JP2000266517A - Method for measuring glass tube - Google Patents

Method for measuring glass tube

Info

Publication number
JP2000266517A
JP2000266517A JP11072493A JP7249399A JP2000266517A JP 2000266517 A JP2000266517 A JP 2000266517A JP 11072493 A JP11072493 A JP 11072493A JP 7249399 A JP7249399 A JP 7249399A JP 2000266517 A JP2000266517 A JP 2000266517A
Authority
JP
Japan
Prior art keywords
glass tube
laser beam
inner hole
glass
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11072493A
Other languages
Japanese (ja)
Other versions
JP3912645B2 (en
Inventor
Hirokazu Takeuchi
宏和 竹内
Masanori Wada
正紀 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP07249399A priority Critical patent/JP3912645B2/en
Publication of JP2000266517A publication Critical patent/JP2000266517A/en
Application granted granted Critical
Publication of JP3912645B2 publication Critical patent/JP3912645B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To accurately measure the concentricity of glass tubes having different light transmission coefficients and outside diameters and those made of crystallized glass which only transmits infrared rays. SOLUTION: In a method for measuring glass tube, a glass tube 1 is scanned with a laser beam 2 and the variation of the light quantity of the beam 2 which occurs in both edge sections 1c and 1d of the outer periphery 1a and both edge sections 1e and 1f of the internal hole 1b of the tube 1 is detected and converted into voltage signals S1 by means of a sensor 8. Then center positions 1h and 1i of the outer periphery 1a and internal hole 1b are calculated by measuring the period of time required for detecting both edge sections 1c and 1d and 1e and 1f at the positions where the voltage signals S1 become signal levels V1 and V2 and the concentricity of the tube 1 is measured from the distance between the center positions 1h and 1i. The signal level V2 is adjusted in accordance with the light quantity of the laser beam 2 transmitted through the glass tube 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レーザー光線を用
いたガラス管の同心度を測定する測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring concentricity of a glass tube using a laser beam.

【0002】[0002]

【従来の技術】従来、ガラス管の同心度の測定は、次の
ように行われている。図5に示すように、レーザー測定
装置3のレーザー光源4から出射された約680nmの
波長を有する赤色のレーザー光線2を、反射鏡を取り付
けた回転駆動あるいは往復駆動する反射体からなる偏向
手段5により所定の周期で偏向し、偏向されたレーザー
光線2をコリメータレンズ6により平行にしてガラス管
1の軸方向に対して直角に走査し、ガラス管1を透過し
たレーザー光線2を集光レンズ7でセンサー8の表面に
集光し、ガラス管1の外周1aおよび内孔1bの両エッ
ジ部で生じるレーザー光線2の光量の変化をセンサー8
で感知して電圧信号S1に変換する。処理部9では、ガ
ラス管1を走査した部分の電圧信号S1の立ち下がりR
1、信号ピークP1、P2、P3、立ち上がりR2と所
定の信号レベルV1とが交わって交点〜交点が生じ
る。これらの交点のうち、交点、が外周1aのエッ
ジ部1d、1cと、交点、が内孔1bのエッジ部1
e、1fと、それぞれ対応しており、交点の検出時刻
と交点の検出時刻とを平均して外周1aの両エッジ部
1c、1dの中心位置1hに対応する時刻toを算出
し、ほぼ同時に得られる交点の検出時刻と交点の検
出時刻とを平均して内孔1bの両エッジ部1e、1fの
中心位置1iに対応する時刻tiを算出し、時刻toか
ら時刻tiまでに要する時間を長さに換算してガラス管
1の外周1aの中心位置1hから内孔1bの中心位置1
iまでの距離を算出する。このような計測処理をガラス
管1の外周1aに対して複数方向に行うことにより、ガ
ラス管1の同心度を求めている。出力された同心度の値
は、表示部10に表示される。
2. Description of the Related Art Conventionally, the concentricity of a glass tube is measured as follows. As shown in FIG. 5, a red laser beam 2 having a wavelength of about 680 nm emitted from a laser light source 4 of a laser measuring device 3 is deflected by a deflecting means 5 composed of a rotatingly driven or reciprocally driven reflector having a reflecting mirror. The laser beam 2 is deflected at a predetermined cycle, and the deflected laser beam 2 is made parallel by a collimator lens 6 to scan at right angles to the axial direction of the glass tube 1. Of the laser beam 2 generated at both edges of the outer periphery 1a and the inner hole 1b of the glass tube 1,
And converts it into a voltage signal S1. In the processing unit 9, the fall R of the voltage signal S1 in the portion where the glass tube 1 is scanned is
1. The signal peaks P1, P2, P3, the rising R2 and the predetermined signal level V1 intersect to form an intersection. Of these intersections, the intersection is the edge portions 1d and 1c of the outer circumference 1a, and the intersection is the edge portion 1 of the inner hole 1b.
e, 1f, respectively, and the time of intersection corresponding to the center position 1h of both edges 1c, 1d of the outer circumference 1a is calculated by averaging the time of detection of the intersection and the time of detection of the intersection. The detected time of the intersection and the detected time of the intersection are averaged to calculate a time ti corresponding to the center position 1i of both edges 1e and 1f of the inner hole 1b, and the time required from the time to to the time ti is calculated as the length. From the center position 1h of the outer periphery 1a of the glass tube 1 to the center position 1 of the inner hole 1b.
Calculate the distance to i. The concentricity of the glass tube 1 is obtained by performing such measurement processing on the outer periphery 1a of the glass tube 1 in a plurality of directions. The output concentricity value is displayed on the display unit 10.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、ガラス
管の光透過率が大きく変化した場合、図5(C)に示す
ように、ガラス管1の中央部を透過するレーザー光線2
aの光量が小さくなり、この光量の変化をセンサー8で
感知して電気信号S1aに変換すると、信号ピークP2
が信号レベルV1よりも低くなって交点、が生じ
ず、本来、外周1aの片方のエッジ1dに対応している
6番目に所定の信号レベルV1になる交点を内孔1b
のエッジ部1fに対応する交点として誤って検出して
しまい、ガラス管1の内孔1bの中心位置1iに対応す
る時刻tiを算出することができないという問題があ
る。
However, when the light transmittance of the glass tube changes greatly, as shown in FIG. 5C, the laser beam 2 passing through the central portion of the glass tube 1
a, the change in the light amount is detected by the sensor 8 and converted into an electric signal S1a.
Is lower than the signal level V1, and no intersection occurs, and the intersection which originally corresponds to one edge 1d of the outer periphery 1a and has the sixth predetermined signal level V1 is defined as the inner hole 1b.
There is a problem that the time ti corresponding to the center position 1i of the inner hole 1b of the glass tube 1 cannot be calculated as an intersection point corresponding to the edge portion 1f of the glass tube 1 by mistake.

【0004】また、ガラス管1が、乳白色を呈する結晶
化ガラスからなり、可視光の光透過率が非常に低い場
合、従来の約680nmの波長を有する赤色のレーザー
光線2を用いて走査すると、レーザー光線2a等がガラ
ス管1を十分透過せず、ガラス管1を走査した電圧信号
S1の信号ピークP1、P2、P3が低くなり、図5
(C)と同様に、内孔1bの両エッジ部1e、1fを検
出できず、内孔1bの中心位置1iに対応する時刻ti
を算出することができないという問題がある。
When the glass tube 1 is made of crystallized glass exhibiting milky white color and the light transmittance of visible light is very low, when the conventional red laser beam 2 having a wavelength of about 680 nm is used for scanning, the laser beam is scanned. 2a and the like do not sufficiently pass through the glass tube 1, and the signal peaks P1, P2, and P3 of the voltage signal S1 obtained by scanning the glass tube 1 become low, and FIG.
Similarly to (C), both edges 1e and 1f of the inner hole 1b cannot be detected, and a time ti corresponding to the center position 1i of the inner hole 1b.
Cannot be calculated.

【0005】本発明は、上記の従来の問題点を解決した
ガラス管の同心度の測定方法を提供することを目的とす
る。
An object of the present invention is to provide a method for measuring the concentricity of a glass tube which solves the above-mentioned conventional problems.

【0006】[0006]

【課題を解決するための手段】本発明に係るガラス管の
測定方法は、レーザー光線をガラス管の軸方向に対して
直角に、かつガラス管の外周に対して複数方向に走査
し、ガラス管の外周および内孔のそれぞれの両エッジ部
で生じるレーザー光線の光量の変化をセンサーで感知し
て電気信号に変換し、電気信号が所定の信号レベルとな
る位置を求めてガラス管の外周および内孔のそれぞれの
両エッジ部を検出し、一方のエッジ部の位置及び他方の
エッジ部の位置から外周および内孔のそれぞれの中心位
置を算出し、外周の中心位置と内孔の中心位置との距離
から同心度を測定するガラス管の測定方法において、内
孔の両エッジ部を検出する前記信号レベルを、ガラス管
を透過するレーザー光線の光量に応じて調節することを
特徴とする。
According to the glass tube measuring method of the present invention, a laser beam is scanned at right angles to the axial direction of the glass tube and in a plurality of directions around the outer periphery of the glass tube. The sensor detects changes in the amount of laser light generated at both edges of the outer and inner holes and converts them into electric signals.Then, the position where the electric signal reaches a predetermined signal level is determined, and the outer and inner holes of the glass tube are detected. Detect both edge portions, calculate the center position of the outer periphery and the inner hole from the position of one edge portion and the position of the other edge portion, and calculate the center position of the outer hole and the center position of the inner hole from the distance between the center position of the outer periphery and the center position of the inner hole. In the method for measuring a concentricity of a glass tube, the signal level for detecting both edges of the inner hole is adjusted according to the amount of a laser beam transmitted through the glass tube.

【0007】また、本発明のガラス管の測定方法は、内
孔のエッジ部を検出する信号レベルを調節する際に、ガ
ラス管を透過するレーザー光線の基準となる光量の計測
位置をガラス管の外径寸法に応じて調節することを特徴
とする。
Further, according to the glass tube measuring method of the present invention, when adjusting the signal level for detecting the edge portion of the inner hole, the measuring position of the light quantity which is the reference of the laser beam transmitted through the glass tube is set outside the glass tube. It is characterized in that it is adjusted according to the diameter dimension.

【0008】さらに、本発明のガラス管の測定方法は、
ガラス管が赤外線領域の光を透過する結晶化ガラスから
なり、ガラス管を透過するレーザー光線の波長が100
0nm以上であることを特徴とする。
Further, the method for measuring a glass tube according to the present invention comprises:
The glass tube is made of crystallized glass that transmits light in the infrared region, and the wavelength of the laser beam transmitted through the glass tube is 100.
It is characterized by being at least 0 nm.

【0009】[0009]

【作用】本発明のガラス管の測定方法によれば、内孔の
両エッジ部を検出する信号レベルを、ガラス管を透過す
るレーザー光線の光量に応じて調節するので、従来の測
定方法では、ガラス管の光透過率が変わる度に行われて
いたレーザー光線が内孔の両エッジ部を検出する信号レ
ベルを手動で調節する作業が不要となり、レーザー光線
に対する光透過率が異なるガラス管の内孔の中心位置を
正確に測定することができる。
According to the method for measuring a glass tube of the present invention, the signal level for detecting both edges of the inner hole is adjusted in accordance with the amount of laser beam transmitted through the glass tube. The task of manually adjusting the signal level at which the laser beam is detected at both edges of the inner hole, which was performed every time the light transmittance of the tube changes, is no longer necessary, and the center of the inner hole of the glass tube having a different light transmittance for the laser beam is eliminated. The position can be measured accurately.

【0010】また、本発明のガラス管の測定方法によれ
ば、内孔のエッジ部を検出する信号レベルを調節する際
に、ガラス管を透過するレーザー光線の基準となる光量
の計測位置をガラス管の外径寸法に応じて調節するの
で、従来ガラス管の外径寸法が変わる度に行われていた
ガラス管を透過するレーザー光線の基準となる光量の計
測位置を手動で調節する作業が不要となり、外径寸法が
異なるガラス管の内孔の中心位置を正確に測定すること
ができる。
Further, according to the method for measuring a glass tube of the present invention, when adjusting the signal level for detecting the edge portion of the inner hole, the measurement position of the reference light amount of the laser beam transmitted through the glass tube is set to the glass tube. Adjustment according to the outer diameter of the glass tube eliminates the need to manually adjust the measurement position of the reference light amount of the laser beam transmitted through the glass tube, which was performed every time the outer diameter of the glass tube changes, It is possible to accurately measure the center position of the inner hole of a glass tube having a different outer diameter.

【0011】また、本発明のガラス管の測定方法によれ
ば、ガラス管が赤外線領域の光を透過する結晶化ガラス
からなり、ガラス管を透過するレーザー光線の波長が1
000nm以上であるので、従来測定できなかった結晶
化ガラス製のガラス管の内孔の中心位置を正確に測定す
ることができる。
According to the method for measuring a glass tube of the present invention, the glass tube is made of crystallized glass that transmits light in the infrared region, and the wavelength of the laser beam transmitted through the glass tube is one.
Since it is 000 nm or more, the center position of the inner hole of the glass tube made of crystallized glass, which could not be measured conventionally, can be accurately measured.

【0012】[0012]

【発明の実施の形態】図1は、本発明の実施の形態の説
明図であって、(A)はレーザー測定装置の概念図、
(B)はガラス管を走査するレーザー光線の説明図であ
る。この図で、1はガラス管を、2はレーザー光線を、
3はレーザー測定装置を、4はレーザー光源を、5はレ
ーザー光線2の偏向手段を、6はレーザー光線2のコリ
メータレンズを、7はレーザー光線2の集光レンズを、
8はレーザー光線2を電圧信号S1に変換するセンサー
を、9は電圧信号S1をガラス管1の外周1aの中心位
置1hおよび内孔1bの中心位置1iを算出し、同心度
に換算する処理部を、10は処理部9で算出されたガラ
ス管1の同心度を表示する表示部をそれぞれ示してい
る。図2は、ガラス管1の光透過率が変化した場合の処
理部9内部の説明図である。図3は、ガラス管1の外径
寸法が変化した場合の説明図である。図4は、ガラス管
1の外径寸法に応じてガラス管1を透過するレーザー光
線2の光量の計測位置1gを調節する調節手段11を有
し、かつガラス管1の測定位置1gを透過するレーザー
光線2の光量に応じて変化するVP値を検出し、信号レ
ベルV2を調節する処理部9の回路9aの説明図であ
る。
FIG. 1 is an explanatory view of an embodiment of the present invention, in which (A) is a conceptual diagram of a laser measuring device,
(B) is an explanatory view of a laser beam that scans the glass tube. In this figure, 1 is a glass tube, 2 is a laser beam,
3 is a laser measuring device, 4 is a laser light source, 5 is a deflecting means of the laser beam 2, 6 is a collimator lens of the laser beam 2, 7 is a condenser lens of the laser beam 2,
Reference numeral 8 denotes a sensor that converts the laser beam 2 into a voltage signal S1, and reference numeral 9 denotes a processing unit that calculates the center position 1h of the outer periphery 1a of the glass tube 1 and the center position 1i of the inner hole 1b and converts the voltage signal S1 into concentricity. Reference numerals 10 and 10 denote display units for displaying the concentricity of the glass tube 1 calculated by the processing unit 9, respectively. FIG. 2 is an explanatory diagram of the inside of the processing unit 9 when the light transmittance of the glass tube 1 changes. FIG. 3 is an explanatory diagram when the outer diameter of the glass tube 1 changes. FIG. 4 shows a laser beam having adjusting means 11 for adjusting the measuring position 1g of the light quantity of the laser beam 2 passing through the glass tube 1 according to the outer diameter dimension of the glass tube 1 and transmitting the measuring position 1g of the glass tube 1. FIG. 9 is an explanatory diagram of a circuit 9a of a processing unit 9 that detects a VP value that changes according to the light amount of No. 2 and adjusts a signal level V2.

【0013】本発明の実施の形態で使用するレーザー測
定器3は、図1に示すように、レーザーダイオードを用
いて1550nmの波長を有するレーザー光線2を出射
するレーザー光源4と、反射鏡を取り付けた反射体を回
転駆動あるいは振動させることによりレーザー光源4か
ら出射されたレーザー光線2を反射する偏向手段5と、
偏向手段5で偏向されたレーザー光線2を平行にしてガ
ラス管1の軸方向に対して直角に走査するコリメータレ
ンズ6と、ガラス管1を透過したレーザー光線2を集光
する集光レンズ7と、集光レンズ7で集光されたレーザ
ー光線2を電圧信号S1に変換するセンサー8と、電圧
信号S1が信号レベルV1となる点で外周1aの両エッ
ジ部1c、1dを検出して各検出時刻を平均処理して外
周1aの中心位置1hに対応する時刻toを算出し、電
圧信号S1が信号レベルV2となる点で内孔1bの両エ
ッジ部1e、1fを検出して各検出時刻を平均処理し
て、内孔1bの中心位置1iに対応する時刻tiを算出
し、時刻toと時刻tiとの差のΔtを高分解能クロッ
クパルス等を用いて長さの単位を有する距離Kに換算
し、一連の計測処理をガラス管1の外周1aの全方向に
対して行い、中心位置1hに対する中心位置1iの最大
移動距離をガラス管1の同心度として算出する処理する
処理部9と、処理部9で換算されたガラス管1の同心度
を表示する表示部10とからなる。レーザー測定器3
は、上記の構成からなり、ガラス管1をレーザー光線2
の走査範囲内にレーザー光線2の走査方向に対してガラ
ス管1の軸方向が直角になるように位置させて回転手段
(図示省略)を用いて12rpmの回転速度でガラス管
1を2回転させることにより、10,000点のデータ
を採取するようになっている。
As shown in FIG. 1, a laser measuring device 3 used in an embodiment of the present invention is provided with a laser light source 4 for emitting a laser beam 2 having a wavelength of 1550 nm using a laser diode, and a reflecting mirror. Deflecting means 5 for reflecting the laser beam 2 emitted from the laser light source 4 by rotating or oscillating the reflector;
A collimator lens 6 for collimating the laser beam 2 deflected by the deflecting means 5 and scanning at right angles to the axial direction of the glass tube 1; a condenser lens 7 for condensing the laser beam 2 transmitted through the glass tube 1; A sensor 8 for converting the laser beam 2 condensed by the optical lens 7 into a voltage signal S1, and detecting both edges 1c and 1d of the outer periphery 1a at a point where the voltage signal S1 reaches the signal level V1, and averaging each detection time. The processing is performed to calculate a time to corresponding to the center position 1h of the outer periphery 1a, to detect both edges 1e and 1f of the inner hole 1b at a point where the voltage signal S1 becomes the signal level V2, and to average each detection time. Then, a time ti corresponding to the center position 1i of the inner hole 1b is calculated, and Δt of a difference between the time to and the time ti is converted into a distance K having a unit of length using a high-resolution clock pulse or the like. Measurement processing A processing unit 9 for performing processing in all directions of the outer periphery 1 a of the lath tube 1, calculating a maximum movement distance of the center position 1 i with respect to the center position 1 h as the concentricity of the glass tube 1, and glass converted by the processing unit 9 A display unit 10 for displaying the concentricity of the tube 1. Laser measuring device 3
Has the above-described configuration, and the glass tube 1 is
And the glass tube 1 is rotated twice at a rotation speed of 12 rpm using a rotating means (not shown) by positioning the glass tube 1 at a right angle to the scanning direction of the laser beam 2 within the scanning range. Thus, data of 10,000 points is collected.

【0014】本発明のガラス管の測定方法では、図1に
示すように、ガラス管1を透過するレーザー光線2の基
準となる光量の計測位置を光量が最も多い計測位置1g
にすると、計測位置1gに対応する電圧信号S1の電圧
はVPとなる。この電圧VPは、ガラス管1の光透過率
に連動して変化する。信号レベルV2を電圧VPに対し
て40〜60%の間の一定の比率、例えば50%に定め
ると、信号レベルV2と電圧信号S1とが安定して交点
〜交点を生じるので、ガラス管1の光透過率が変化
した場合でも安定して内孔1bの両エッジ部1e、1f
を検出することができ、中心位置1iに対応する正確な
時刻tiを算出することが可能になる。例えば、図2に
示すように、ガラス管1の光透過率が低下して電圧信号
S1が電圧信号S1aのように変化した場合、電圧VP
は電圧VP’に変化し、それに連動して信号レベルV2
が信号レベルV2’に設定されるので、信号レベルV
2’と電圧信号S1aとが安定して交点〜交点を生
じ、内孔1bの中心位置1iに対応する時刻tiを算出
することができる。
In the method for measuring a glass tube according to the present invention, as shown in FIG. 1, the measurement position of the reference light amount of the laser beam 2 passing through the glass tube 1 is set to the measurement position 1g where the light amount is the largest.
Then, the voltage of the voltage signal S1 corresponding to the measurement position 1g becomes VP. This voltage VP changes in conjunction with the light transmittance of the glass tube 1. If the signal level V2 is set to a constant ratio between 40% and 60% with respect to the voltage VP, for example, 50%, the signal level V2 and the voltage signal S1 stably form an intersection. Even when the light transmittance changes, both edges 1e, 1f of the inner hole 1b are stably maintained.
Can be detected, and an accurate time ti corresponding to the center position 1i can be calculated. For example, as shown in FIG. 2, when the light transmittance of the glass tube 1 decreases and the voltage signal S1 changes like the voltage signal S1a, the voltage VP
Changes to the voltage VP ', and the signal level V2
Is set to the signal level V2 ', the signal level V
2 ′ and the voltage signal S1a stably form an intersection or an intersection, and the time ti corresponding to the center position 1i of the inner hole 1b can be calculated.

【0015】しかし、ガラス管を透過するレーザー光線
2の基準となる光量の計測位置1gを固定した場合、図
3に示すように、ガラス管1の外径寸法が所定の測定範
囲D1内にある場合、電圧信号S1と信号レベルV2が
交差して内径の測定は可能であるが、外径寸法が大きく
なって測定範囲D1を越えてガラス管20のような寸法
になった場合、次のような問題が生じる。
However, when the measurement position 1 g of the reference light amount of the laser beam 2 passing through the glass tube is fixed, as shown in FIG. 3, when the outer diameter of the glass tube 1 is within the predetermined measurement range D1. The voltage signal S1 and the signal level V2 intersect and the inner diameter can be measured. However, if the outer diameter dimension is increased to exceed the measurement range D1 and become a size like the glass tube 20, the following is performed. Problems arise.

【0016】外径寸法が大きくなると、ガラス管1の電
圧信号S1からガラス管20の電圧信号S1bのように
変化し、光量の計測位置が固定した計測位置1gではレ
ーザー光線の光量が低くなっており、光量に対応する電
圧VP’に対して一定の比率で信号レベルV2’を定め
ると、信号レベルV2’は信号S1bと交差せず、内孔
1bの中心位置1iの算出が不可能になる。そのため、
測定範囲をD2に広げて光量の計測位置を1gから1j
の位置に調節する作業が必要になる。一方、ガラス管の
外径寸法が設定した測定範囲に対して非常に小さくなっ
た場合も同様に最適な測定範囲および最適な光量の計測
位置に調整する作業が必要になる。
When the outer diameter size increases, the voltage signal S1 of the glass tube 1 changes from the voltage signal S1 to the voltage signal S1b of the glass tube 20, and the light amount of the laser beam decreases at the measurement position 1g where the measurement position of the light amount is fixed. If the signal level V2 'is determined at a fixed ratio with respect to the voltage VP' corresponding to the light amount, the signal level V2 'does not intersect with the signal S1b, and the calculation of the center position 1i of the inner hole 1b becomes impossible. for that reason,
The measurement range is expanded to D2 and the measurement position of the light amount is from 1g to 1j.
Adjustment work is required. On the other hand, when the outer diameter of the glass tube becomes very small with respect to the set measurement range, it is necessary to adjust the measurement range to the optimum measurement range and the optimum light amount measurement position.

【0017】本発明の好ましいガラス管の測定方法は、
内孔の両エッジ部1e、1fを検出する信号レベルV2
を調節する際に、ガラス管を透過するレーザー光線2の
基準となる光量の計測位置をガラス管の外径の寸法に応
じて調節するものである。
A preferred method for measuring a glass tube according to the present invention is as follows.
Signal level V2 for detecting both edges 1e and 1f of the inner hole
Is adjusted in accordance with the outer diameter of the glass tube in order to adjust the measurement position of the reference light amount of the laser beam 2 passing through the glass tube.

【0018】次に、ガラス管1の同心度を測定する場
合、まず、図1に示すように、ガラス管1をレーザー光
線2の走査範囲内でレーザー光線2の走査方向に対して
ガラス管1の軸方向が直角になるように位置させる。
Next, when measuring the concentricity of the glass tube 1, first, as shown in FIG. 1, the glass tube 1 is moved in the scanning range of the laser beam 2 within the scanning range of the laser beam 2. Position so that the directions are at right angles.

【0019】次に、ガラス管1の外周1aの両エッジ部
1c、1dおよび内孔1bの両エッジ部1e、1fで生
じるレーザー光線2の光量の変化をセンサー8で感知し
て電圧信号S1に変換すると、図4に示すように、処理
部9で電圧信号S1のガラス管1を透過した部分で、立
ち下がりR1、信号ピークP1、信号ピークP2、信号
ピークP3、立ち上がりR2を有する波形になる。電圧
信号S1の立ち下がりR1、立ち上がりR2と、信号レ
ベルV1とが交わって交点、が生じる。この信号を
波形成形して矩形状の電圧信号S2として出力し、矩形
状の電圧信号S2の立ち上がりの時刻が外周1aのエッ
ジ部1cの検出時刻t1、電圧信号S2の立ち下がりの
時刻がエッジ部1dの検出時刻t2となり、時刻t1と
時刻t2を平均することにより、外周1aの中心位置1
hに対応する時刻toを算出する。
Next, a change in the light amount of the laser beam 2 generated at both edges 1c and 1d of the outer periphery 1a of the glass tube 1 and both edges 1e and 1f of the inner hole 1b is detected by the sensor 8 and converted into a voltage signal S1. Then, as shown in FIG. 4, a waveform having a falling R1, a signal peak P1, a signal peak P2, a signal peak P3, and a rising R2 is obtained in a portion of the processing unit 9 where the voltage signal S1 has passed through the glass tube 1. The intersection between the falling R1 and rising R2 of the voltage signal S1 and the signal level V1 occurs. This signal is shaped into a waveform and output as a rectangular voltage signal S2. The rising time of the rectangular voltage signal S2 is the detection time t1 of the edge portion 1c of the outer periphery 1a, and the falling time of the voltage signal S2 is the edge portion. The detection time t2 of 1d is reached, and by averaging the times t1 and t2, the center position 1 of the outer circumference 1a is obtained.
The time to corresponding to h is calculated.

【0020】次に、ガラス管1を透過するレーザー光線
2の光量の計測位置1gをガラス管1の外径の寸法に応
じて調節する調節手段11として、まず電圧信号S2の
立ち下がりの時刻をt1から信号ピークP1が立ち上が
り始める時刻t3、信号ピークP3が下がり終わる時刻
t4を設定して波形成形により矩形状の電圧信号S3を
得る。次いで、電圧信号S3により電圧信号S1をサン
プリングして時刻t3から時刻t4の範囲で電圧信号S
1の微分処理を行い、その変曲点の位置を特定して信号
ピークP1の最も電圧の高くなる時刻tPを得る。この
時刻tPに対応する位置が光量の計測位置1gとなる。
計測した電圧VPに対して信号レベルV2を、電圧信号
S1と必ず交点〜交点で交わる、例えば、電圧VP
の50%の電圧に設定する。
Next, as adjusting means 11 for adjusting the measurement position 1g of the light amount of the laser beam 2 transmitted through the glass tube 1 according to the outer diameter of the glass tube 1, first, the falling time of the voltage signal S2 is set to t1. Then, a time t3 at which the signal peak P1 starts rising and a time t4 at which the signal peak P3 ends falling are set, and a rectangular voltage signal S3 is obtained by waveform shaping. Next, the voltage signal S1 is sampled by the voltage signal S3, and the voltage signal S1 is sampled within a range from time t3 to time t4.
1 is performed, the position of the inflection point is specified, and the time tP at which the voltage of the signal peak P1 becomes highest is obtained. The position corresponding to this time tP is the light amount measurement position 1g.
For the measured voltage VP, the signal level V2 always crosses the voltage signal S1 from the intersection to the intersection, for example, the voltage VP
Set to 50% of the voltage.

【0021】次に、電圧信号S1と信号レベルV2とが
交わって交点〜交点を生じた信号を波形成形して矩
形状の電圧信号S4とし、この電圧信号S4を波形成形
して矩形状の電圧信号S5として出力し、内孔1bのエ
ッジ部1eに対応する交点の検出時刻t5と、エッジ
部1fに対応する交点の検出時刻t6とを平均して内
孔1bの中心位置1iに対応する時刻tiを算出する。
Next, a signal generated at the intersections of the voltage signal S1 and the signal level V2 at intersections is shaped into a rectangular voltage signal S4, and the voltage signal S4 is shaped into a rectangular voltage. A signal S5 is output, and the detection time t5 of the intersection corresponding to the edge 1e of the inner hole 1b and the detection time t6 of the intersection corresponding to the edge 1f are averaged to obtain a time corresponding to the center position 1i of the inner hole 1b. ti is calculated.

【0022】次に、ガラス管1の外周1aの中心位置1
hに対応する時刻toと内孔1bの中心位置1iに対応
する時刻tiまでの時間Δtを高分解能クロックパルス
等を用いて長さに換算してガラス管1の一測定方向にお
ける外周1aの中心位置1hを基準として、内孔1bの
中心位置1iの距離Kを算出する。一連の計測処理をガ
ラス管1を管軸を中心に2回転させて周方向に10,0
00回測定を行うことにより、中心位置1hの時刻to
に対し中心位置1iの時刻tiが遅くなる範囲の距離K
の正の最大値と、時刻toに対し時刻tiが早い範囲の
距離Kの負の最小値とを検出し、その差をガラス管1の
同心度として算出する。算出した同心度は表示部10へ
出力して表示する。
Next, the center position 1 of the outer periphery 1a of the glass tube 1
The time Δt between the time to corresponding to h and the time ti corresponding to the center position 1 i of the inner hole 1 b is converted into a length using a high-resolution clock pulse or the like, and the center of the outer circumference 1 a in one measurement direction of the glass tube 1 is converted. The distance K of the center position 1i of the inner hole 1b is calculated based on the position 1h. A series of measurement processes is performed by rotating the glass tube 1 twice around the tube axis to make the glass tube 1
By performing the measurement 00 times, the time to of the center position 1h is
The distance K in the range in which the time ti at the center position 1i is delayed
Is detected, and the negative minimum value of the distance K in the range where the time ti is earlier than the time to is detected, and the difference is calculated as the concentricity of the glass tube 1. The calculated concentricity is output to the display unit 10 and displayed.

【0023】以上のようにして、レーザー光線2に対す
る光透過率が80〜90%の範囲にある異なる光透過率
を有するガラス管、および外径が1.0〜5.0mmお
よび内径が0.05〜0.5mmの範囲にある寸法の異
なるガラス管1の同心度を測定した。
As described above, glass tubes having different light transmittances for the laser beam 2 in the range of 80 to 90%, an outer diameter of 1.0 to 5.0 mm, and an inner diameter of 0.05 The concentricity of the glass tubes 1 having different dimensions in the range of 0.5 mm was measured.

【0024】また、乳白色を呈し、1mmの厚さで赤外
線領域の波長900nmの光を5%、波長1500nm
の光を75%、波長1600nmの光を80%以上透過
する結晶化ガラスからなるガラス管1に、レーザー光源
4にレーザーダイオードを使用して波長1550nmの
レーザー光線2を走査し、ガラス管1の同心度を測定し
た。
Further, it has a milky white color, has a thickness of 1 mm, and emits 5% of light having a wavelength of 900 nm in the infrared region and a wavelength of 1500 nm.
A laser beam 2 having a wavelength of 1550 nm is scanned using a laser diode as a laser light source 4 on a glass tube 1 made of crystallized glass that transmits 75% of the light and 80% or more of the light having a wavelength of 1600 nm. The degree was measured.

【0025】上記本発明の実施の形態によるガラス管の
測定方法では、20±5℃の環境下で、レーザー光線に
対する光透過率が80〜90%の範囲にある異なる光透
過率を有するガラス管、外径が1.0〜5.0mmおよ
び内径が0.1〜0.5mmの範囲にある寸法の異なる
ガラス管、赤外線領域の光を透過する結晶化ガラス製の
ガラス管のそれぞれの同心度を光軸方向の測定範囲±
0.2mm内で、直線性±0.1μm、再現性±0.5
μm以内の精度で測定することができた。
In the method for measuring a glass tube according to the embodiment of the present invention, a glass tube having a different light transmittance in a range of 80 to 90% for a laser beam under an environment of 20 ± 5 ° C. The concentricity of each of glass tubes of different dimensions having an outer diameter in the range of 1.0 to 5.0 mm and an inner diameter in the range of 0.1 to 0.5 mm, and a glass tube made of crystallized glass that transmits light in the infrared region. Measurement range in the optical axis direction ±
Within 0.2 mm, linearity ± 0.1 μm, reproducibility ± 0.5
The measurement could be performed with an accuracy within μm.

【0026】[0026]

【発明の効果】本発明のガラス管の測定方法によれば、
レーザー光線に対する光透過率が異なるガラス管、外径
寸法の異なるガラス管、および可視光をほとんど透過せ
ず赤外線領域の光を透過する結晶化ガラス製のガラス管
のそれぞれの同心度を正確に測定することができる実用
上優れた効果を奏するものである。
According to the method for measuring a glass tube of the present invention,
Accurately measure the concentricity of glass tubes with different light transmittances for laser beams, glass tubes with different outer diameters, and glass tubes made of crystallized glass that transmits infrared light while transmitting little visible light This has a practically excellent effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のガラス管の測定方法の説明図であっ
て、(A)はレーザー測定装置の概念図、(B)はガラ
ス管を走査するレーザー光線の説明図。
1A and 1B are explanatory diagrams of a method for measuring a glass tube according to the present invention, wherein FIG. 1A is a conceptual diagram of a laser measuring device, and FIG. 1B is an explanatory diagram of a laser beam that scans a glass tube.

【図2】本発明の説明図であって、ガラス管の光透過率
が変化した場合の処理部の出力パターンの説明図。
FIG. 2 is an explanatory diagram of the present invention, and is an explanatory diagram of an output pattern of a processing unit when a light transmittance of a glass tube changes.

【図3】本発明の説明図であって、レーザー光線の基準
となる光量の計測位置を外径に応じて調節する必要性を
説明した図。
FIG. 3 is an explanatory diagram of the present invention, illustrating the necessity of adjusting a measurement position of a light amount serving as a reference of a laser beam according to an outer diameter.

【図4】処理部の説明図であって、(A)は信号処理の
概念回路図、(B)は信号パターンの説明図。
4A and 4B are explanatory diagrams of a processing unit, where FIG. 4A is a conceptual circuit diagram of signal processing, and FIG. 4B is a diagram illustrating a signal pattern.

【図5】従来のガラス管の測定方法の説明図であって、
(A)はレーザー測定装置の概念図、(B)はガラス管
を走査するレーザー光線の説明図、(C)は従来の処理
部の出力パターンの説明図。
FIG. 5 is an explanatory view of a conventional method for measuring a glass tube,
(A) is a conceptual diagram of a laser measuring device, (B) is an explanatory diagram of a laser beam that scans a glass tube, and (C) is an explanatory diagram of an output pattern of a conventional processing unit.

【符号の説明】 1、20 ガラス管 1a 外周 1b 内孔 1c、1d、1e、1f エッジ部 1h、1i 中心位置 1g、1j 計測位置 2 レーザー光線 3 レーザー測定装置 4 レーザー光源 5 偏向手段 6 コリメータレンズ 7 集光レンズ 8 センサー 9 処理部 9a 回路 10 表示部 11 調節手段 D1、D2 測定範囲 P1、P2、P3 信号ピーク S1、S1a、S1b、S2、S3、S4、S5 電圧
信号 V1、V2、V2’ 信号レベル
[Description of Signs] 1,20 Glass tube 1a Outer circumference 1b Inner hole 1c, 1d, 1e, 1f Edge 1h, 1i Center position 1g, 1j Measurement position 2 Laser beam 3 Laser measuring device 4 Laser light source 5 Deflection means 6 Collimator lens 7 Condensing lens 8 Sensor 9 Processing unit 9a Circuit 10 Display unit 11 Adjusting means D1, D2 Measurement range P1, P2, P3 Signal peak S1, S1a, S1b, S2, S3, S4, S5 Voltage signal V1, V2, V2 'signal level

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 レーザー光線をガラス管の軸方向に対し
て直角に、かつガラス管の外周に対して複数方向に走査
し、ガラス管の外周および内孔のそれぞれの両エッジ部
で生じるレーザー光線の光量の変化をセンサーで感知し
て電気信号に変換し、電気信号が所定の信号レベルとな
る位置を求めてガラス管の外周および内孔のそれぞれの
両エッジ部を検出し、一方のエッジ部の位置及び他方の
エッジ部の位置から外周および内孔のそれぞれの中心位
置を算出し、外周の中心位置と内孔の中心位置との距離
から同心度を測定するガラス管の測定方法において、内
孔の両エッジ部を検出する前記信号レベルを、ガラス管
を透過するレーザー光線の光量に応じて調節することを
特徴とするガラス管の測定方法。
A laser beam is scanned at right angles to the axial direction of the glass tube and in a plurality of directions with respect to the outer periphery of the glass tube, and the light amount of the laser beam generated at both edges of the outer periphery and the inner hole of the glass tube. The sensor detects the change in the position of the glass tube and converts it into an electric signal. The position where the electric signal reaches a predetermined signal level is detected to detect both edges of the outer periphery and the inner hole of the glass tube. And calculating the center position of each of the outer periphery and the inner hole from the position of the other edge portion and measuring the concentricity from the distance between the center position of the outer periphery and the center position of the inner hole. A method for measuring a glass tube, wherein the signal level for detecting both edge portions is adjusted according to the amount of a laser beam transmitted through the glass tube.
【請求項2】 内孔のエッジ部を検出する信号レベルを
調節する際に、ガラス管を透過するレーザー光線の基準
となる光量の計測位置をガラス管の外径寸法に応じて調
節することを特徴とする請求項1に記載のガラス管の測
定方法。
2. A method for adjusting a signal level for detecting an edge portion of an inner hole, wherein a measuring position of a reference light amount of a laser beam transmitted through a glass tube is adjusted according to an outer diameter of the glass tube. The method for measuring a glass tube according to claim 1.
【請求項3】 ガラス管が赤外線領域の光を透過する結
晶化ガラスからなり、ガラス管を透過するレーザー光線
の波長が1000nm以上であることを特徴とする請求
項1または請求項2に記載のガラス管の測定方法。
3. The glass according to claim 1, wherein the glass tube is made of crystallized glass that transmits light in an infrared region, and a wavelength of a laser beam transmitted through the glass tube is 1000 nm or more. Tube measurement method.
JP07249399A 1999-03-17 1999-03-17 Glass tube measurement method Expired - Fee Related JP3912645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07249399A JP3912645B2 (en) 1999-03-17 1999-03-17 Glass tube measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07249399A JP3912645B2 (en) 1999-03-17 1999-03-17 Glass tube measurement method

Publications (2)

Publication Number Publication Date
JP2000266517A true JP2000266517A (en) 2000-09-29
JP3912645B2 JP3912645B2 (en) 2007-05-09

Family

ID=13490917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07249399A Expired - Fee Related JP3912645B2 (en) 1999-03-17 1999-03-17 Glass tube measurement method

Country Status (1)

Country Link
JP (1) JP3912645B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006075832A1 (en) * 2005-01-13 2006-07-20 Ls Cable Ltd. Outer and inner diameter measuring apparatus and method for transparent tube
WO2015036631A1 (en) * 2013-09-13 2015-03-19 Abengoa Solar New Technologies, S.A. Spectrophotometer for the characterisation of receivers of solar collectors

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006075832A1 (en) * 2005-01-13 2006-07-20 Ls Cable Ltd. Outer and inner diameter measuring apparatus and method for transparent tube
KR100624256B1 (en) * 2005-01-13 2006-09-19 엘에스전선 주식회사 Outer and Inner Diameter Measuring Apparatus and Method for Transparent Tube
WO2015036631A1 (en) * 2013-09-13 2015-03-19 Abengoa Solar New Technologies, S.A. Spectrophotometer for the characterisation of receivers of solar collectors
US10379034B2 (en) 2013-09-13 2019-08-13 Abengoa Solar New Technologies, S.A. Spectrophotometer for the characterisation of receivers of solar collectors

Also Published As

Publication number Publication date
JP3912645B2 (en) 2007-05-09

Similar Documents

Publication Publication Date Title
CN103791860A (en) Tiny angle measuring device and method based on vision detecting technology
SU958854A1 (en) Device for simultaneous measurement of misalgnment and direction
US4043673A (en) Reticle calibrated diameter gauge
JP3912644B2 (en) Glass tube measurement method
JP2000266517A (en) Method for measuring glass tube
CN1936497A (en) Outline measurement projector with picture treatment system
US4837432A (en) Optical measuring apparatus which employs two synchronously rotating means to measure object
CN206556597U (en) Symmetrical beam bridge-type is from stabilized laser measurement diameter system
JPH0460526B2 (en)
US20050140989A1 (en) Device for measuring external and internal dimensions and distances between measurement objects
JPS61234306A (en) Optical measuring apparatus
JPH0552523A (en) Optical dimension measuring apparatus
US20230033565A1 (en) Surveying instrument
CN106679593B (en) A kind of the angle calibration system device and calibration method of the isoperibol based on arrival time
JPH0552521A (en) Optical dimension measuring apparatus
JP2884116B2 (en) Dimension measuring device
JPH03264834A (en) Jitter measuring apparatus for laser beam scanner motor
JPH0528915U (en) Optical dimension measuring device
SU1049768A1 (en) Device for measuring working length of lens
JPH0552528A (en) Optical dimension measuring apparatus
JPH01265130A (en) Input device for scanning type oscilloscope
JPS60152929A (en) Divided-angle-error measuring apparatus of polygon mirror
RU2009522C1 (en) Laser unit for determining configuration of information light signal
JPS63191908A (en) Optical scanning type measuring instrument
JPH07289668A (en) Ranging device and golf putter fitted with this device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070125

R150 Certificate of patent or registration of utility model

Ref document number: 3912645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees