconium sulfide (Zr).
S2), niobium disulfide (Nbs2), phosphorous nickel trisulfide (NiPS3), vanadium selenide (VSez)
, vanadium pentoxide (V2O3), vanadium dexaoxide (V6O13), lithium cobalt oxide (LiCo0
2) etc. are used. Furthermore, lithium or a lithium alloy is used for the negative electrode. As the lithium alloy, for example, lithium alloys such as lithium-aluminum, lithium-lead, lithium-indium, lithium-gallium-indium, lithium-magnesium, and lithium-zinc are used.

そして、電解液には、例えばプロピレンカーボネート、
T−ブチロラクトン、テトラヒドロフラン、1.2−ジ
メトキシエタン、1.2−ジェトキシエタン、1.3−
ジオキソラン、4−メチル−1,3−ジオキソランなど
の有機溶媒の単独もしくは2種以上の混合溶媒を電解液
溶媒とし、これに例えばLiClO4、LiPF6、l
、1AsF6、Li5bF6、l、1BF4、LiB(
C6H5)4などの電解質の1種または2種以上を溶解
した有機電解液が用いられる。また、l、1PFBなど
の電解質の熱安定性を高めるために、ヘキサメチルホス
ホリックトリアミドなどの安定化剤を添加することも好
ましく採用される。
The electrolyte contains, for example, propylene carbonate,
T-butyrolactone, tetrahydrofuran, 1.2-dimethoxyethane, 1.2-jethoxyethane, 1.3-
A single or mixed solvent of two or more organic solvents such as dioxolane and 4-methyl-1,3-dioxolane is used as the electrolyte solvent, and for example, LiClO4, LiPF6, l
, 1AsF6, Li5bF6, l, 1BF4, LiB(
An organic electrolytic solution in which one or more types of electrolytes such as C6H5)4 are dissolved is used. Furthermore, in order to enhance the thermal stability of electrolytes such as 1 and 1PFB, it is also preferably employed to add a stabilizer such as hexamethylphosphoric triamide.

本発明の実施にあたり、正極活物質粉末を電解液または
電解液溶媒で湿らすが、この湿潤処理は、正極活物質粉
末を電解液または電解液溶媒に浸漬するか、あるいは正
極活物質粉末に電解液または電解液溶媒を散布すること
によって行われる。
In carrying out the present invention, the positive electrode active material powder is wetted with an electrolytic solution or an electrolytic solution solvent, and this wetting treatment is performed by immersing the positive electrode active material powder in the electrolytic solution or an electrolytic solution solvent, or by electrolyzing the positive electrode active material powder into an electrolyte. This is done by spraying a liquid or electrolyte solvent.

そして、そのように正極活物質粉末を電解液または電解
液溶媒で湿らせて加圧成形することによって、加圧成形
体中の粒子間の隙間は電解液または電解液溶媒で占めら
れて気泡が存在しなくなる。
By wetting the positive electrode active material powder with an electrolyte or electrolyte solvent and press-molding it, the gaps between the particles in the press-molded body are occupied by the electrolyte or electrolyte solvent, and air bubbles are eliminated. cease to exist.

また、正極活物質粉末の加圧成形体を電解液または電解
液溶媒中で減圧脱気すると、加圧成形体中の粒子間の隙
間に存在していた気泡は電解液または電解液溶媒で置換
され、加圧成形体中の粒子間の隙間には気泡が存在しな
(なり、正極と電解液とが広い面積で接触するようにな
る。なお、正極活物質粉末を電解液または電解液溶媒で
湿らす程度は、正極活物質粉末の表面が電解液または電
解液溶媒で覆われ、しっとりと湿っている程度にするの
がよく、電解液や電解液溶媒が多すぎてスラリー状態に
なると、加圧成形にあたって金型に充填する際に取り扱
いに((なる。
In addition, when a press-molded body of positive electrode active material powder is degassed under reduced pressure in an electrolyte or an electrolyte solvent, the air bubbles existing in the gaps between particles in the press-molded body are replaced by the electrolyte or electrolyte solvent. As a result, there are no air bubbles in the gaps between particles in the press-molded body, and the positive electrode and electrolyte come into contact over a wide area. It is best to moisten the powder to the extent that the surface of the positive electrode active material powder is covered with the electrolyte or electrolyte solvent and is moist. If there is too much electrolyte or electrolyte solvent and it becomes a slurry, It becomes difficult to handle when filling the mold during pressure molding.

