JP3912645B2 - Glass tube measurement method - Google Patents

Glass tube measurement method Download PDF

Info

Publication number
JP3912645B2
JP3912645B2 JP07249399A JP7249399A JP3912645B2 JP 3912645 B2 JP3912645 B2 JP 3912645B2 JP 07249399 A JP07249399 A JP 07249399A JP 7249399 A JP7249399 A JP 7249399A JP 3912645 B2 JP3912645 B2 JP 3912645B2
Authority
JP
Japan
Prior art keywords
glass tube
laser beam
inner hole
center position
outer periphery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07249399A
Other languages
Japanese (ja)
Other versions
JP2000266517A (en
Inventor
宏和 竹内
正紀 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP07249399A priority Critical patent/JP3912645B2/en
Publication of JP2000266517A publication Critical patent/JP2000266517A/en
Application granted granted Critical
Publication of JP3912645B2 publication Critical patent/JP3912645B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、レーザー光線を用いたガラス管の同心度を測定する測定方法に関する。
【0002】
【従来の技術】
従来、ガラス管の同心度の測定は、次のように行われている。図5に示すように、レーザー測定装置3のレーザー光源4から出射された約680nmの波長を有する赤色のレーザー光線2を、反射鏡を取り付けた回転駆動あるいは往復駆動する反射体からなる偏向手段5により所定の周期で偏向し、偏向されたレーザー光線2をコリメータレンズ6により平行にしてガラス管1の軸方向に対して直角に走査し、ガラス管1を透過したレーザー光線2を集光レンズ7でセンサー8の表面に集光し、ガラス管1の外周1aおよび内孔1bの両エッジ部で生じるレーザー光線2の光量の変化をセンサー8で感知して電圧信号S1に変換する。処理部9では、ガラス管1を走査した部分の電圧信号S1の立ち下がりR1、信号ピークP1、P2、P3、立ち上がりR2と所定の信号レベルV1とが交わって交点▲1▼〜交点▲8▼が生じる。これらの交点のうち、交点▲1▼、▲8▼が外周1aのエッジ部1d、1cと、交点▲3▼、▲6▼が内孔1bのエッジ部1e、1fと、それぞれ対応しており、交点▲1▼の検出時刻と交点▲8▼の検出時刻とを平均して外周1aの両エッジ部1c、1dの中心位置1hに対応する時刻toを算出し、ほぼ同時に得られる交点▲3▼の検出時刻と交点▲6▼の検出時刻とを平均して内孔1bの両エッジ部1e、1fの中心位置1iに対応する時刻tiを算出し、時刻toから時刻tiまでに要する時間を長さに換算してガラス管1の外周1aの中心位置1hから内孔1bの中心位置1iまでの距離を算出する。このような計測処理をガラス管1の外周1aに対して複数方向に行うことにより、ガラス管1の同心度を求めている。出力された同心度の値は、表示部10に表示される。
【0003】
【発明が解決しようとする課題】
しかしながら、ガラス管の光透過率が大きく変化した場合、図5(C)に示すように、ガラス管1の中央部を透過するレーザー光線2aの光量が小さくなり、この光量の変化をセンサー8で感知して電気信号S1aに変換すると、信号ピークP2が信号レベルV1よりも低くなって交点▲4▼、▲5▼が生じず、本来、外周1aの片方のエッジ1dに対応している6番目に所定の信号レベルV1になる交点▲8▼を内孔1bのエッジ部1fに対応する交点▲6▼として誤って検出してしまい、ガラス管1の内孔1bの中心位置1iに対応する時刻tiを算出することができないという問題がある。
【0004】
また、ガラス管1が、乳白色を呈する結晶化ガラスからなり、可視光の光透過率が非常に低い場合、従来の約680nmの波長を有する赤色のレーザー光線2を用いて走査すると、レーザー光線2a等がガラス管1を十分透過せず、ガラス管1を走査した電圧信号S1の信号ピークP1、P2、P3が低くなり、図5(C)と同様に、内孔1bの両エッジ部1e、1fを検出できず、内孔1bの中心位置1iに対応する時刻tiを算出することができないという問題がある。
【0005】
本発明は、上記の従来の問題点を解決したガラス管の同心度の測定方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明に係るガラス管の測定方法は、レーザー光線をガラス管の軸方向に対して直角に、かつガラス管の外周に対して複数方向に走査し、ガラス管の外周および内孔のそれぞれの両エッジ部で生じるレーザー光線の光量の変化をセンサーで感知して電気信号に変換し、電気信号が所定の信号レベルとなる位置を求めてガラス管の外周および内孔のそれぞれの両エッジ部を検出し、一方のエッジ部の位置及び他方のエッジ部の位置から外周および内孔のそれぞれの中心位置を算出し、外周の中心位置と内孔の中心位置との距離から同心度を測定するガラス管の測定方法において、ガラス管を透過するレーザー光線の基準となる光量の計測位置をガラス管の外径寸法に応じて調節することにより内孔の両エッジ部を検出する前記信号レベルを、ガラス管を透過するレーザー光線の光量に応じて調節することを特徴とする。
【0008】
さらに、本発明のガラス管の測定方法は、ガラス管が赤外線領域の光を透過する結晶化ガラスからなり、ガラス管を透過するレーザー光線の波長が1000nm以上であることを特徴とする。
【0009】
【作用】
本発明のガラス管の測定方法によれば、内孔の両エッジ部を検出する信号レベルを、ガラス管を透過するレーザー光線の光量に応じて調節するので、従来の測定方法では、ガラス管の光透過率が変わる度に行われていたレーザー光線が内孔の両エッジ部を検出する信号レベルを手動で調節する作業が不要となり、レーザー光線に対する光透過率が異なるガラス管の内孔の中心位置を正確に測定することができる。
【0010】
また、本発明のガラス管の測定方法によれば、内孔のエッジ部を検出する信号レベルを調節する際に、ガラス管を透過するレーザー光線の基準となる光量の計測位置をガラス管の外径寸法に応じて調節するので、従来ガラス管の外径寸法が変わる度に行われていたガラス管を透過するレーザー光線の基準となる光量の計測位置を手動で調節する作業が不要となり、外径寸法が異なるガラス管の内孔の中心位置を正確に測定することができる。
【0011】
また、本発明のガラス管の測定方法によれば、ガラス管が赤外線領域の光を透過する結晶化ガラスからなり、ガラス管を透過するレーザー光線の波長が1000nm以上であるので、従来測定できなかった結晶化ガラス製のガラス管の内孔の中心位置を正確に測定することができる。
【0012】
【発明の実施の形態】
図1は、本発明の実施の形態の説明図であって、(A)はレーザー測定装置の概念図、(B)はガラス管を走査するレーザー光線の説明図である。この図で、1はガラス管を、2はレーザー光線を、3はレーザー測定装置を、4はレーザー光源を、5はレーザー光線2の偏向手段を、6はレーザー光線2のコリメータレンズを、7はレーザー光線2の集光レンズを、8はレーザー光線2を電圧信号S1に変換するセンサーを、9は電圧信号S1をガラス管1の外周1aの中心位置1hおよび内孔1bの中心位置1iを算出し、同心度に換算する処理部を、10は処理部9で算出されたガラス管1の同心度を表示する表示部をそれぞれ示している。図2は、ガラス管1の光透過率が変化した場合の処理部9内部の説明図である。図3は、ガラス管1の外径寸法が変化した場合の説明図である。図4は、ガラス管1の外径寸法に応じてガラス管1を透過するレーザー光線2の光量の計測位置1gを調節する調節手段11を有し、かつガラス管1の測定位置1gを透過するレーザー光線2の光量に応じて変化するVP値を検出し、信号レベルV2を調節する処理部9の回路9aの説明図である。
【0013】
本発明の実施の形態で使用するレーザー測定器3は、図1に示すように、レーザーダイオードを用いて1550nmの波長を有するレーザー光線2を出射するレーザー光源4と、反射鏡を取り付けた反射体を回転駆動あるいは振動させることによりレーザー光源4から出射されたレーザー光線2を反射する偏向手段5と、偏向手段5で偏向されたレーザー光線2を平行にしてガラス管1の軸方向に対して直角に走査するコリメータレンズ6と、ガラス管1を透過したレーザー光線2を集光する集光レンズ7と、集光レンズ7で集光されたレーザー光線2を電圧信号S1に変換するセンサー8と、電圧信号S1が信号レベルV1となる点で外周1aの両エッジ部1c、1dを検出して各検出時刻を平均処理して外周1aの中心位置1hに対応する時刻toを算出し、電圧信号S1が信号レベルV2となる点で内孔1bの両エッジ部1e、1fを検出して各検出時刻を平均処理して、内孔1bの中心位置1iに対応する時刻tiを算出し、時刻toと時刻tiとの差のΔtを高分解能クロックパルス等を用いて長さの単位を有する距離Kに換算し、一連の計測処理をガラス管1の外周1aの全方向に対して行い、中心位置1hに対する中心位置1iの最大移動距離をガラス管1の同心度として算出する処理する処理部9と、処理部9で換算されたガラス管1の同心度を表示する表示部10とからなる。レーザー測定器3は、上記の構成からなり、ガラス管1をレーザー光線2の走査範囲内にレーザー光線2の走査方向に対してガラス管1の軸方向が直角になるように位置させて回転手段(図示省略)を用いて12rpmの回転速度でガラス管1を2回転させることにより、10,000点のデータを採取するようになっている。
【0014】
本発明のガラス管の測定方法では、図1に示すように、ガラス管1を透過するレーザー光線2の基準となる光量の計測位置を光量が最も多い計測位置1gにすると、計測位置1gに対応する電圧信号S1の電圧はVPとなる。この電圧VPは、ガラス管1の光透過率に連動して変化する。信号レベルV2を電圧VPに対して40〜60%の間の一定の比率、例えば50%に定めると、信号レベルV2と電圧信号S1とが安定して交点▲2▼〜交点▲7▼を生じるので、ガラス管1の光透過率が変化した場合でも安定して内孔1bの両エッジ部1e、1fを検出することができ、中心位置1iに対応する正確な時刻tiを算出することが可能になる。例えば、図2に示すように、ガラス管1の光透過率が低下して電圧信号S1が電圧信号S1aのように変化した場合、電圧VPは電圧VP’に変化し、それに連動して信号レベルV2が信号レベルV2’に設定されるので、信号レベルV2’と電圧信号S1aとが安定して交点▲2▼〜交点▲7▼を生じ、内孔1bの中心位置1iに対応する時刻tiを算出することができる。
【0015】
