JPS62254003A - Scanning optical edge discriminator - Google Patents

Scanning optical edge discriminator

Info

Publication number
JPS62254003A
JPS62254003A JP9733886A JP9733886A JPS62254003A JP S62254003 A JPS62254003 A JP S62254003A JP 9733886 A JP9733886 A JP 9733886A JP 9733886 A JP9733886 A JP 9733886A JP S62254003 A JPS62254003 A JP S62254003A
Authority
JP
Japan
Prior art keywords
pulse
measured
circuit
light
article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9733886A
Other languages
Japanese (ja)
Other versions
JPH0460526B2 (en
Inventor
Hideaki Jinnai
秀明 神内
Yuuji Akishiba
雄二 秋柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keyence Corp
Original Assignee
Keyence Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keyence Corp filed Critical Keyence Corp
Priority to JP9733886A priority Critical patent/JPS62254003A/en
Publication of JPS62254003A publication Critical patent/JPS62254003A/en
Publication of JPH0460526B2 publication Critical patent/JPH0460526B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To accurately discriminate the end part of an article to be measured even if the number of rotations of a motor vary and the article to be measured displaces, by correcting the interval of the output pulse of a binarization circuit during scanning in a correction circuit. CONSTITUTION:The light from a light projection element 1 is scanned plural times and the end part of an article 6 to be measured is discriminated from the output signal of a photodetector 7 generated by shielding the article 6 to be measured arranged between the element 1, and photodetector 7. At this time, the light receiving signal (a) of the photodetector 7 reaching from the element 1 is amplified and binarized by an amplifier 8 and inputted to a pulse converter 19 as a pulse (g). The pulse group (h) outputted from the pulse converter 19 corresponding to the rising and falling of the pulse (g) is constituted of four extremely short pulses. The clock pulse outputted from an oscillation circuit 11 is counted by a count circuit 12 and the signal thereof is transmitted to a latch circuit 20. The latch circuit 20 latches the count signal on the basis of the pulse group (h) to transmit the same to a correction circuit 21 where correction is performed on the basis of the difference between the count values of previous and present signals to measure the accurate outer diameter of the article 6 to be measured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は測定対象物の外径測定、端部判別。[Detailed description of the invention] [Industrial application field] This invention is for measuring the outer diameter of the object to be measured and identifying the edges.

中空部測定等を行う走査型光学式端部判別器に関し、特
に微小なものを測定対象物とし、かつ小型化された走査
型光学式端部判別器に関する。
The present invention relates to a scanning optical end discriminator for measuring hollow parts, etc., and in particular to a miniaturized scanning optical end discriminator that measures minute objects.

〔従来の技術〕[Conventional technology]

走査型光学式端部判別器の用途として一般によく使用さ
れるのは、外径測定である。それゆえ以下、走査型光学
式端部判別器の1使用形態である走査型光学式外径測定
器を例に採り説明する。
A scanning optical end discriminator is commonly used to measure outer diameter. Therefore, a scanning optical outer diameter measuring device, which is one usage form of a scanning optical end discriminator, will be explained below as an example.

走査型の光学式外径測定器は非接触で外径測定ができる
ので、測定対象物が移動物体、高温物体等の場合によく
用いられる。以下、この走査型の光学式外径測定器の原
理説明を第3図に基づいて行う。
Since a scanning type optical outer diameter measuring device can measure the outer diameter without contact, it is often used when the object to be measured is a moving object, a high-temperature object, or the like. Hereinafter, the principle of this scanning type optical outer diameter measuring instrument will be explained based on FIG. 3.

レーザ管lから投射されたレーザビームは固定ミラー2
により反射され、回転ミラー3で再度反射され走査ビー
ムに変換される。走査ビームはコリメータレンズ4によ
り平行走査ビームに変換され、コリメータレンズ4と集
光レンズ5の間に配置された測定対象物6を高速走査す
る。この際、測定対象物6の遮蔽によって生じた平行走
査ビームの暗部または明部の時間の長さから、測定対象
物6の外径を測定するようにしている。
The laser beam projected from the laser tube l passes through the fixed mirror 2.
The beam is reflected by the rotating mirror 3 and converted into a scanning beam. The scanning beam is converted into a parallel scanning beam by the collimator lens 4, and scans the object to be measured 6 placed between the collimator lens 4 and the condenser lens 5 at high speed. At this time, the outer diameter of the object to be measured 6 is measured from the length of the dark or bright portion of the parallel scanning beam caused by the shielding of the object to be measured 6.