そして、使用する正極活物質の種類によって黒鉛などの
導電助剤を必要とする場合には、正極活物質と導電助剤
とが共存した状態で電解液または電解液溶媒で湿潤処理
すればよいし、また加圧成形後、電解液または電解液溶
媒中で減圧脱気処理をすればよい、また、結着剤を要す
る場合も、結着剤を正極活物質などと共存した状態で加
圧成形し、得られた加圧成形体を電解液または電解液溶
媒中で減圧脱気処理をすればよい。
If a conductive agent such as graphite is required depending on the type of positive electrode active material used, it is sufficient to perform a wet treatment with an electrolyte or an electrolyte solvent while the positive electrode active material and conductive agent coexist. In addition, after pressure molding, degassing under reduced pressure may be performed in the electrolyte solution or electrolyte solvent.Also, if a binder is required, pressure molding is performed with the binder coexisting with the positive electrode active material, etc. Then, the obtained press-molded body may be subjected to a vacuum degassing treatment in an electrolytic solution or an electrolytic solution solvent.

〔実施例〕〔Example〕

つぎに実施例をあげて本発明をさらに詳細に説明する。 Next, the present invention will be explained in more detail by giving examples.

実施例1 平均粒径約7μ−の二硫化チタン粉末を下記に示す電解
液に浸漬し、引き上げた後、湿潤状態で13mAh相当
量秤取して金型に充填し、100kg/dの圧力で加圧
成形して直?17.0mm、 1)さ約0.5−鵬の加
圧成形体を作製した。電解液は4−メチル−1,3−ジ
オキソランと1.2−ジメトキシエタンとヘキサメチル
ホスホリックトリアミドの容量比60:35:5の混合
溶媒にLiF2を1mol/ltの割合で溶解した有機
電解液である。
Example 1 Titanium disulfide powder with an average particle size of about 7μ was immersed in the electrolytic solution shown below, pulled up, weighed out in a wet state in an amount equivalent to 13mAh, filled into a mold, and heated at a pressure of 100kg/d. Directly after pressure molding? A pressure-molded body having a diameter of 17.0 mm and a diameter of approximately 0.5 mm was prepared. The electrolyte was an organic electrolyte in which LiF2 was dissolved at a ratio of 1 mol/lt in a mixed solvent of 4-methyl-1,3-dioxolane, 1,2-dimethoxyethane, and hexamethylphosphoric triamide in a volume ratio of 60:35:5. It is a liquid.

上記のようにして作製した加圧成形体を正極として用い
、負極にはリチウムを用い、電解液には上記と同組成の
有機電解液を用い、常法に準じて電池組立を行い、第1
図に示す構造のリチウム電池を製造した。
Using the pressure-molded body produced as described above as a positive electrode, lithium as a negative electrode, and an organic electrolyte having the same composition as above as an electrolyte, a battery was assembled according to a conventional method.
A lithium battery with the structure shown in the figure was manufactured.

第1図において、1は負極で、上述のようにすチウムか
らなり、この負極1のリチウムの電気量は正極の二硫化
チタンの電気量より多(されている、2は前述のように
して作製された正極である、3は微孔性ポリプロピレン
フィルムからなるセパレータ、4はポリプロピレン不織
布からなる電解液吸収体であり、前述の電解液は主とし
てこの電解液吸収体4とセパレータ3に吸蔵され、一部
は正極2内に含浸されている。5はポリプロピレン製の
環状ガスケットで、6はステンレス鋼製で外面にニッケ
ルメッキを施した負極缶、7はステンレス鋼製で外面に
ニッケルメッキを施した正極缶で、8はステンレス鋼製
網からなる負極側の集電体である。
In FIG. 1, 1 is a negative electrode, which is made of lithium as mentioned above, and the amount of electricity of lithium in this negative electrode 1 is greater than the amount of electricity of titanium disulfide in the positive electrode. In the produced positive electrode, 3 is a separator made of a microporous polypropylene film, 4 is an electrolyte absorber made of a polypropylene nonwoven fabric, and the above-mentioned electrolyte is mainly occluded in the electrolyte absorber 4 and the separator 3, A portion is impregnated into the positive electrode 2. 5 is an annular gasket made of polypropylene, 6 is a negative electrode can made of stainless steel with nickel plating on the outside, and 7 is made of stainless steel with nickel plating on the outside. In the positive electrode can, 8 is a current collector on the negative electrode side made of a stainless steel mesh.