しかし、ガラス管を透過するレーザー光線2の基準となる光量の計測位置1gを固定した場合、図3に示すように、ガラス管1の外径寸法が所定の測定範囲D1内にある場合、電圧信号S1と信号レベルV2が交差して内径の測定は可能であるが、外径寸法が大きくなって測定範囲D1を越えてガラス管20のような寸法になった場合、次のような問題が生じる。
【0016】
外径寸法が大きくなると、ガラス管1の電圧信号S1からガラス管20の電圧信号S1bのように変化し、光量の計測位置が固定した計測位置1gではレーザー光線の光量が低くなっており、光量に対応する電圧VP’に対して一定の比率で信号レベルV2’を定めると、信号レベルV2’は信号S1bと交差せず、内孔1bの中心位置1iの算出が不可能になる。そのため、測定範囲をD2に広げて光量の計測位置を1gから1jの位置に調節する作業が必要になる。一方、ガラス管の外径寸法が設定した測定範囲に対して非常に小さくなった場合も同様に最適な測定範囲および最適な光量の計測位置に調整する作業が必要になる。
【0017】
本発明の好ましいガラス管の測定方法は、内孔の両エッジ部1e、1fを検出する信号レベルV2を調節する際に、ガラス管を透過するレーザー光線2の基準となる光量の計測位置をガラス管の外径の寸法に応じて調節するものである。
【0018】
次に、ガラス管1の同心度を測定する場合、まず、図1に示すように、ガラス管1をレーザー光線2の走査範囲内でレーザー光線2の走査方向に対してガラス管1の軸方向が直角になるように位置させる。
【0019】
次に、ガラス管1の外周1aの両エッジ部1c、1dおよび内孔1bの両エッジ部1e、1fで生じるレーザー光線2の光量の変化をセンサー8で感知して電圧信号S1に変換すると、図4に示すように、処理部9で電圧信号S1のガラス管1を透過した部分で、立ち下がりR1、信号ピークP1、信号ピークP2、信号ピークP3、立ち上がりR2を有する波形になる。電圧信号S1の立ち下がりR1、立ち上がりR2と、信号レベルV1とが交わって交点▲1▼、▲8▼が生じる。この信号を波形成形して矩形状の電圧信号S2として出力し、矩形状の電圧信号S2の立ち上がりの時刻が外周1aのエッジ部1cの検出時刻t1、電圧信号S2の立ち下がりの時刻がエッジ部1dの検出時刻t2となり、時刻t1と時刻t2を平均することにより、外周1aの中心位置1hに対応する時刻toを算出する。
【0020】
次に、ガラス管1を透過するレーザー光線2の光量の計測位置1gをガラス管1の外径の寸法に応じて調節する調節手段11として、まず電圧信号S2の立ち下がりの時刻をt1から信号ピークP1が立ち上がり始める時刻t3、信号ピークP3が下がり終わる時刻t4を設定して波形成形により矩形状の電圧信号S3を得る。次いで、電圧信号S3により電圧信号S1をサンプリングして時刻t3から時刻t4の範囲で電圧信号S1の微分処理を行い、その変曲点の位置を特定して信号ピークP1の最も電圧の高くなる時刻tPを得る。この時刻tPに対応する位置が光量の計測位置1gとなる。計測した電圧VPに対して信号レベルV2を、電圧信号S1と必ず交点▲2▼〜交点▲7▼で交わる、例えば、電圧VPの50%の電圧に設定する。
【0021】
次に、電圧信号S1と信号レベルV2とが交わって交点▲2▼〜交点▲7▼を生じた信号を波形成形して矩形状の電圧信号S4とし、この電圧信号S4を波形成形して矩形状の電圧信号S5として出力し、内孔1bのエッジ部1eに対応する交点▲3▼の検出時刻t5と、エッジ部1fに対応する交点▲6▼の検出時刻t6とを平均して内孔1bの中心位置1iに対応する時刻tiを算出する。
【0022】
次に、ガラス管1の外周1aの中心位置1hに対応する時刻toと内孔1bの中心位置1iに対応する時刻tiまでの時間Δtを高分解能クロックパルス等を用いて長さに換算してガラス管1の一測定方向における外周1aの中心位置1hを基準として、内孔1bの中心位置1iの距離Kを算出する。一連の計測処理をガラス管1を管軸を中心に2回転させて周方向に10,000回測定を行うことにより、中心位置1hの時刻toに対し中心位置1iの時刻tiが遅くなる範囲の距離Kの正の最大値と、時刻toに対し時刻tiが早い範囲の距離Kの負の最小値とを検出し、その差をガラス管1の同心度として算出する。算出した同心度は表示部10へ出力して表示する。
【0023】
以上のようにして、レーザー光線2に対する光透過率が80〜90%の範囲にある異なる光透過率を有するガラス管、および外径が1.0〜5.0mmおよび内径が0.05〜0.5mmの範囲にある寸法の異なるガラス管1の同心度を測定した。
【0024】
また、乳白色を呈し、1mmの厚さで赤外線領域の波長900nmの光を5%、波長1500nmの光を75%、波長1600nmの光を80%以上透過する結晶化ガラスからなるガラス管1に、レーザー光源4にレーザーダイオードを使用して波長1550nmのレーザー光線2を走査し、ガラス管1の同心度を測定した。
【0025】
上記本発明の実施の形態によるガラス管の測定方法では、20±5℃の環境下で、レーザー光線に対する光透過率が80〜90%の範囲にある異なる光透過率を有するガラス管、外径が1.0〜5.0mmおよび内径が0.1〜0.5mmの範囲にある寸法の異なるガラス管、赤外線領域の光を透過する結晶化ガラス製のガラス管のそれぞれの同心度を光軸方向の測定範囲±0.2mm内で、直線性±0.1μm、再現性±0.5μm以内の精度で測定することができた。
【0026】
【発明の効果】
本発明のガラス管の測定方法によれば、レーザー光線に対する光透過率が異なるガラス管、外径寸法の異なるガラス管、および可視光をほとんど透過せず赤外線領域の光を透過する結晶化ガラス製のガラス管のそれぞれの同心度を正確に測定することができる実用上優れた効果を奏するものである。
【図面の簡単な説明】
【図1】本発明のガラス管の測定方法の説明図であって、(A)はレーザー測定装置の概念図、(B)はガラス管を走査するレーザー光線の説明図。
【図2】本発明の説明図であって、ガラス管の光透過率が変化した場合の処理部の出力パターンの説明図。
【図3】本発明の説明図であって、レーザー光線の基準となる光量の計測位置を外径に応じて調節する必要性を説明した図。
【図4】処理部の説明図であって、(A)は信号処理の概念回路図、(B)は信号パターンの説明図。
【図5】従来のガラス管の測定方法の説明図であって、(A)はレーザー測定装置の概念図、(B)はガラス管を走査するレーザー光線の説明図、(C)は従来の処理部の出力パターンの説明図。
【符号の説明】
1、20 ガラス管
1a 外周
1b 内孔
1c、1d、1e、1f エッジ部
1h、1i 中心位置
1g、1j 計測位置
2 レーザー光線
3 レーザー測定装置
4 レーザー光源
5 偏向手段
6 コリメータレンズ
7 集光レンズ
8 センサー
9 処理部
9a 回路
10 表示部
11 調節手段
D1、D2 測定範囲
P1、P2、P3 信号ピーク
S1、S1a、S1b、S2、S3、S4、S5 電圧信号
V1、V2、V2’ 信号レベル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a measurement method for measuring the concentricity of a glass tube using a laser beam.
[0002]
[Prior art]
Conventionally, the measurement of the concentricity of a glass tube is performed as follows. As shown in FIG. 5, a red laser beam 2 having a wavelength of about 680 nm emitted from a laser light source 4 of a laser measuring device 3 is deflected by a deflecting means 5 made of a reflector that is rotationally driven or reciprocally attached with a reflecting mirror. The deflected laser beam 2 is deflected in a predetermined cycle, is made parallel by the collimator lens 6 and is scanned at right angles to the axial direction of the glass tube 1, and the laser beam 2 transmitted through the glass tube 1 is sensor 8 by the condenser lens 7. The sensor 8 detects the change in the amount of the laser beam 2 generated at both edges of the outer periphery 1a and the inner hole 1b of the glass tube 1 and converts it into a voltage signal S1. In the processing unit 9, the falling edge R1, the signal peaks P1, P2, P3, and the rising edge R2 of the voltage signal S1 of the portion scanned with the glass tube 1 intersect with the predetermined signal level V1, and the intersections {circle around (1)} to {circle around (8)}. Occurs. Of these intersection points, intersection points (1) and (8) correspond to edge portions 1d and 1c of outer periphery 1a, and intersection points (3) and (6) correspond to edge portions 1e and 1f of inner hole 1b, respectively. , The detection time of the intersection point (1) and the detection time of the intersection point (8) are averaged to calculate the time to corresponding to the center position 1h of both edge portions 1c, 1d of the outer periphery 1a, and the intersection point (3) obtained almost simultaneously The time ti corresponding to the center position 1i of both edge portions 1e and 1f of the inner hole 1b is calculated by averaging the detection time of ▼ and the detection time of the intersection (6), and the time required from time to to time ti is calculated. In terms of length, the distance from the center position 1h of the outer periphery 1a of the glass tube 1 to the center position 1i of the inner hole 1b is calculated. By performing such measurement processing in a plurality of directions with respect to the outer periphery 1a of the glass tube 1, the concentricity of the glass tube 1 is obtained. The output concentricity value is displayed on the display unit 10.