すなわち、測定対象物6の遮蔽による平行走査ビームの
明暗は、集光レンズ5の焦点位置に載置された受光素子
7の出力信号aの変化となって検出される。この出カイ
、1号aは増幅器8により増幅・2値化され、セグメン
ト選択回路9に伝達される。セグメント選択回路9は、
測定対象物6の外径に対応した走査時間したけ受光素子
7の受光信号をゲート回路10に伝達する。ゲート回路
10にはり1コックパルス発振2% 11からクロック
パルスCPも入力されているので、ゲート回路10は上
記走査時間tにおけるクロックパルスPを計数回路12
に伝達する。計数回路12は入力されたりIコ・−クバ
ルス1)を計数し、表示器136ごその計数値を伝達す
る。
That is, the brightness or darkness of the parallel scanning beam due to the shielding of the measurement object 6 is detected as a change in the output signal a of the light receiving element 7 placed at the focal position of the condenser lens 5. This output, No. 1 a, is amplified and binarized by an amplifier 8 and transmitted to a segment selection circuit 9. The segment selection circuit 9 is
The light reception signal of the light receiving element 7 is transmitted to the gate circuit 10 for a scanning time corresponding to the outer diameter of the object 6 to be measured. Since the gate circuit 10 also receives the clock pulse CP from the beam 1 cock pulse oscillation 2% 11, the gate circuit 10 inputs the clock pulse P at the scanning time t to the counting circuit 12.
to communicate. The counting circuit 12 counts the input clock pulses 1) and transmits the counted value to the display 136.

表示器13はこの計数値に基づき、測定対象物60)外
径を表示する。
The display 13 displays the outer diameter of the object to be measured 60) based on this counted value.

しかし2、この走査型光学式外径測定器には回転ミラー
3を回動させるモータ(図示省略)の回転数に変動が生
じた際に、何の対策も考慮されていない。その結果測定
値に誤差が生じる。高精度なモータを使用すれば前記変
動は些少であり、測定誤差も僅かである。けれども、8
ぞれは高価でありか°つ大型であるため、安価で小型化
された走査型光学式外径測定器の提供はこのモータを用
いたのでは不司能である。また、極めて精密な測定(1
μm単位)を行・)ことはこのモータを使用しても困難
である。
However, 2. this scanning optical outer diameter measuring instrument does not take into account any countermeasures when the rotational speed of the motor (not shown) that rotates the rotary mirror 3 changes. As a result, errors occur in the measured values. If a high-precision motor is used, the fluctuations will be small and the measurement error will be small. However, 8
Since each of these motors is expensive, large, and large, it is impossible to provide an inexpensive and compact scanning optical outer diameter measuring instrument using this motor. In addition, extremely precise measurements (1
Even if this motor is used, it is difficult to perform a line (in μm).

この問題点を解決するために、モータの回転数変動によ
る測定誤差の補正を行う方法が提案さj゛1゜ている。
In order to solve this problem, a method has been proposed for correcting measurement errors due to variations in the rotational speed of the motor.

この方法を用いた走査型光学式外径測定器は、第4図に
示すように、上記走査型光学式外径測定器(第3図参照
)のコリメータレンズ4の近傍に2つの受光素子14a
、14bを固設して、モータに連動された固定ミラー3
の回転を監視する構成に差異がある。受光素子14aの
出力信号すを波形整形器15がパルスb′に、受光素子
14bの出力信号Cを波形整形器16がパルスC゛に各
々2値化する。パルスb°によりフリ・ノブフロップ1
7はセットされ、パルスC゛によりリセットされる。
As shown in FIG. 4, a scanning optical outer diameter measuring instrument using this method has two light receiving elements 14a near the collimator lens 4 of the scanning optical outer diameter measuring instrument (see FIG. 3).
, 14b are fixedly installed, and the fixed mirror 3 is linked to a motor.
There is a difference in the configuration for monitoring the rotation of the A waveform shaper 15 binarizes the output signal of the light receiving element 14a into a pulse b', and a waveform shaper 16 binarizes the output signal C of the light receiving element 14b into a pulse C'. Free knob flop 1 due to pulse b°
7 is set and reset by pulse C'.