実施例2 平均粒径約7μmの二硫化チタン粉末を13mAh相当
量金型に充填し、100kg/−の圧力で加圧成形し、
直径7.0−一、厚さ約0.5−一の加圧成形体を作製
した。上記加圧成形体をコック付きの容器に入れ、実施
例1と同様の電解液を注入して、加圧成形体が電解液中
に浸漬した状態にし、オイルレスロータリーポンプで約
IQ+w+sHgに減圧し、コックを閉じて5分間放置
した。この操作を3回繰り返した後、加圧成形体を容器
中から取り出し、それを正極として用いたほかは実施例
1と同様にしてリチウム電池を製造した。なお、上記の
ように減圧状態でコックを閉じて5分間放置したのは、
吸引を続けると電解液が揮発して電解液の損失が多くな
るので、この放置期間中に加圧成形体中の気体をぬき出
して容器内に満たしておき、それを吸引することによっ
て、できるだけ選択的に加圧成形体中から気体を脱気す
るためである。
Example 2 Titanium disulfide powder with an average particle size of about 7 μm was filled into a mold in an amount equivalent to 13 mAh, and pressure molded at a pressure of 100 kg/-.
A pressure-molded body having a diameter of 7.0 mm and a thickness of about 0.5 mm was produced. The press-molded body was placed in a container with a stopcock, and the same electrolyte as in Example 1 was poured into it, so that the press-molded body was immersed in the electrolyte, and the pressure was reduced to approximately IQ+w+sHg using an oilless rotary pump. , the stopcock was closed and left for 5 minutes. After repeating this operation three times, the press-molded body was taken out from the container and a lithium battery was produced in the same manner as in Example 1, except that it was used as a positive electrode. In addition, as mentioned above, closing the cock and leaving it for 5 minutes in a reduced pressure state
If the suction is continued, the electrolyte will volatilize and the loss of the electrolyte will increase. Therefore, during this standing period, the gas in the press-molded body is drawn out and filled in the container, and by suctioning it, the electrolyte is removed as much as possible. This is to selectively remove gas from the press-molded body.

比較例1 平均粒径約7μmの二硫化チタン粉末を、実施例1のよ
うに電解液で湿らすことなく、そのまま13mAh相当
量金型に充填し、100kg/ajの圧力で加圧成形し
て直径1.0mm、厚さ約0.5+u+の加圧成形体を
作製した。この加圧成形体を、実施例2のような電解液
中での減圧脱気処理することなく、そのまま正極として
電池組立に供し、それ以外は実施例1と同様にしてリチ
ウム電池を製造した。
Comparative Example 1 Titanium disulfide powder with an average particle size of about 7 μm was filled into a mold in an amount equivalent to 13 mAh without being moistened with an electrolytic solution as in Example 1, and then pressure-molded at a pressure of 100 kg/aj. A pressure-molded body having a diameter of 1.0 mm and a thickness of approximately 0.5+u+ was produced. This press-molded body was used as a positive electrode for battery assembly without being subjected to vacuum degassing in an electrolytic solution as in Example 2, and a lithium battery was manufactured in the same manner as in Example 1 except for this.

上記のようにして得られた実施例1〜2の電池および比
較例1の電池を25℃、放電電流0・76mA(正極の
みかけ表面積あたり2mA/all)で放電した。その
結果を第2図に示す。
The batteries of Examples 1 and 2 and the battery of Comparative Example 1 obtained as described above were discharged at 25° C. at a discharge current of 0.76 mA (2 mA/all per apparent surface area of the positive electrode). The results are shown in FIG.

第2図に示すように、実施例1〜2の電池は、比較例1
の電池に比べて、同じ放電容量で見た場合の電池電圧の
低下、つまり分極が小さかった。
As shown in FIG. 2, the batteries of Examples 1 and 2 are
Compared to other batteries, the drop in battery voltage, or polarization, was smaller when looking at the same discharge capacity.

