JPS6225288A - Upper structure in reactor for nuclear reactor - Google Patents
Upper structure in reactor for nuclear reactorInfo
- Publication number
- JPS6225288A JPS6225288A JP60163914A JP16391485A JPS6225288A JP S6225288 A JPS6225288 A JP S6225288A JP 60163914 A JP60163914 A JP 60163914A JP 16391485 A JP16391485 A JP 16391485A JP S6225288 A JPS6225288 A JP S6225288A
- Authority
- JP
- Japan
- Prior art keywords
- reactor
- core
- control rod
- protection tube
- protection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は、加圧水型原子炉に関し、特にその炉内上部構
造の改良に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pressurized water nuclear reactor, and particularly to an improvement of the upper structure inside the reactor.
[従来の技術]
種々の加圧水型原子炉の中には、縦方向の寸法が在来の
原子炉に比較して相当に長い、いわゆる改良型原子炉が
ある。この場合、原子炉容器の頂部内において冷却材流
にさらされる制御棒駆動軸の長さも当然長くなるため、
冷却材流によって励起される振動から制御棒駆動軸を保
護すべく、制御棒駆動軸を保護管で取り囲まなければな
らない。BACKGROUND OF THE INVENTION Among the various pressurized water reactors there are so-called improved reactors whose longitudinal dimensions are considerably longer than conventional reactors. In this case, the length of the control rod drive shaft exposed to the coolant flow within the top of the reactor vessel will naturally become longer.
To protect the control rod drive shaft from vibrations excited by the coolant flow, the control rod drive shaft must be surrounded by a protective tube.
また、この保護管には、緊息時に原子炉容器頂部の冷却
材を炉心に通すための流路手段を設けなければならない
。In addition, this protection tube must be provided with a passage means for passing the coolant from the top of the reactor vessel into the core during an emergency.
しかし、従来の流路手段は、曲げモーメントに対し殻も
弱い保護管の根元部に流路孔を設けると共に、複雑な形
状の分流装置を別部品として設けるものであった。However, in the conventional flow path means, a flow path hole is provided at the root of the protective tube, whose shell is weak against bending moments, and a complicatedly shaped flow dividing device is provided as a separate component.
[発明が解決しようとする問題点]
従って、従来の技術では、保護管の強度が弱くがあった
。本発明の目的は、かかる問題点を速やかに解決しうる
原子炉の炉内上部構造を提供することである。[Problems to be Solved by the Invention] Accordingly, in the conventional technology, the strength of the protective tube is weak. An object of the present invention is to provide an internal upper structure of a nuclear reactor that can quickly solve these problems.
し問題点を解決するための手段]
この目的から本発明は、原子炉容器内に垂下支持され、
内部下方の炉心を取り囲む炉心槽を有する原子炉の炉内
上部構造に関するものであって、本発明による炉内上部
構造は、炉心の直上に位置し、制御棒集合体案内管を持
つ上部構造体と、該上部構造体の上方に位置したカラン
ドリア構造体と、該炉心及び制御棒集合体案内管内を上
下に移動可能な制御棒を持つ制御棒集合体とを備えてい
る。該カランドリア構造体は、互いに平行な底板及び上
板を有し、これ等画板は制御棒駆動軸を個別に取り囲む
多数の保護管によって剛に連結されると共に、該保護管
は前記上板を貫通して延び、この上板貫通部に、保護管
軸心に対して傾斜の少ない流路孔が上板上方の原子炉容
器頂部と保護管内部とに流体連絡して形成されている。[Means for Solving the Problems]] For this purpose, the present invention provides a nuclear reactor vessel that is suspended and supported within a reactor vessel,
The present invention relates to an in-core superstructure of a nuclear reactor having a core barrel surrounding an inner lower core, the in-core superstructure according to the present invention having an upper structure located directly above the reactor core and having a control rod assembly guide tube. a calandria structure located above the superstructure; and a control rod assembly having control rods that are movable up and down within the core and control rod assembly guide tubes. The calandria structure has a bottom plate and a top plate that are parallel to each other, and these drawing plates are rigidly connected by a number of protection tubes that individually surround the control rod drive shaft, and the protection tubes pass through the top plate. A passage hole having a small inclination with respect to the protection tube axis is formed in this upper plate penetrating portion in fluid communication with the top of the reactor vessel above the upper plate and the inside of the protection tube.