それゆえ、フリップフロップ17はパルスb′の立ち上
がりに応じて立ち上がり、パルスC゛の立ち下がりに応
じて立ち下がるパルスdを出力する。
Therefore, the flip-flop 17 outputs a pulse d which rises in response to the rise of the pulse b' and falls in response to the fall of the pulse C'.

この六ルスdおよびクロックパルス発振器11からのク
ロックパルスCPを入力して、ゲート回路10bはパル
スeを出力する。このパルスeを入力して、計数回路1
2bは受光素子14aから受光素子14bまでの走査時
間を計測する。
Inputting this pulse d and the clock pulse CP from the clock pulse oscillator 11, the gate circuit 10b outputs the pulse e. By inputting this pulse e, the counting circuit 1
2b measures the scanning time from the light receiving element 14a to the light receiving element 14b.

一方、受光素子7の受光信号aは増幅器8およびセグメ
ント選択回路9を経由して、ゲート回路10aに伝達さ
れる。ゲート回路10aはクロックパルスCPに基づき
、パルスfを出力する。このパルスfを入力して、計数
回路12aは測定対象物6の遮蔽による暗部の走査時間
(外径に対応)を計測する。
On the other hand, the light-receiving signal a of the light-receiving element 7 is transmitted to the gate circuit 10a via the amplifier 8 and the segment selection circuit 9. The gate circuit 10a outputs a pulse f based on the clock pulse CP. Inputting this pulse f, the counting circuit 12a measures the scanning time (corresponding to the outer diameter) of the dark area caused by the shielding of the measuring object 6.

計数回路12a、12bの出力信号を入力する演算補正
回路18は、計数回路12bの出力信号により計数回路
12aの出力信号を補正する。すなわち、受光素子14
aから受光素子14bまでの走査時間はモータの回転数
が一定であるならば、常時一定の所要時間となる。した
がってこの走査時間により、測定対象物6の遮蔽による
暗部の走査時間を補正してやれば、モータの回転数に変
動が生じても常に正確な外径測定が可能となる。
An arithmetic correction circuit 18, which receives the output signals of the counting circuits 12a and 12b, corrects the output signal of the counting circuit 12a using the output signal of the counting circuit 12b. That is, the light receiving element 14
The scanning time from a to the light receiving element 14b is always a constant time if the rotational speed of the motor is constant. Therefore, by correcting the scanning time of the dark area due to the shielding of the object 6 to be measured using this scanning time, it is possible to always accurately measure the outer diameter even if the rotational speed of the motor varies.

〔発明が解決し2ようとする問題点〕 ところが、この方法には次のような2つの重大な問題点
かあ、った。まず、第1の問題点について述べる。走査
ビームの径はコリメータレンズ4と集光レンズ5(第4
図参照)の中間で、これらレンズの中心部位に応当する
地点で最も微細になるように設定されているので、受光
素子14a、14bの位置では」―記地点と比較しその
径は相当大きくなる。すると、受光素子14 a 、 
14 bの受光信号す。
[Problems that the invention attempts to solve] However, this method has the following two serious problems. First, the first problem will be described. The diameter of the scanning beam is determined by collimator lens 4 and condensing lens 5 (fourth
Since the diameter is set to be the most minute at the point corresponding to the central part of these lenses, which is located in the middle of the center of the lens (see figure), the diameter of the light-receiving elements 14a and 14b is considerably larger than that at the indicated point. . Then, the light receiving element 14a,
14b light reception signal.

Cの立ち上がり、および立ら下がりが緩慢になる。C rises and falls slowly.

それゆえ、フリソブフ1コツプ17の出力パルスdの波
形が不正確になり、ゲート回路10bのゲートの開放時
間を正確に設定できない。
Therefore, the waveform of the output pulse d of the Frisobuf 1 tip 17 becomes inaccurate, and the opening time of the gate of the gate circuit 10b cannot be set accurately.

これを解消するために、受光素子14 a 、 14 
bの前面にレンズ、ナイフェツジ等を配設して、上記受
光信号す、  cの立ち上がりおよび立ち下がりを鋭敏
にすることが提案されている。しかし、部品点数の増加
を招来するとともに構成が複雑になり、走査型光学式外
径測定器の小型化を達成することは困難である。
In order to solve this problem, the light receiving elements 14a, 14
It has been proposed to provide a lens, knife, etc. in front of the light receiving signal (b) to sharpen the rise and fall of the light receiving signals (a) and (c). However, this increases the number of parts and complicates the configuration, making it difficult to downsize the scanning optical outer diameter measuring instrument.

次に、第2の問題点は測定対象物6自身が変位すると、
仮に上記方法を採用してモータの回転数の変動に起因す
る誤差を補正しても、前記変位に起因する測定誤差が生
じ正確な測定が不可能なことである。
Next, the second problem is that when the measurement object 6 itself is displaced,
Even if the above-mentioned method is employed to correct errors caused by fluctuations in the rotational speed of the motor, measurement errors caused by the displacement will occur, making accurate measurement impossible.

この考案はL記問題点に鑑みてなされたものであり、走
査型光学式外径測定器等の走査型光学式端部判別器にお
けるモータの回転数に変動が生じてもそれによる測定誤
差を補正することができ、かつ測定対象物自身が変位し
2ても正確に測定対象物の端部を判別できる走査型光学
式端部判別器を提供することを目的とする。
This idea was made in view of the problem described in L, and is intended to eliminate measurement errors caused by fluctuations in the rotational speed of the motor in scanning optical edge discriminators such as scanning optical outer diameter measuring instruments. It is an object of the present invention to provide a scanning optical end discriminator that can correct the end of the object to be measured and can accurately determine the end of the object to be measured even if the object itself is displaced.

〔問題点を解決するための手段〕[Means for solving problems]

F記問題点を解決し、この目的を達成するための具体的
手段は、投光素子からの光を複数回走査し、この投光素
子と受光素子間にU、置されソコ測定対象物の#;蔽に
より生じた前記受光素子の出力信号から前記測定対象物
の端部を判別する走査型光学式端部判別器において、ク
ロックパルスを出力する発振回路と、前記測定対象物の
端部における前記受光素子の出力信号の立らLがりおよ
び立ち下がりに応じてパルスを出力する2値化回路と、
このパルスを前記クロックパルスに基づいてラッチする
ラッチ回路と、このラッチ回路の出力信号を走査毎に現
走査以前の走査および現走査の前記ラッチ回路の出力信
号により補正する補正回路を具備したことである。
A concrete means for solving the problem described in F and achieving this objective is to scan the light from the light emitting element multiple times, and place the light U between the light emitting element and the light receiving element on the object to be measured. #; In a scanning optical edge discriminator that discriminates the edge of the object to be measured from the output signal of the light receiving element generated by shielding, an oscillation circuit that outputs a clock pulse and a a binarization circuit that outputs pulses in response to rising and falling edges of the output signal of the light receiving element;
The present invention includes a latch circuit that latches this pulse based on the clock pulse, and a correction circuit that corrects the output signal of this latch circuit for each scan by the output signal of the latch circuit of the previous scan and the current scan. be.

〔作  用〕[For production]

この発明は前述のような手段を採ったので、次のような
作用がもたらされる。モータの回転数の変動あるいは測
定対象物自身の変位が発生すると、受光素子の出力信号
の立ち上がりおよび立ち下がりに応じて出力される2値
化回路のパルスの各々の間隔に、前記発生がない場合と
の誤差が生じる。
Since this invention employs the above-mentioned means, the following effects are brought about. When fluctuations in the rotational speed of the motor or displacement of the object to be measured occur, the above-mentioned occurrence does not occur in the intervals between the pulses of the binarization circuit that are output in response to the rising and falling edges of the output signal of the light receiving element. An error will occur.

そこでこの誤差を補正するために、ラッチ回路がラッチ
した現走査以前の走査のこれらパルスの計数値と、現に
走査中のパルスの計数値を補正回路において演算処理す
る。すなわち、現走査以前の走査と現走査における対応
するパルスの間隔は、l走査時間の整数倍に該当する。
Therefore, in order to correct this error, the correction circuit performs arithmetic processing on the count values of these pulses in the scans before the current scan latched by the latch circuit and the count values of the pulses currently being scanned. That is, the interval between corresponding pulses in the scan before the current scan and the current scan corresponds to an integral multiple of l scan time.

したがってこの間隔により、モータの回転数の変動およ
び測定対象物自身の変位が把握できる。それゆえ、現走
査中の2値化回路の出力パルスの間隔を補正回路におい
て補正することにより、測定対象物の端部の判別を正確
に成しうる。
Therefore, from this interval, fluctuations in the rotational speed of the motor and displacement of the object to be measured itself can be ascertained. Therefore, by correcting the interval between the output pulses of the binarization circuit during the current scan in the correction circuit, it is possible to accurately determine the edge of the object to be measured.

〔実 施 例〕〔Example〕

この発明を、走査型光学式外径測定器として用いた1実
施例に基づいて、以下詳細に説明する。
The present invention will be described in detail below based on an embodiment in which the invention is used as a scanning optical outer diameter measuring device.

なお、従来例と同一部分は同一記号を付しその説明を簡
略化する。
Note that the same parts as in the conventional example are given the same symbols to simplify the explanation.

第1図に示すように、この発明に係る走査型光学式端部
判別器の構成は従来例(第3図参照)と比較し、レーザ
管lからのレーザ光が受光素子7に到達するまでの構成
要素は同一である。受光素子7の受光信号aは増幅器8
で増幅・2値化され、第2図(g)に示すようなパルス
gが出力される。
As shown in FIG. 1, the configuration of the scanning optical end discriminator according to the present invention is different from that of the conventional example (see FIG. 3) until the laser light from the laser tube 1 reaches the light receiving element 7. The components of are the same. The light-receiving signal a of the light-receiving element 7 is sent to the amplifier 8.
The signal is amplified and binarized, and a pulse g as shown in FIG. 2(g) is output.

パルス変換器19はこのパルスgを入力し、パルス[の
立ちトがりおよび立ち下がりに応じて、同図(h)に示
すようなパルス群りを出力する。このパルス群りは、4
個のパルス幅の極短いパルス1゜2.3.4から構成さ
れている。この実施例においては、パルス2からパルス
3までの間隔イが測定対象物6の外径に対応している。
The pulse converter 19 inputs this pulse g and outputs a pulse group as shown in FIG. This pulse group is 4
It consists of extremely short pulses with a pulse width of 1°2.3.4. In this embodiment, the interval A from pulse 2 to pulse 3 corresponds to the outer diameter of the object 6 to be measured.

また、パルス1からパルス4までの間隔口がレーザ光の
1走査時間に対応している。
Further, the interval from pulse 1 to pulse 4 corresponds to one scanning time of the laser beam.

一方、発振器11から出力されたクロ・ツクパルスは計
数回路12に伝達され、ここで計数される。この計数値
は計数信号として、ラッチ回路2oに伝達される。ラッ
チ回路20は上記パルス変換器19の出カバルス群りに
基づき、この計数信号をラッチする。ラッチされた計数
信号は補正回路21に伝達されるゆ 補正回路21では、第2図(h)に示すように、前回の
走査におけるパルス群りのパルス2゛の計数値と、今回
の走査におけるパルス群りのパルス2の計数値の差異ハ
に基づいて、測定対象1716の外径であるパルス2の
計数値とパルス3の計数値の差異イを補正する。
On the other hand, the clock pulses output from the oscillator 11 are transmitted to the counting circuit 12 and counted there. This count value is transmitted to the latch circuit 2o as a count signal. The latch circuit 20 latches this count signal based on the output pulse group of the pulse converter 19. The latched count signal is transmitted to the correction circuit 21, and as shown in FIG. Based on the difference (c) between the counts of pulse 2 in the pulse group, the difference (a) between the counts of pulse 2 and pulse 3, which is the outer diameter of the measurement object 1716, is corrected.

すなわち、パルス2゛とパルス2の計数値の差異ハは、
モータの回転数の変動および測定対象物6の変位に対応
して変動する。モータの回転数の遅延、あるいは測定対
象物6のレーザ光走査方向(第1図において下方向)へ
の移動により、この差異ハは大きくなる。反対に、モー
タの回転数の促進、あるいは測定対象物6のレーザ光走
査方向と逆方向への移動により、この差異ハは小さくな
る。したがって、この差異ハを基準設定値と比較するこ
とにより、上記モータの回転数の変動および測定対象物
6の変位を検知し、それに基づいて測定対象物6の外径
に対応するパルス2とパルス3の計数値の差異イを補正
すれば、測定対象物の正確な外径を計測し得る。
In other words, the difference between the count values of pulse 2 and pulse 2 is:
It fluctuates in response to fluctuations in the rotational speed of the motor and displacement of the object 6 to be measured. This difference becomes larger due to a delay in the rotational speed of the motor or a movement of the object to be measured 6 in the laser beam scanning direction (downward in FIG. 1). On the other hand, this difference C becomes smaller by increasing the rotational speed of the motor or by moving the object to be measured 6 in a direction opposite to the laser beam scanning direction. Therefore, by comparing this difference C with the standard set value, the fluctuation in the rotation speed of the motor and the displacement of the object 6 to be measured are detected, and based on that, the pulse 2 and the pulse corresponding to the outer diameter of the object 6 to be measured are detected. By correcting the difference A in the count values of 3, it is possible to accurately measure the outer diameter of the object to be measured.

この実施例においては、パルス2° とパルス2の計数
値の差異ハをモータの回転数の変動等による測定誤差を
補正するために用いたが、パルス群りの他のパルスを用
いても良い。しかし、後述する理由でこの実施例の方法
が最適なものである。
In this example, the difference between the count values of pulse 2° and pulse 2 was used to correct measurement errors due to fluctuations in motor rotation speed, etc., but other pulses in the pulse group may also be used. . However, the method of this embodiment is the most suitable one for reasons that will be explained later.

まず、パルス群りの対応するパルス1とパルスl゛また
はパルス4とパルス4゛を用いる方法では、従来例で説
明したように、走査]/−ザ光の径がコリメータレンズ
4および集光レンズ5の中心部から離間するほど太くな
るので、受光素子7の受光信号aの立ち上がりおよび立
ち下がりがやや緩慢になり、この実施例と比較し不正確
な測定しか行えない。
First, in the method of using pulses 1 and 1 or pulses 4 and 4, which correspond to each other in the pulse group, as explained in the conventional example, the diameter of the scanning beam is the same as that between the collimator lens 4 and the condenser lens. Since the distance from the center of the light receiving element 5 increases, the rise and fall of the light receiving signal a of the light receiving element 7 become somewhat slow, resulting in inaccurate measurements compared to this embodiment.

次に、パルス群りの対応するパルス3とパルス3°を用
いる方法では、測定対象物の外径測定、あるいは測定対
象物が輪状である際にその中空部の径の測定を行う場合
等には何等問題が生じない。
Next, the method using pulse 3 and pulse 3° corresponding to the pulse group is suitable for measuring the outer diameter of the object to be measured or the diameter of the hollow part of the ring-shaped object. does not cause any problems.

しかし、単に測定対象物の端部の位置測定を行う場合に
は問題が生じる。すなわち、この場合にはパルス変JA
 器19の出力パルス群りのパルス数は、1走査で2個
しか発生しない。したがって3個目のパルスが発生しな
いので、上記目的の際にはこの方法を用いることができ
ない0以上の理由から、パルス群りの2個目のパルスを
用いて補正を行うことが、いかなる測定を対象として行
う場合にも最適である。
However, a problem arises when simply measuring the position of the edge of the object to be measured. That is, in this case, the pulse variation JA
The output pulse group of the device 19 generates only two pulses in one scan. Therefore, since the third pulse is not generated, this method cannot be used for the above purpose.For more than one reason, it is difficult to perform the correction using the second pulse of the pulse group in any measurement. It is also ideal when performing this as a target.

この実施例においては、前回の走査と今回の走査の対応
するパルス群りのパルスを用いて測定誤差の補正を行っ
たが、前々回と前回あるいは前々回と今回というように
、必ずしも現走査の1つ前の走査と比較する必要はない
In this example, the measurement error was corrected using the pulses of the corresponding pulse groups of the previous scan and the current scan. There is no need to compare with previous scans.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、この発明は、投光素子
からの光を複数回走査し、この投光素子と受光素子間に
載置された測定対象物の遮蔽により生じた前記受光素子
の出力信号から前記測定対象物の端部を判別する走査型
光学式端部判別器において、クロックパルスを出力する
発振回路と、前記測定対象物の端部における前記受光素
子の出カイ8号の立ち上がりおよび立ち下がりに応じて
パルスを出力する2値化回路と、このパルスを前記クロ
ックパルスに基づいてラッチするラッチ回路と、このラ
ッチ回路の出力信号を走査毎の現走査以前の走査および
現走査の前記ラッチ回路の出力信号により補正する補正
回路を具備したので、モータの回転数の変動および測定
対象物の変位が発生しても、部品点数の増加およびそれ
に付随する構成の複雑化を招来することなく、正確に測
定対゛象物の端部の測定が可能である。したがって、安
価なモータの使用が可能となるので原価の低減化が達成
される。なお、従来は高価なモータを使用しても補正す
ることが困難であった、測定対象物自身の変位による測
定誤差を補正することができる。また、投光素子からの
光の微細な径の部分の光を用いて測定を行うので、より
正確な測定が可能となる。さらに、モータの回転数の変
動および測定対象物の変位は本質的に等価であるので、
これらが同時に発生しても測定誤差を補正することが可
能である。
As is clear from the above description, the present invention scans the light from the light emitting element multiple times, and the light receiving element that is generated by the shielding of the measurement object placed between the light emitting element and the light receiving element. In a scanning optical edge discriminator that determines the edge of the object to be measured from an output signal, an oscillation circuit that outputs a clock pulse and a rising edge of output No. 8 of the light receiving element at the edge of the object to be measured are provided. and a binarization circuit that outputs a pulse in accordance with the falling edge of the clock pulse, a latch circuit that latches this pulse based on the clock pulse, and an output signal of this latch circuit that outputs a pulse in accordance with the current scan and the current scan. Since a correction circuit is provided for correction based on the output signal of the latch circuit, even if fluctuations in the rotational speed of the motor or displacement of the object to be measured occur, the number of parts will increase and the configuration will become more complicated. Therefore, it is possible to accurately measure the edge of the object to be measured. Therefore, since it is possible to use an inexpensive motor, a reduction in cost can be achieved. Note that it is possible to correct measurement errors due to displacement of the measurement object itself, which was difficult to correct even with the use of an expensive motor in the past. Further, since the measurement is performed using the light from the light projecting element with a small diameter, more accurate measurement is possible. Furthermore, since the fluctuation of the motor rotation speed and the displacement of the object to be measured are essentially equivalent,
Even if these occur simultaneously, it is possible to correct the measurement error.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はこの発明に係る走査型光学式端部
判別器の1実施例の説明図であり、第1図はこの実施例
の機能説明図、 第2図はこの実施例の各部の動作波形図、第3図および
第4図は従来例の説明図であり、。 第3図は走査型光学式外径測定器の原理説明図、第4図
は補正機能付走査型光学式外径測定器の機能説明図であ
る。 l・・・レーザ管(投光素子)、3・・・回転ミラー、
6・・・測定対象物、7・・・受光素子、8・・・増幅
器(2値化回路)、11・・・発振回路、19・・・パ
ルス変換器(2値化回路)、20・・・ラッチ回路、2
1・・・補正回路。
1 and 2 are explanatory diagrams of one embodiment of the scanning optical end discriminator according to the present invention, FIG. 1 is a functional explanatory diagram of this embodiment, and FIG. 2 is an explanatory diagram of this embodiment. The operation waveform diagrams of each part, FIGS. 3 and 4 are explanatory diagrams of a conventional example. FIG. 3 is a diagram explaining the principle of the scanning type optical outer diameter measuring instrument, and FIG. 4 is a diagram explaining the functions of the scanning type optical outer diameter measuring instrument with a correction function. l... Laser tube (light emitting element), 3... Rotating mirror,
6... Measurement object, 7... Light receiving element, 8... Amplifier (binarization circuit), 11... Oscillator circuit, 19... Pulse converter (binarization circuit), 20... ...Latch circuit, 2
1... Correction circuit.

Claims (2)

【特許請求の範囲】[Claims] (1)投光素子からの光を複数回走査し、 この投光素子と受光素子間に載置された測定対象物の遮
蔽により生じた前記受光素子の出力信号から前記測定対
象物の端部を判別する走査型光学式端部判別器において
、 クロックパルスを出力する発振回路と、 前記測定対象物の端部における前記受光素子の出力信号
の立ち上がりおよび立ち下がりに応じてパルスを出力す
る2値化回路と、 このパルスを前記クロックパルスに基づいてラッチする
ラッチ回路と、 このラッチ回路の出力信号を走査毎に現走査以前の走査
および現走査の前記ラッチ回路の出力信号により補正す
る補正回路を具備することを特徴とする走査型光学式端
部判別器。
(1) The light from the light emitting element is scanned multiple times, and the output signal of the light receiving element generated by the shielding of the measurement object placed between the light emitting element and the light receiving element is detected at the edge of the object to be measured. A scanning optical edge discriminator for discriminating an object includes: an oscillation circuit that outputs a clock pulse; and a binary circuit that outputs a pulse in response to the rise and fall of an output signal of the light receiving element at the edge of the object to be measured. a latch circuit that latches this pulse based on the clock pulse, and a correction circuit that corrects the output signal of this latch circuit for each scan by the output signal of the latch circuit of the scan before the current scan and the current scan. A scanning optical end discriminator comprising:
(2)1走査における最初の受光信号の立ち下がりに応
じて出力されるパルスの、前走査から現走査までのクロ
ックパルス数により補正を行う補正回路である特許請求
の範囲第1項記載の走査型光学式端部判別器。
(2) Scanning according to claim 1, which is a correction circuit that corrects the pulse output in response to the falling edge of the first light reception signal in one scan by the number of clock pulses from the previous scan to the current scan. Type optical end discriminator.
JP9733886A 1986-04-25 1986-04-25 Scanning optical edge discriminator Granted JPS62254003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9733886A JPS62254003A (en) 1986-04-25 1986-04-25 Scanning optical edge discriminator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9733886A JPS62254003A (en) 1986-04-25 1986-04-25 Scanning optical edge discriminator

Publications (2)

Publication Number Publication Date
JPS62254003A true JPS62254003A (en) 1987-11-05
JPH0460526B2 JPH0460526B2 (en) 1992-09-28

Family

ID=14189697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9733886A Granted JPS62254003A (en) 1986-04-25 1986-04-25 Scanning optical edge discriminator

Country Status (1)

Country Link
JP (1) JPS62254003A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0290010A (en) * 1988-09-28 1990-03-29 Fujitsu Ltd Measuring apparatus for height
US5175595A (en) * 1990-08-24 1992-12-29 Tokyo Seimitsu Co., Ltd. Non-contact measuring device
JPH0552707U (en) * 1991-12-16 1993-07-13 株式会社ミツトヨ Optical dimension measuring device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0290010A (en) * 1988-09-28 1990-03-29 Fujitsu Ltd Measuring apparatus for height
US5175595A (en) * 1990-08-24 1992-12-29 Tokyo Seimitsu Co., Ltd. Non-contact measuring device
JPH0552707U (en) * 1991-12-16 1993-07-13 株式会社ミツトヨ Optical dimension measuring device

Also Published As

Publication number Publication date
JPH0460526B2 (en) 1992-09-28

Similar Documents

Publication Publication Date Title
JPH0257642B2 (en)
US3393600A (en) Optical ranging apparatus
JPS62254003A (en) Scanning optical edge discriminator
US3326077A (en) Optical device employing multiple slit patterns for zero reference in a shaft encoder
US4332475A (en) Edge timing in an optical measuring apparatus
JP3912644B2 (en) Glass tube measurement method
JPH0443765Y2 (en)
JPH0420527B2 (en)
JPH0355048Y2 (en)
JPH11132729A (en) Dimension measuring device
RU2152011C1 (en) Process measuring torque and device for its realization
JP3912645B2 (en) Glass tube measurement method
JPS62245907A (en) Optical measuring instrument
JPS58205803A (en) Optical measurer
JPS62132418A (en) Binary coding circuit
JP3085341B2 (en) Outline measuring device and method of arranging object to be measured
JPS62128609A (en) Binarization circuit
JPH0716963Y2 (en) Optical scanning measuring device
JPH0654214B2 (en) Scanning optical dimension measuring device
JPS6111684A (en) Optical detecting circuit for surface displacement
JPH09210639A (en) Outer diameter measuring device
JPS6112526B2 (en)
JPS6239691B2 (en)
SU699403A1 (en) Pulsed reflectometer
RU1818532C (en) Levelling automatic device