そのため、終止電圧を1.5vで設定した時の放電容量
は、実施例1の電池で8.5mAh、実施例2の電池で
8.9mAhで、比較例1の電池で6.6mAhであり
、実施例1〜2では比較例1に比べて大きな放電容量が
得られた。これは実施例1〜2では前述したように分極
が小さいため、正極の利用率が向上した結果によるもの
と考えられる。
Therefore, the discharge capacity when the final voltage was set at 1.5 V was 8.5 mAh for the battery of Example 1, 8.9 mAh for the battery of Example 2, and 6.6 mAh for the battery of Comparative Example 1. In Examples 1 and 2, a larger discharge capacity was obtained than in Comparative Example 1. This is considered to be due to the fact that in Examples 1 and 2, the polarization was small as described above, so the utilization rate of the positive electrode was improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るリチウム電池の一例を示す断面図
であり、第2図は実施例1〜2の電池と比較例1の電池
の放電特性を示す図である。 l・・・負極、 2・・・正極、 3・・・セパレータ
、4・・・電解液吸収体 第  1  図 第  2  図 放電容量(mAh)
FIG. 1 is a sectional view showing an example of a lithium battery according to the present invention, and FIG. 2 is a diagram showing the discharge characteristics of the batteries of Examples 1 and 2 and the battery of Comparative Example 1. 1... Negative electrode, 2... Positive electrode, 3... Separator, 4... Electrolyte absorber Figure 1 Figure 2 Discharge capacity (mAh)

Claims (1)

【特許請求の範囲】[Claims] (1)正極活物質粉末を電解液または電解液溶媒で湿ら
せて加圧成形するか、または正極活物質粉末を加圧成形
したのち、電解液または電解液溶媒中に浸漬して減圧脱
気することを特徴とするリチウム電池の製造方法。
(1) Wet the positive electrode active material powder with an electrolytic solution or an electrolytic solution solvent and pressure mold it, or after pressure molding the positive electrode active material powder, immerse it in the electrolytic solution or electrolyte solvent and degas it under reduced pressure. A method for manufacturing a lithium battery, characterized by:
JP61101851A 1986-04-30 1986-04-30 Manufacture of lithium cell Pending JPS62256363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61101851A JPS62256363A (en) 1986-04-30 1986-04-30 Manufacture of lithium cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61101851A JPS62256363A (en) 1986-04-30 1986-04-30 Manufacture of lithium cell

Publications (1)

Publication Number Publication Date
JPS62256363A true JPS62256363A (en) 1987-11-09

Family

ID=14311546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61101851A Pending JPS62256363A (en) 1986-04-30 1986-04-30 Manufacture of lithium cell

Country Status (1)

Country Link
JP (1) JPS62256363A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03201360A (en) * 1989-12-27 1991-09-03 Fuji Elelctrochem Co Ltd Manufacture of positive electrode mixture for manganese dry cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03201360A (en) * 1989-12-27 1991-09-03 Fuji Elelctrochem Co Ltd Manufacture of positive electrode mixture for manganese dry cell

Similar Documents

Publication Publication Date Title
EP0021735B1 (en) Zinc electrode for secondary electrochemical cells and electrochemical cells including said electrode
JPH07326342A (en) Negative electrode for lithium secondary battery, and lithium secondary battery using the same
CN109860603A (en) Lithium battery pole slice and preparation method thereof and lithium battery
JP4223705B2 (en) Nonaqueous electrolyte battery and manufacturing method thereof
EP0307209B1 (en) A battery
KR20150065078A (en) Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JPS6166369A (en) Lithium secondary battery
JP2000311692A (en) Manufacture of electrochemical element
JPH0352187B2 (en)
JPS62256363A (en) Manufacture of lithium cell
JPS63314766A (en) Organic electrolyte cell having activated carbon metal oxide composite as positive electrode
CN115117328A (en) Silicon-based negative electrode material, preparation method thereof and lithium ion battery
JPH07296795A (en) Negative electrode for lithium secondary battery, and lithium secondary battery using it
CN113809285A (en) Silicon-based composite negative electrode material, preparation method thereof and all-solid-state lithium battery
JPS5819866A (en) Manufacture of cadmium electrode for secondary battery
CN218241888U (en) Lithium belt and lithium battery comprising same
CN112599843B (en) Sandwich structure hybrid electrolyte, preparation method and application thereof, and solid-state lithium battery
JPH0429189B2 (en)
JPH1173973A (en) Lithium ion battery
JP3434557B2 (en) Non-aqueous solvent secondary battery
JP2552393B2 (en) Lithium battery
JP2002506277A (en) Manufacturing method of electrochemical cell using solvent extraction technology
JPH103940A (en) Nickel-metal hydride storage battery and its manufacture
JP4501246B2 (en) Control valve type stationary lead acid battery manufacturing method
JPH0318304B2 (en)