し作用]
保護管の上板貫通部は、保護管の肉厚に比較して半径方
向の寸法が大きく、しかも軸方向の厚さも厚くすること
ができるので、この貴通部に、上板上方の原子炉容器頂
部と保護管内部とに流体連絡するように流路孔を形成す
ることが可能になる。The upper plate penetration part of the protection tube has a larger radial dimension than the thickness of the protection tube, and can also be made thicker in the axial direction. It becomes possible to form flow passage holes for fluid communication between the top of the reactor vessel and the inside of the protection tube.
従って、保護管根元部に流路孔を形成する必要がなくな
り、保護管の強度上の弱点が解消される。Therefore, there is no need to form a flow passage hole at the base of the protection tube, and weaknesses in the strength of the protection tube are eliminated.
しかも、このように形成した流路孔の保護管軸心に関す
る傾斜度が小さくなるので、流路孔内を保護管内部に向
かって流れる冷却材の噴流軸が保護管の軸心から離れて
いても、冷却材が保護管内壁に沿って流れようとするコ
アンダ効果が生じる。Moreover, since the degree of inclination of the flow passage hole formed in this way with respect to the protection tube axis is reduced, the jet axis of the coolant flowing inside the flow passage hole toward the inside of the protection tube is away from the protection tube axis. Also, a Coanda effect occurs in which the coolant tends to flow along the inner wall of the protective tube.
従って、保護管内の制御棒駆動軸に対する冷却材噴流の
衝突がなくなり、制御棒駆動軸の励振がなくなる。Therefore, the coolant jet does not collide with the control rod drive shaft in the protection tube, and the control rod drive shaft is no longer excited.
[実施例コ
次に、本発明の好適な実施例を添付図面を9照して詳細
に説明するが、図中、同一符号は同−又は対応部分を示
すものとする。[Embodiment] Next, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings, in which the same reference numerals indicate the same or corresponding parts.
第1図は本発明による原子炉の縦断面を示し、第2図は
第1図において円■で囲んだ部分の詳細断面図であり、
第3図は第2図のI−1線断面図である。第1図におい
て、原子炉容器1は、円筒形本体1aと、該本体1aの
フランジ部に着脱自在に取り付けられた上部蓋体1bと
を有し、該容器本体1aには、冷却材入口ノズル18及
び出口ノズル19が一体に形成されている。該容器1の
本体la内には、その内壁面と協働して環状下降流路I
Cを画成するように、炉心槽2が上部で本体1aのフラ
ンジ部から垂下支持され、下部で下部炉心板4に溶接さ
れている。FIG. 1 shows a longitudinal section of a nuclear reactor according to the present invention, and FIG. 2 is a detailed sectional view of the part circled in FIG.
FIG. 3 is a sectional view taken along line I-1 in FIG. 2. In FIG. 1, a reactor vessel 1 has a cylindrical main body 1a and an upper lid 1b detachably attached to a flange portion of the main body 1a. 18 and an outlet nozzle 19 are integrally formed. In the main body la of the container 1, there is an annular downward flow path I cooperating with the inner wall surface of the container 1.
C, the core barrel 2 is suspended from the flange of the main body 1a at the upper part, and is welded to the lower core plate 4 at the lower part.
炉心槽2の内部下方には、多数の燃料集合体3(図には
4体のみを示す)からなる炉心Aが下部炉心板4と上部
炉心板6との間に支持されている。Inside and below the core barrel 2, a core A consisting of a large number of fuel assemblies 3 (only four are shown in the figure) is supported between a lower core plate 4 and an upper core plate 6.
また、該炉心槽2の内部には、炉心Aの直上に位置する
上部構造体5とご該上部構造体5の上方に位置したカラ
ンドリア構造体7とがある。Further, inside the core barrel 2, there are an upper structure 5 located directly above the core A and a calandria structure 7 located above the upper structure 5.
上部構造体5は上部で炉心槽同様に容器本体1aのフラ
ンジ部に取り付けられ、下部で上部炉心板は多数の制御
棒集合体案内管16及び17(図には代表的に2本のみ
を示す)を有する。この実施例では案内管16が集合体
に組み立てられた制御棒11を案内し、案内管17が水
排除棒12を案内するものとなっている。The upper structure 5 is attached to the flange portion of the vessel body 1a at the upper part in the same way as the core tank, and at the lower part the upper core plate is attached to a large number of control rod assembly guide tubes 16 and 17 (only two are representatively shown in the figure). ). In this embodiment, a guide tube 16 guides the control rods 11 assembled into an assembly, and a guide tube 17 guides the water removal rod 12.
カランドリア構造体7は互いに平行な上板8及び底板9
を持っており、該上板8及び底板9は多数の中空保護管
10によって互いに剛に連結されている。この保護管1
0は、前述した制御棒11又は水排除棒12に接続され
る制御棒駆動軸13を取り囲んでおり、機械的にはその
下部がカランドリアtM 3e体7での横向き流から駆
動軸13を保護し、北部が原子炉容器頂部1eでのバイ
パス流から駆動軸13を保護している。制御棒駆動軸1
3のうち、制御棒11に連結されたものは上部蓋体1b
に取り付けられた駆動装置14に、水排除棒12に連結
されたものは同様に蓋体1bに取り付けられた駆動装置
15にそれぞれ接続されるものとして図示しである。従
って、燃料集合体3内には、熱出力を制御する制御棒1
1乃1【仝IIIIIi応庁を制御する水排除棒12が
進退可箭であり、これ等の棒を駆動軸13を介して駆動
装置14.15により燃料集合体3に対して挿入及び引
き抜きを行うことにより、出力の制御、反応度の制御が
行なわれる。The calandria structure 7 has a top plate 8 and a bottom plate 9 parallel to each other.
The top plate 8 and bottom plate 9 are rigidly connected to each other by a number of hollow protection tubes 10. This protection tube 1
0 surrounds the control rod drive shaft 13 connected to the aforementioned control rod 11 or water exclusion rod 12, and mechanically its lower part protects the drive shaft 13 from the lateral flow in the calandria tM 3e body 7. , the northern part protects the drive shaft 13 from the bypass flow at the reactor vessel top 1e. Control rod drive shaft 1
3, the one connected to the control rod 11 is the upper lid body 1b.
The drive device 14 attached to the water removal rod 12 is shown as being connected to the drive device 15 similarly attached to the lid body 1b. Therefore, within the fuel assembly 3, there are control rods 1 for controlling the thermal output.
1-1 The water removal rods 12 that control the reaction chamber are movable back and forth, and these rods are inserted into and withdrawn from the fuel assembly 3 by the drive device 14.15 via the drive shaft 13. By doing so, the output and reactivity are controlled.
保護管10がカランドリア構造体7の上板8を貫通する
部分、即ち第1図において円■で囲んだ部分の詳細を示
す第2図から明らかなように、保護管10は貫通部22
を境として上部保護管10aと下部保護管10aとに分
割されており、これ等の保護管部分はそれぞれ貫通部2
2に例えば溶接23で一体に固着され、また、貫通部2
2も上板8に例えば溶接24で固着される。As is clear from FIG. 2, which shows details of the portion where the protective tube 10 penetrates the upper plate 8 of the calandria structure 7, that is, the portion surrounded by a circle in FIG.
It is divided into an upper protection tube 10a and a lower protection tube 10a, and these protection tube parts each have a penetration part 2.
2, for example, by welding 23, and the penetrating portion 2
2 is also fixed to the upper plate 8, for example, by welding 24.
貫通部22は、半径方向の外方に保護管外周面を越えて
延びるフランジ状の突出部25を備えると共に、駆動軸
13が上下に移動自在なように、端ぐりされた貫通口2
6を中央に有している。この貫通部22の内径及び外径
は、半径方向肉厚が保護管10の肉厚に比較して充分に
大きくなるように選択されている。また、突出部25に
は円周方向に隔置された複数(第3図に示すように実施
例では8個)の流路孔21が、」二枚8上方の原子炉容
器m部1eと保護管10の内部とに流体連通ずるように
斜状に穿孔されている。保護管10の長手方向軸心に関
する各流路孔21の傾斜度θは可及的に小さいことが好
ましく、また、第2図から諒解される通り、流路孔21
から保護管内部に流入する冷却材が保護管10の内壁に
なるべく沿うように、流路孔21の出口側開口が配設さ
れている。The penetrating portion 22 includes a flange-shaped protrusion 25 extending radially outward beyond the outer circumferential surface of the protective tube, and has a counterbored through hole 2 so that the drive shaft 13 can move up and down.
6 in the center. The inner diameter and outer diameter of the penetrating portion 22 are selected such that the wall thickness in the radial direction is sufficiently larger than the wall thickness of the protection tube 10. In addition, the protruding portion 25 has a plurality of flow passage holes 21 (eight in the embodiment as shown in FIG. 3) spaced apart in the circumferential direction. A diagonal hole is formed for fluid communication with the inside of the protection tube 10. It is preferable that the inclination θ of each channel hole 21 with respect to the longitudinal axis of the protective tube 10 is as small as possible, and as understood from FIG.
The outlet side opening of the flow path hole 21 is arranged so that the coolant flowing into the protection tube from the inside of the protection tube 10 follows the inner wall of the protection tube 10 as much as possible.
上述した構造を有する原子炉の運転中において、入口ノ
ズル18から流入した冷却材は、矢印で示すように、容
器本体1aと炉心fff2との間の環状下降流路1cを
下降し、本体底部のブレナム部1dで反転し、上昇流と
なって下部炉心板4の多数の流路孔4a(第1図には代
表的に数個のみを示す)を経て炉心領域に入り、そこで
加熱された後、上部炉心板6の流路孔6aを経て上部構
造体5内へと流入する。During operation of the reactor having the above-described structure, the coolant flowing from the inlet nozzle 18 descends through the annular downward passage 1c between the vessel body 1a and the reactor core fff2, as shown by the arrow, and reaches the bottom of the body. The flow reverses at the blemish part 1d, becomes an upward flow, enters the core region through a large number of flow passage holes 4a (only a few are shown in FIG. 1 as a representative) in the lower core plate 4, and is heated there. , flows into the upper structure 5 through the passage holes 6a of the upper core plate 6.
冷却材は制御棒集合体案内管16.17の内側及び外側
を上昇してカランドリア構造体7内に入り、そこで横方
向に流れの向きを変え、出口ノズル19から出て図示し
ない蒸気発生器に向かって流れる。The coolant rises inside and outside the control rod assembly guide tubes 16, 17 into the calandria structure 7 where it is laterally redirected and exits through the outlet nozzle 19 into a steam generator (not shown). flowing towards.
一方、カランドリア構造体7に入った冷却材のうち僅か
な部分が、第1図に示す位置にあるスプレィノズル20
にバイパス流として流れ、そこから噴出し、原子炉容器
1の頂部1eの冷却を行なった後、保護管10の上部か
ら及び第1図に円■で囲んだ部分にある流路孔21(第
2図)から保護管10内に入り、冷却材主流と合流し出
口ノズル19から流出する。On the other hand, a small portion of the coolant that has entered the calandria structure 7 is transferred to the spray nozzle 20 located at the position shown in FIG.
It flows as a bypass flow from there, cools the top part 1e of the reactor vessel 1, and then flows from the upper part of the protection tube 10 and the flow passage hole 21 (the part circled in FIG. The coolant enters the protection tube 10 from the coolant main flow (Fig. 2), merges with the main flow of the coolant, and flows out from the outlet nozzle 19.
そして仮想的な冷却材喪失事故があった場合には、原子
炉容器1の頂部1eの保有水が前述した各流路孔21を
経て保護管10内を下降し、次に制御棒集合体案内管1
6.17内を下降し、炉心領域に直接流出してこれを冷
却する。In the event of a hypothetical loss of coolant accident, the water retained in the top 1e of the reactor vessel 1 will descend through the aforementioned flow passage holes 21 into the protective tube 10, and then the control rod assembly guide. tube 1
6.17 and flows directly into the core region to cool it.
[発明の効果]
以上の構成及び作用を有する本発明の原子炉の炉内上部
横道によれば、次のような格別の効果を奏することがで
きる。[Effects of the Invention] According to the inner reactor upper side passage of the nuclear reactor of the present invention having the above-described configuration and operation, the following special effects can be achieved.
(1)流路孔Z1を貫通部2zに設けろことにより、保
護管10の根元部断面は曲げモーメントに対し最るよう
に、この部分での断面二次モーメン1−を大きくするこ
とができ、保護管10の強度上の弱点が解消される。(1) By providing the channel hole Z1 in the penetration part 2z, the cross-sectional moment of inertia 1- of the root part of the protection tube 10 can be increased in this part so that it is more resistant to bending moment. The weakness in the strength of the protection tube 10 is eliminated.
(2)貫通部22の肉厚を適切に設定することにより、
保護管軸心に関する流路孔21の傾斜度θを小さく取れ
るので、流路孔21から保護管10内への、凭れが保護
管内壁に沿うコアンダ効果か生じ、保護管10内を貫通
する駆動軸13への冷却材噴流の衝突による駆動軸13
の励振が緩和される。(2) By appropriately setting the wall thickness of the penetration part 22,
Since the inclination angle θ of the flow passage hole 21 with respect to the protection tube axis can be made small, a Coanda effect occurs in which the sill follows the protection tube inner wall from the flow passage hole 21 into the protection tube 10, and the drive that penetrates the inside of the protection tube 10 is generated. Drive shaft 13 due to impact of coolant jet on shaft 13
excitation is relaxed.
(3)貫通部22は流路孔21のif)る多孔構造とな
るが、貫通部22は軸方向厚さを増加することが可能で
あり、増加によって傾斜度θが小さくなるため、更にコ
アンダ効果の向上を期待でき、駆動軸13の流体振動の
懸念を一層緩和することがてきる。(3) Although the penetrating portion 22 has a porous structure similar to that of the flow path hole 21, the thickness of the penetrating portion 22 in the axial direction can be increased. An improvement in effectiveness can be expected, and concerns about fluid vibration of the drive shaft 13 can be further alleviated.
第1図は本発明による炉内上部構造を持つ原子炉の縦断
面図、第2図は第1図において円)Iで囲んだ部分の詳
細断面図、第3図は第2図の■−m線断面図である。
1・・原子炉容器 21.炉心槽3・・燃↑−
1集合体 5・・上部横遺体7・・カランド
リア構造木 8・・上板9・・・底板
10・・・保護管11・・・制御棒
13・・・制御棒駆動軸16・・・制御棒集合体案内管
21・・・流路孔17・・・制御棒集合体案内管 2
2・・・貫通部1e・・・原子炉容器頂部 A・・
・炉心第2図
91頁の続き
シ発 明 者 清 水 勝 利 東京都千代田
区大手町式会社内
シ発 明 者 吉 川 英 治 神戸市兵庫区
和田崎町社神戸造船所内Fig. 1 is a longitudinal cross-sectional view of a nuclear reactor with an internal reactor upper structure according to the present invention, Fig. 2 is a detailed cross-sectional view of the part surrounded by a circle) I in Fig. 1, and Fig. 3 is a - It is an m-line sectional view. 1. Reactor vessel 21. Core tank 3...Fuel ↑-
1 assembly 5... Upper horizontal body 7... Calandria structural wood 8... Top plate 9... Bottom plate
10...Protection tube 11...Control rod
13... Control rod drive shaft 16... Control rod assembly guide tube 21... Channel hole 17... Control rod assembly guide tube 2
2... Penetration part 1e... Reactor vessel top A...
・Continued from page 91 of Figure 2 of the reactor core Inventor: Katsutoshi Shimizu Inside the Otemachi-style company, Chiyoda-ku, Tokyo Inventor: Eiji Yoshikawa Inside the Kobe Shipyard & Machinery Works, Wadazakichosha, Hyogo-ku, Kobe City
Claims (1)
む炉心槽を有する原子炉の炉内上部構造であって、炉心
の直上に位置し、制御棒集合体案内管を持つ上部構造体
と、該上部構造体の上方に位置したカランドリア構造体
と、該炉心及び制御棒集合体案内管内を上下に移動可能
な制御棒を持つ制御棒集合体とを備え、該カランドリア
構造体は、互いに平行な底板及び上板を有し、これ等両
板は制御棒駆動軸を個別に取り囲む多数の保護管によっ
て剛に連結されると共に、該保護管は前記上板を貫通し
て延び、この上板貫通部に、保護管軸心に対して傾斜の
少ない流路孔が上板上方の原子炉容器頂部と保護管内部
とに流体連絡して形成されている原子炉の炉内上部構造
。An in-core upper structure of a nuclear reactor having a core barrel suspended in a reactor vessel and surrounding an inner lower core, the upper structure being located directly above the reactor core and having a control rod assembly guide tube; The calandria structure includes a calandria structure located above the superstructure, and a control rod assembly having control rods that are movable up and down in the core and control rod assembly guide tubes, and the calandria structures are arranged parallel to each other. It has a bottom plate and a top plate, both of which are rigidly connected by a number of protection tubes that individually surround the control rod drive shaft, the protection tubes extending through the top plate, and the protection tubes extending through the top plate. An internal upper structure of a nuclear reactor in which a passage hole with a small inclination with respect to the axis of the protection tube is formed in the upper part of the reactor in fluid communication with the top of the reactor vessel above the upper plate and the inside of the protection tube.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60163914A JPS6225288A (en) | 1985-07-26 | 1985-07-26 | Upper structure in reactor for nuclear reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60163914A JPS6225288A (en) | 1985-07-26 | 1985-07-26 | Upper structure in reactor for nuclear reactor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6225288A true JPS6225288A (en) | 1987-02-03 |
Family
ID=15783224
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60163914A Pending JPS6225288A (en) | 1985-07-26 | 1985-07-26 | Upper structure in reactor for nuclear reactor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6225288A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0378242A (en) * | 1989-08-22 | 1991-04-03 | Hiyuuguru Electron Kk | Method and apparatus for securing adhesive film |
-
1985
- 1985-07-26 JP JP60163914A patent/JPS6225288A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0378242A (en) * | 1989-08-22 | 1991-04-03 | Hiyuuguru Electron Kk | Method and apparatus for securing adhesive film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4231843A (en) | Guide tube flow diffuser | |
JP5285212B2 (en) | Steam separator | |
JPS5947277B2 (en) | pressurized water reactor | |
EP2936499B1 (en) | Heavy radial neutron reflector for pressurized water reactors | |
JPS5829879B2 (en) | Reactor | |
US4759904A (en) | Pressurized water reactor having improved calandria assembly | |
US5325407A (en) | Core barrel and support plate assembly for pressurized water nuclear reactor | |
US20100239060A1 (en) | Reflector-controlled fast reactor | |
US4639350A (en) | Cover-plug for the core of a fast neutron nuclear reactor | |
US3864209A (en) | Inlet flow oscillation damper for a nuclear reactor | |
JPH0721545B2 (en) | Reactor | |
JPS6225288A (en) | Upper structure in reactor for nuclear reactor | |
JPH0353589B2 (en) | ||
US4072560A (en) | Pressurized-water reactor pressure vessel emergency core coolant connection arrangement | |
US4654185A (en) | Deep beam reactor vessel head and nuclear reactor including same | |
EP0125326B1 (en) | Nuclear reactor | |
US4265708A (en) | Radially channeled guide post for a nuclear fuel assembly | |
US3367839A (en) | Closed cycle nuclear reactor | |
JPS62238492A (en) | Nuclear reactor | |
US6389094B1 (en) | Integral forged shroud flange for a boiling water reactor | |
US5363421A (en) | Control rod guide tube | |
US3359175A (en) | Nuclear reactor | |
EP0125325B1 (en) | Nuclear reactor | |
JPH0413678B2 (en) | ||
US5920603A (en) | Forged core plate for a boiling water reactor |