[0003]
[Problems to be solved by the invention]
However, when the light transmittance of the glass tube changes greatly, as shown in FIG. 5C, the light amount of the laser beam 2a transmitted through the central portion of the glass tube 1 becomes small, and this change in the light amount is detected by the sensor 8. Then, when converted into the electric signal S1a, the signal peak P2 becomes lower than the signal level V1, and the intersections (4) and (5) do not occur, and the sixth one corresponding to one edge 1d of the outer periphery 1a originally. The intersection point (8) at which the signal level V1 is reached is erroneously detected as the intersection point (6) corresponding to the edge portion 1f of the inner hole 1b, and the time ti corresponding to the center position 1i of the inner hole 1b of the glass tube 1 is detected. There is a problem that cannot be calculated.
[0004]
Further, when the glass tube 1 is made of crystallized glass exhibiting milky white color and the visible light transmittance is very low, scanning with the conventional red laser beam 2 having a wavelength of about 680 nm results in the laser beam 2a and the like. The signal peaks P1, P2, and P3 of the voltage signal S1 that is not sufficiently transmitted through the glass tube 1 and scanned through the glass tube 1 are lowered, and the two edge portions 1e and 1f of the inner hole 1b are reduced as in FIG. There is a problem that the time ti corresponding to the center position 1i of the inner hole 1b cannot be calculated because it cannot be detected.
[0005]
An object of this invention is to provide the measuring method of the concentricity of the glass tube which solved the said conventional problem.
[0006]
[Means for Solving the Problems]
The measuring method of the glass tube according to the present invention is such that the laser beam is scanned at right angles to the axial direction of the glass tube and in a plurality of directions with respect to the outer periphery of the glass tube, and both edges of the outer periphery and inner hole of the glass tube The sensor detects the change in the amount of laser light generated at the part and converts it into an electrical signal, and detects both the edge part of the outer periphery and the inner hole of the glass tube for the position where the electrical signal becomes a predetermined signal level, Measurement of the glass tube that calculates the center position of each of the outer periphery and the inner hole from the position of one edge and the other edge, and measures the concentricity from the distance between the center position of the outer periphery and the center position of the inner hole in the method, the signal level detecting both edges of the bore by adjusting the measurement position of the light amount as a reference laser beam transmitted through the glass tube in accordance with the outer diameter of the glass tube, moth And adjusting in accordance with the amount of the laser beam transmitted through the scan line.
[0008]
Furthermore, the glass tube measuring method of the present invention is characterized in that the glass tube is made of crystallized glass that transmits light in the infrared region, and the wavelength of the laser beam that passes through the glass tube is 1000 nm or more.
[0009]
[Action]
According to the method for measuring a glass tube of the present invention, the signal level for detecting both edge portions of the inner hole is adjusted according to the amount of laser light transmitted through the glass tube. There is no need to manually adjust the signal level for the laser beam to detect both edges of the inner hole every time the transmittance changes, and the center position of the inner hole of the glass tube with different light transmittance for the laser beam can be accurately determined. Can be measured.
[0010]
Further, according to the method for measuring a glass tube of the present invention, when adjusting the signal level for detecting the edge portion of the inner hole, the measurement position of the light quantity serving as a reference of the laser beam transmitted through the glass tube is set to the outer diameter of the glass tube. Because it adjusts according to the dimensions, it is not necessary to manually adjust the measurement position of the amount of light that becomes the reference of the laser beam transmitted through the glass tube, which has been done each time the outer diameter dimension of the glass tube changes. It is possible to accurately measure the center position of the inner holes of the glass tubes having different values.
[0011]
In addition, according to the method for measuring a glass tube of the present invention, the glass tube is made of crystallized glass that transmits light in the infrared region, and the wavelength of the laser beam transmitted through the glass tube is 1000 nm or more, and thus cannot be measured conventionally. The center position of the inner hole of the glass tube made of crystallized glass can be accurately measured.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
1A and 1B are explanatory diagrams of an embodiment of the present invention, in which FIG. 1A is a conceptual diagram of a laser measuring device, and FIG. 1B is an explanatory diagram of a laser beam that scans a glass tube. In this figure, 1 is a glass tube, 2 is a laser beam, 3 is a laser measuring device, 4 is a laser light source, 5 is a deflecting means for the laser beam 2, 6 is a collimator lens for the laser beam 2, and 7 is a laser beam 2. 8 is a sensor that converts the laser beam 2 into a voltage signal S1, 9 is a center position 1h of the outer periphery 1a of the glass tube 1 and a center position 1i of the inner hole 1b. Reference numeral 10 denotes a processing unit for converting to a display unit 10 for displaying the concentricity of the glass tube 1 calculated by the processing unit 9. FIG. 2 is an explanatory diagram of the inside of the processing unit 9 when the light transmittance of the glass tube 1 changes. FIG. 3 is an explanatory diagram when the outer diameter of the glass tube 1 changes. FIG. 4 shows a laser beam that has adjusting means 11 for adjusting the measurement position 1g of the light amount of the laser beam 2 transmitted through the glass tube 1 according to the outer diameter of the glass tube 1 and that transmits the measurement position 1g of the glass tube 1. 2 is an explanatory diagram of a circuit 9a of a processing unit 9 that detects a VP value that changes according to a light quantity of 2 and adjusts a signal level V2. FIG.
[0013]
As shown in FIG. 1, a laser measuring instrument 3 used in an embodiment of the present invention includes a laser light source 4 that emits a laser beam 2 having a wavelength of 1550 nm using a laser diode, and a reflector with a reflecting mirror attached thereto. The deflecting means 5 that reflects the laser beam 2 emitted from the laser light source 4 by rotating or vibrating, and the laser beam 2 deflected by the deflecting means 5 are parallel and scanned at right angles to the axial direction of the glass tube 1. A collimator lens 6, a condensing lens 7 for condensing the laser beam 2 transmitted through the glass tube 1, a sensor 8 for converting the laser beam 2 collected by the condensing lens 7 into a voltage signal S1, and the voltage signal S1 are signals. Both edges 1c and 1d of the outer periphery 1a are detected at the point where the level is V1, and each detection time is averaged to correspond to the center position 1h of the outer periphery 1a. The time to is calculated, and both edge portions 1e and 1f of the inner hole 1b are detected at the point where the voltage signal S1 becomes the signal level V2, and each detection time is averaged to correspond to the center position 1i of the inner hole 1b. The time ti is calculated, the difference Δt between the time to and the time ti is converted into a distance K having a unit of length using a high-resolution clock pulse or the like, and a series of measurement processes are performed on the entire outer periphery 1a of the glass tube 1 The processing unit 9 that calculates the maximum movement distance of the center position 1i with respect to the center position 1h as the concentricity of the glass tube 1 and the concentricity of the glass tube 1 converted by the processing unit 9 are displayed. And display unit 10. The laser measuring device 3 has the above-described configuration, and rotates the glass tube 1 by positioning the glass tube 1 within the scanning range of the laser beam 2 so that the axial direction of the glass tube 1 is perpendicular to the scanning direction of the laser beam 2 (illustrated). The data of 10,000 points is collected by rotating the glass tube 1 twice at a rotational speed of 12 rpm using the (not shown).
[0014]
In the measuring method of the glass tube of the present invention, as shown in FIG. 1, when the measurement position of the light quantity serving as a reference of the laser beam 2 transmitted through the glass tube 1 is set to the measurement position 1g having the largest light quantity, it corresponds to the measurement position 1g. The voltage of the voltage signal S1 is VP. This voltage VP changes in conjunction with the light transmittance of the glass tube 1. When the signal level V2 is set to a constant ratio between 40% and 60% with respect to the voltage VP, for example, 50%, the signal level V2 and the voltage signal S1 are stably generated at the intersections (2) to (7). Therefore, even when the light transmittance of the glass tube 1 changes, both edge portions 1e and 1f of the inner hole 1b can be detected stably, and an accurate time ti corresponding to the center position 1i can be calculated. become. For example, as shown in FIG. 2, when the light transmittance of the glass tube 1 decreases and the voltage signal S1 changes like the voltage signal S1a, the voltage VP changes to the voltage VP ′, and the signal level is interlocked therewith. Since V2 is set to the signal level V2 ′, the signal level V2 ′ and the voltage signal S1a stably generate the intersections {circle around (2)} to {circle around (7)}, and the time ti corresponding to the center position 1i of the inner hole 1b is set. Can be calculated.
[0015]
However, when the measurement position 1g of the light quantity that becomes the reference of the laser beam 2 transmitted through the glass tube is fixed, as shown in FIG. 3, when the outer diameter dimension of the glass tube 1 is within a predetermined measurement range D1, the voltage signal Although the inner diameter can be measured by crossing S1 and the signal level V2, the following problems arise when the outer diameter becomes larger and exceeds the measuring range D1 and becomes the size of the glass tube 20. .
[0016]
When the outer diameter is increased, the voltage signal S1 of the glass tube 1 changes to the voltage signal S1b of the glass tube 20, and the light amount of the laser beam is reduced at the measurement position 1g where the light amount measurement position is fixed. If the signal level V2 ′ is determined at a constant ratio with respect to the corresponding voltage VP ′, the signal level V2 ′ does not intersect with the signal S1b, and the center position 1i of the inner hole 1b cannot be calculated. Therefore, it is necessary to expand the measurement range to D2 and adjust the light quantity measurement position from 1g to 1j. On the other hand, even when the outer diameter of the glass tube becomes very small with respect to the set measurement range, it is necessary to adjust the measurement range to the optimum measurement range and the optimum measurement position of the light amount.
[0017]
According to a preferred method for measuring a glass tube of the present invention, when adjusting the signal level V2 for detecting both edge portions 1e and 1f of the inner hole, the measurement position of the amount of light serving as a reference of the laser beam 2 transmitted through the glass tube is determined. It adjusts according to the dimension of the outer diameter.
[0018]
Next, when measuring the concentricity of the glass tube 1, first, as shown in FIG. 1, the axial direction of the glass tube 1 is perpendicular to the scanning direction of the laser beam 2 within the scanning range of the laser beam 2. Position to be.
[0019]
Next, when the change in the light quantity of the laser beam 2 generated at both edge portions 1c and 1d of the outer periphery 1a of the glass tube 1 and both edge portions 1e and 1f of the inner hole 1b is detected by the sensor 8 and converted into the voltage signal S1, FIG. As shown in FIG. 4, the processing unit 9 transmits the voltage signal S1 through the glass tube 1 and has a waveform having a falling edge R1, a signal peak P1, a signal peak P2, a signal peak P3, and a rising edge R2. The falling points R1 and R2 of the voltage signal S1 and the signal level V1 intersect to generate intersections (1) and (8). This signal is waveform-shaped and output as a rectangular voltage signal S2, the rising time of the rectangular voltage signal S2 is the detection time t1 of the edge 1c of the outer periphery 1a, and the falling time of the voltage signal S2 is the edge. The detection time t2 of 1d is reached, and the time t1 corresponding to the center position 1h of the outer periphery 1a is calculated by averaging the time t1 and the time t2.
[0020]
Next, as the adjusting means 11 for adjusting the measurement position 1g of the light quantity of the laser beam 2 transmitted through the glass tube 1 according to the outer diameter of the glass tube 1, first, the falling time of the voltage signal S2 is a signal peak from t1. A time t3 at which P1 starts rising and a time t4 at which the signal peak P3 ends falling are set, and a rectangular voltage signal S3 is obtained by waveform shaping. Next, the voltage signal S1 is sampled by the voltage signal S3, the voltage signal S1 is differentiated in the range from the time t3 to the time t4, the position of the inflection point is specified, and the time when the signal peak P1 has the highest voltage tP is obtained. The position corresponding to this time tP is the light quantity measurement position 1g. For the measured voltage VP, the signal level V2 is set to, for example, 50% of the voltage VP, which always intersects the voltage signal S1 at the intersections (2) to (7).
[0021]
Next, the voltage signal S1 and the signal level V2 intersect to generate a signal having the intersections {circle around (2)} to {circle around (7)} to form a rectangular voltage signal S4. The voltage signal S4 is shaped to a rectangular shape. A voltage signal S5 having a shape is output, and the detection time t5 of the intersection point (3) corresponding to the edge portion 1e of the inner hole 1b and the detection time t6 of the intersection point (6) corresponding to the edge portion 1f are averaged. A time ti corresponding to the center position 1i of 1b is calculated.
[0022]
Next, the time Δt from the time to corresponding to the center position 1h of the outer periphery 1a of the glass tube 1 to the time ti corresponding to the center position 1i of the inner hole 1b is converted into a length using a high resolution clock pulse or the like. The distance K of the center position 1i of the inner hole 1b is calculated with reference to the center position 1h of the outer periphery 1a in one measurement direction of the glass tube 1. A series of measurement processing is performed in a range in which the time ti at the center position 1i is delayed with respect to the time to at the center position 1h by rotating the glass tube 1 about the tube axis twice and measuring 10,000 times in the circumferential direction. The positive maximum value of the distance K and the negative minimum value of the distance K in the range where the time ti is earlier than the time to are detected, and the difference is calculated as the concentricity of the glass tube 1. The calculated concentricity is output to the display unit 10 and displayed.
[0023]
As described above, the glass tubes having different light transmittances in the range of 80 to 90% with respect to the laser beam 2, and the outer diameter is 1.0 to 5.0 mm and the inner diameter is 0.05 to 0.00. The concentricity of glass tubes 1 having different dimensions in the range of 5 mm was measured.
[0024]
In addition, the glass tube 1 is made of crystallized glass that is milky white and has a thickness of 1 mm and transmits 5% of light with a wavelength of 900 nm in the infrared region, 75% of light with a wavelength of 1500 nm, and 80% or more of light with a wavelength of 1600 nm. The laser light source 4 was scanned with a laser beam 2 having a wavelength of 1550 nm using a laser diode, and the concentricity of the glass tube 1 was measured.
[0025]
In the method for measuring a glass tube according to the embodiment of the present invention, glass tubes having different light transmittances in the range of 80 to 90% with respect to the laser beam in an environment of 20 ± 5 ° C., the outer diameter is The concentricity of glass tubes having different dimensions within a range of 1.0 to 5.0 mm and an inner diameter of 0.1 to 0.5 mm, and a glass tube made of crystallized glass that transmits light in the infrared region is determined in the optical axis direction. Within the measurement range of ± 0.2 mm, the linearity was ± 0.1 μm and the reproducibility was within ± 0.5 μm.
[0026]
【The invention's effect】
According to the method for measuring a glass tube of the present invention, a glass tube having a different light transmittance with respect to a laser beam, a glass tube having a different outer diameter, and a crystallized glass that hardly transmits visible light but transmits light in the infrared region. This provides a practically excellent effect capable of accurately measuring the concentricity of each glass tube.
[Brief description of the drawings]
FIGS. 1A and 1B are explanatory views of a glass tube measuring method according to the present invention, in which FIG. 1A is a conceptual diagram of a laser measuring apparatus, and FIG.
FIG. 2 is an explanatory diagram of the present invention, illustrating an output pattern of a processing unit when the light transmittance of a glass tube changes.
FIG. 3 is an explanatory diagram of the present invention, illustrating the necessity of adjusting the measurement position of the amount of light serving as a reference of a laser beam according to the outer diameter.
4A and 4B are explanatory diagrams of a processing unit, where FIG. 4A is a conceptual circuit diagram of signal processing, and FIG. 4B is an explanatory diagram of a signal pattern.
5A and 5B are explanatory diagrams of a conventional glass tube measuring method, wherein FIG. 5A is a conceptual diagram of a laser measuring device, FIG. 5B is an explanatory diagram of a laser beam that scans the glass tube, and FIG. Explanatory drawing of the output pattern of a part.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1,20 Glass tube 1a Outer periphery 1b Inner hole 1c, 1d, 1e, 1f Edge part 1h, 1i Center position 1g, 1j Measurement position 2 Laser beam 3 Laser measuring device 4 Laser light source 5 Deflection means 6 Collimator lens 7 Condensing lens 8 Sensor 9 processing section 9a circuit 10 display section 11 adjusting means D1, D2 measurement ranges P1, P2, P3 signal peaks S1, S1a, S1b, S2, S3, S4, S5 voltage signals V1, V2, V2 ′ signal level

Claims (2)

レーザー光線をガラス管の軸方向に対して直角に、かつガラス管の外周に対して複数方向に走査し、ガラス管の外周および内孔のそれぞれの両エッジ部で生じるレーザー光線の光量の変化をセンサーで感知して電気信号に変換し、電気信号が所定の信号レベルとなる位置を求めてガラス管の外周および内孔のそれぞれの両エッジ部を検出し、一方のエッジ部の位置及び他方のエッジ部の位置から外周および内孔のそれぞれの中心位置を算出し、外周の中心位置と内孔の中心位置との距離から同心度を測定するガラス管の測定方法において、ガラス管を透過するレーザー光線の基準となる光量の計測位置をガラス管の外径寸法に応じて調節することにより内孔の両エッジ部を検出する前記信号レベルを、ガラス管を透過するレーザー光線の光量に応じて調節することを特徴とするガラス管の測定方法。The laser beam is scanned at right angles to the axial direction of the glass tube and in multiple directions with respect to the outer periphery of the glass tube, and changes in the amount of laser beam generated at both edges of the outer periphery and inner hole of the glass tube are detected by a sensor. Detects and converts to an electrical signal, obtains a position where the electrical signal reaches a predetermined signal level, detects both the outer edge and the inner hole of the glass tube, and detects the position of one edge and the other edge In the measuring method of the glass tube , which calculates the concentricity from the distance between the center position of the outer periphery and the center position of the inner hole, the center position of each of the outer periphery and the inner hole is calculated from the position of the signal level, the laser beam transmitted through the glass tube light amount detecting both edges of the bore by adjusting in accordance with the outer diameter of the glass tube the light amount measurement position of the Measuring method of the glass tube, characterized in that to adjust accordingly. ガラス管が赤外線領域の光を透過する結晶化ガラスからなり、ガラス管を透過するレーザー光線の波長が1000nm以上であることを特徴とする請求項1または請求項に記載のガラス管の測定方法。It consists crystallized glass glass tube which transmits light in the infrared region, the measuring method of the glass tube according to claim 1 or claim 1 wavelength of the laser beam transmitted through the glass tube, characterized in that at 1000nm or more.
JP07249399A 1999-03-17 1999-03-17 Glass tube measurement method Expired - Fee Related JP3912645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07249399A JP3912645B2 (en) 1999-03-17 1999-03-17 Glass tube measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07249399A JP3912645B2 (en) 1999-03-17 1999-03-17 Glass tube measurement method

Publications (2)

Publication Number Publication Date
JP2000266517A JP2000266517A (en) 2000-09-29
JP3912645B2 true JP3912645B2 (en) 2007-05-09

Family

ID=13490917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07249399A Expired - Fee Related JP3912645B2 (en) 1999-03-17 1999-03-17 Glass tube measurement method

Country Status (1)

Country Link
JP (1) JP3912645B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100624256B1 (en) * 2005-01-13 2006-09-19 엘에스전선 주식회사 Outer and Inner Diameter Measuring Apparatus and Method for Transparent Tube
ES2533778B1 (en) * 2013-09-13 2016-02-02 Abengoa Solar New Technologies S.A. Spectrophotometer for characterization of solar collector receivers

Also Published As

Publication number Publication date
JP2000266517A (en) 2000-09-29

Similar Documents

Publication Publication Date Title
EP0644408B1 (en) Method and apparatus for measuring temperature using infrared techniques
JP3912644B2 (en) Glass tube measurement method
JP3912645B2 (en) Glass tube measurement method
US4770523A (en) Apparatus for measuring curvature
CN106524932A (en) Symmetrical optical bridge type self-stabilizing laser diameter measurement system, and calibration method and measurement method thereof
US4837432A (en) Optical measuring apparatus which employs two synchronously rotating means to measure object
US6956661B2 (en) Device for measuring external and internal dimensions and distances between measurement objects
CN206556597U (en) Symmetrical beam bridge-type is from stabilized laser measurement diameter system
JPH0460526B2 (en)
JPS59231403A (en) Non-contact type three-dimensional measuring device
JPH0552523A (en) Optical dimension measuring apparatus
JPS61234306A (en) Optical measuring apparatus
JPH11132729A (en) Dimension measuring device
JP3085341B2 (en) Outline measuring device and method of arranging object to be measured
JP3009070B2 (en) Optical scanning measurement device and measurement method
JPH0443765Y2 (en)
JPH0528915U (en) Optical dimension measuring device
JPH0552528A (en) Optical dimension measuring apparatus
JPH09210639A (en) Outer diameter measuring device
JPH0552521A (en) Optical dimension measuring apparatus
JPH0355048Y2 (en)
JPH035845Y2 (en)
JPH09210638A (en) Laser type outer diameter-measuring instrument
JPH0449885B2 (en)
JPH0829131A (en) Optical measuring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070125

R150 Certificate of patent or registration of utility model

Ref document number: 3912645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees