JPH0413678B2 - - Google Patents

Info

Publication number
JPH0413678B2
JPH0413678B2 JP58004717A JP471783A JPH0413678B2 JP H0413678 B2 JPH0413678 B2 JP H0413678B2 JP 58004717 A JP58004717 A JP 58004717A JP 471783 A JP471783 A JP 471783A JP H0413678 B2 JPH0413678 B2 JP H0413678B2
Authority
JP
Japan
Prior art keywords
core
coolant
annular space
reactor
control rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58004717A
Other languages
Japanese (ja)
Other versions
JPS59218991A (en
Inventor
Tetsuo Hineno
Hidenori Nakada
Yoshio Tokumaru
Shizuo Nakada
Hiroshi Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CBS Corp
Original Assignee
Westinghouse Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Electric Corp filed Critical Westinghouse Electric Corp
Priority to JP58004717A priority Critical patent/JPS59218991A/en
Publication of JPS59218991A publication Critical patent/JPS59218991A/en
Publication of JPH0413678B2 publication Critical patent/JPH0413678B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

【発明の詳細な説明】 本発明は、原子炉の構造に関する。[Detailed description of the invention] The present invention relates to the structure of a nuclear reactor.

従来の加圧水型軽水炉では、原子炉冷却材は、
炉心を通つて加熱されながら上昇し、上部炉心板
の多数の穴を通過後、炉心槽、上部支持板及び上
部炉心板より画成される出口プレナム内で流れ方
向を横方向へ変え、制御棒案内管及び上部炉心支
持柱の間の広いすき間を通つて出口ノズルに向つ
て流れる。
In conventional pressurized water reactors, the reactor coolant is
After rising through the reactor core while being heated and passing through a number of holes in the upper core plate, the flow direction is changed laterally in an exit plenum defined by the core barrel, the upper support plate, and the upper core plate, and the control rods It flows towards the outlet nozzle through the wide gap between the guide tube and the upper core support column.

制御棒案内管は、制御棒集合体を鉛直方向に案
内すると共に、原子炉容器の半径方向外方すなわ
ち横方向に向う冷却材の流れから細い制御要素を
保護し、制御要素の長期にわたる摩耗を防いでい
る。
The control rod guide tube guides the control rod assembly vertically and protects the thin control elements from the flow of coolant radially outward or lateral to the reactor vessel, preventing long-term wear of the control elements. Preventing.

しかるに、制御要素の数が非常に多くなり、そ
れらが炉心全体にわたつて分布しているような原
子炉では、前述のような炉内上部構造をとると、
隣接した制御棒案内管間のすき間がほとんどなく
なり、出口ノズルに向う冷却材の流れが妨害され
て十分な冷却材流量が得がたい。又、たとえ流量
が得られるようにしえても流速が必然的に大きく
なり、該案内管に作用する流体力が大きくなつ
て、種々の不具合を招来する。また、原子炉トリ
ツプ時には冷却材の自然循環流を発生させて崩壊
熱を除去しなければならない。
However, in a nuclear reactor where the number of control elements is extremely large and they are distributed throughout the reactor core, if the reactor superstructure is adopted as described above,
There is almost no gap between adjacent control rod guide tubes, and the flow of coolant toward the exit nozzle is obstructed, making it difficult to obtain a sufficient coolant flow rate. Furthermore, even if a sufficient flow rate can be obtained, the flow velocity will inevitably increase, and the fluid force acting on the guide tube will increase, leading to various problems. Furthermore, during a reactor trip, decay heat must be removed by generating a natural circulating flow of coolant.

本発明は、前記した事情に鑑みなされたもので
ある。
The present invention has been made in view of the above-mentioned circumstances.

すなわち、本発明は、上方側部に冷却材用の入
口ノズル及び出口ノズルを備えた原子炉容器、該
原子炉容器の上方開口部に着脱自在に取着された
蓋、前記原子炉容器内に垂下支持された炉心槽、
該炉心槽の内部下方に装荷され炉心を構成する複
数の燃料集合体、該炉心の上方で前記炉心槽から
離間してその内側に配設され、同炉心槽と協働し
て環状空間を画成すると共に、下方部位において
該環状空間に開口する小孔を有する内筒、前記蓋
の上部に林設された複数の制御棒駆動装置、該制
御棒駆動装置により前記原子炉容器内に可動に支
持され、前記内筒内に設けられた垂直な案内筒に
より個別に取り囲まれると共に、複数の制御要素
を含む複数の制御棒集合体、前記案内筒の上方に
位置して該制御棒集合体の駆動軸のみを個別に取
り囲む複数の保護管、及び該保護管を取り囲んで
前記原子炉容器を横切つて延びるように配設さ
れ、半径方向に開放して前記環状空間に連通する
冷却材転向プレナムを備え、前記出口ノズルは、
前記炉心槽を半径方向に貫いて延びて前記冷却材
転向プレナムよりも下方の位置で前記環状空間に
開口している、原子炉構造を提供するものであ
る。
That is, the present invention provides a reactor vessel equipped with an inlet nozzle and an outlet nozzle for coolant on an upper side thereof, a lid detachably attached to an upper opening of the reactor vessel, and a lid that is detachably attached to an upper opening of the reactor vessel. Drop-supported core barrel,
A plurality of fuel assemblies are loaded inside and below the core barrel and constitute the core, and are disposed above the core at a distance from and inside the core barrel, and cooperate with the core barrel to define an annular space. an inner cylinder having a small hole opening into the annular space in the lower part; a plurality of control rod drive devices installed in the upper part of the lid; and a plurality of control rod drive devices movable into the reactor vessel by the control rod drive devices. a plurality of control rod assemblies supported and individually surrounded by vertical guide tubes provided within the inner cylinder and including a plurality of control elements; a plurality of protection tubes individually surrounding only the drive shaft; and a coolant diverting plenum surrounding the protection tubes, extending across the reactor vessel, and opening radially to communicate with the annular space. , the outlet nozzle comprises:
A nuclear reactor structure is provided that extends radially through the core barrel and opens into the annular space at a location below the coolant diversion plenum.

本発明によれば、出口ノズルに向かう冷却材の
横向き流は、保護管のまわりのみで生じ、制御棒
集合体の細い制御要素のまわりでは、案内筒によ
つて導かれて制御要素の長手方向に沿つて流れ、
制御要素に横向きの流力を作用しないから、制御
要素の流体振動発生を抑制する。また、出口ノズ
ルは冷却材転向プレナムよりも下方の位置で炉心
槽と内筒との間の環状空間に開口しており、しか
も内筒には該環状空間に下方部位で開口する小孔
が形成されているから、原子炉のトリツプ時に炉
心から発生した崩壊熱により昇温し上昇する冷却
材は、その一部が、内筒に形成された小孔を経て
環状空間に流入し出口ノズルに向かうだけでな
く、残りの一部が、冷却材転向プレナムから上記
環状空間を介して出口ノズルに向かう際に下降流
となり慣性をもつので、冷却材の自然循環が促進
される。
According to the invention, the lateral flow of coolant towards the outlet nozzle occurs only around the protective tube and around the narrow control element of the control rod assembly, guided by the guide tube in the longitudinal direction of the control element. flows along the
Since no lateral fluid force is applied to the control element, the occurrence of fluid vibration in the control element is suppressed. In addition, the outlet nozzle opens into the annular space between the core barrel and the inner cylinder at a position below the coolant diversion plenum, and the inner cylinder has a small hole that opens into the annular space at a lower part. During a reactor trip, the temperature of the coolant increases due to the decay heat generated from the core, and a portion of it flows into the annular space through small holes formed in the inner cylinder and heads towards the exit nozzle. In addition, the remaining part becomes a downward flow and has inertia when going from the coolant diverting plenum to the outlet nozzle through the annular space, so that the natural circulation of the coolant is promoted.

以下本発明を図示の実施例に基づいて説明す
る。第1図において、蓋1が着脱自在に取着され
た原子炉容器3の中に炉心槽5が垂下支持されて
おり、これは、原子炉容器3の胴部と協働して環
状流路37を画成する。炉心槽5の下方に位置す
る多孔の下部炉心支持板7の上に、多数の燃料集
合体11よりなる炉心9が支持されている。炉心
9を形成する燃料集合体11は、多数あるが、図
面の複雑化をさけるため2体だけ図示されてい
る。
The present invention will be explained below based on illustrated embodiments. In FIG. 1, a reactor core barrel 5 is suspended and supported in a reactor vessel 3 to which a lid 1 is removably attached. 37. A core 9 made up of a large number of fuel assemblies 11 is supported on a porous lower core support plate 7 located below the core tank 5 . Although there are many fuel assemblies 11 forming the reactor core 9, only two are shown to avoid complicating the drawing.

燃料集合体11は、通常のもので、平行に配置
された多数の燃料棒と制御要素案内管とが卵枠状
の支持グリツトにより束状に固定され、更に上下
に端板ノズルをもつものである。
The fuel assembly 11 is a normal one, in which a large number of fuel rods and control element guide tubes arranged in parallel are fixed in a bundle by egg-frame-shaped support grit, and further has end plate nozzles at the top and bottom. be.

炉心9の上部には、燃料集合体11を位置決め
する上部炉心体13が水平方向に展延し、後述す
るように炉内上部構造体15を形成する。炉内上
部構造体15の内筒17は、下端が上部炉心板1
3の外周部に連結し、上端が上部支持板19に接
合している。また、この内筒17は炉心槽5と協
働して環状空間を画成している。
Above the reactor core 9, an upper core body 13 for positioning the fuel assemblies 11 extends horizontally, forming an in-core upper structure 15 as described later. The inner cylinder 17 of the in-reactor upper structure 15 has a lower end connected to the upper core plate 1.
3, and its upper end is joined to the upper support plate 19. Moreover, this inner cylinder 17 cooperates with the core barrel 5 to define an annular space.

上部支持板19と上部炉心板13の間には、水
平方向に展延して中板(中間支持板)21が設け
られ、多数の制御棒集合体23(一部分を図示)
を個別に取り囲む複数の案内筒25が上下に延び
て設けられている。制御棒集合体23の制御要素
が炉心9の中に下されたときは、案内筒25内に
制御棒集合体23の駆動軸27が位置し、制御棒
集合体23が引き上げられたとき制御要素が案内
筒25内に引きこまれる。制御棒集合体23の数
は、案内筒25の数と対応している。
An intermediate plate (intermediate support plate) 21 is provided between the upper support plate 19 and the upper core plate 13 and extends in the horizontal direction, and includes a large number of control rod assemblies 23 (partially shown).
A plurality of guide tubes 25 are provided extending vertically to individually surround the guide tubes 25. When the control element of the control rod assembly 23 is lowered into the core 9, the drive shaft 27 of the control rod assembly 23 is located in the guide tube 25, and when the control rod assembly 23 is pulled up, the control element is drawn into the guide tube 25. The number of control rod assemblies 23 corresponds to the number of guide tubes 25.

制御棒集合体23は、駆動軸27の下端に位置
するスパイダ(図示しない。)に、細棒状の制御
要素が多数房状に垂下したもので、炉心9内では
制御要素は、燃料集合体11の制御要素案内管の
中を動く。蓋1の上に設けられた複数の駆動装置
29,31は、個々に多数の制御棒集合体23の
一に連結され、原子炉の運転中これらを上下さ
せ、反応度制御、出力制御を行なう。
The control rod assembly 23 is made up of a spider (not shown) located at the lower end of the drive shaft 27 and a large number of thin rod-shaped control elements hanging in the shape of a bunch. The control element moves inside the guide tube. A plurality of drive devices 29 and 31 provided on the lid 1 are individually connected to one of the many control rod assemblies 23, and move them up and down during operation of the reactor to perform reactivity control and power control. .

中板21と上部支持板19に上下端が連結され
た複数の保護管すなわち中空チユーブ33は、駆
動軸27のみを個別に取り囲んでいる。前述のよ
うに、上部炉心板13、上部支持板19、内筒1
7、多数の案内筒25、中板21及び中空チユー
ブ33は、協働して炉内上部構造体15を形成し
ている。
A plurality of protective tubes or hollow tubes 33 whose upper and lower ends are connected to the middle plate 21 and the upper support plate 19 individually surround only the drive shaft 27. As mentioned above, the upper core plate 13, the upper support plate 19, the inner cylinder 1
7. A large number of guide tubes 25, intermediate plates 21, and hollow tubes 33 cooperate to form the inner furnace upper structure 15.

前記した構成の一実施例において、図示しない
一次冷却系配管から容器3の入口ノズル35を通
つて流入した冷却材は、環状流路37の中を流
れ、下部プレナム39に至る。
In one embodiment of the configuration described above, the coolant flowing from the primary cooling system piping (not shown) through the inlet nozzle 35 of the vessel 3 flows through the annular channel 37 and reaches the lower plenum 39 .

下部プレナム39内で方向を反転した冷却材
は、下部炉心支持板7の図示しない流れ孔を通つ
て上昇し、炉心9に入る。
The coolant whose direction has been reversed in the lower plenum 39 rises through flow holes (not shown) in the lower core support plate 7 and enters the core 9 .

炉心9内において、冷却材は、燃料集合体11
の燃料棒のまわりを上昇し、核反応熱を受けて加
熱され、更に上部炉心板13の図示しない孔を通
つて案内筒25に入る。しかる後、各案内筒25
の中をその内面に沿つて上方へ、すなわち制御棒
集合体23の駆動軸27又は制御要素の外面に沿
つてその軸方向に流れる。
In the core 9, the coolant flows through the fuel assemblies 11.
The fuel rises around the fuel rods, is heated by nuclear reaction heat, and then enters the guide tube 25 through a hole (not shown) in the upper core plate 13. After that, each guide tube 25
, i.e. in the axial direction along the drive shaft 27 of the control rod assembly 23 or the outer surface of the control element.

第2図は、案内筒25の平断面を示したもの
で、ほゞ矩形断面の無孔のキヤン41とその軸方
向の適所に配置された案内板43をもつ。
FIG. 2 shows a plan cross section of the guide tube 25, which has a non-perforated can 41 with a substantially rectangular cross section and a guide plate 43 disposed at a proper position in the axial direction.

制御要素は、案内板43の小孔45を通つて横
方向に支持され、駆動軸27は、中心部の大孔4
7を通る。多数の小孔45を相互に連絡するせま
い通路は、制御要素を一体的に連結するスパイダ
が通る。従つて、この図示しないスパイダは、冷
却材転向プレナム49と炉心9との間の空間、即
ち案内筒25内で可動である。
The control element is supported laterally through a small hole 45 in the guide plate 43, and the drive shaft 27 is supported through a large hole 4 in the center.
Pass through 7. A narrow passageway interconnecting a number of small holes 45 is traversed by a spider that connects the control elements together. Therefore, this spider (not shown) is movable within the space between the coolant diverting plenum 49 and the core 9, that is, within the guide tube 25.

冷却材は、キヤン41と案内板43の間を主と
して通つて上昇し、中空チユーブ33の外側に形
成された転向プレナム49に流出する。炉心9を
出た冷却材のごく一部は、隣接した案内筒25の
間のせまい隙間を流れる。
The coolant rises primarily between the can 41 and the guide plate 43 and flows out into a diverting plenum 49 formed on the outside of the hollow tube 33. A small portion of the coolant leaving the core 9 flows through the narrow gap between adjacent guide tubes 25 .

転向プレナム49において、冷却材は流れ方向
を90度変え、内筒17の上部の複数の孔51を通
つて半径方向外方へ流出する。そして、内筒17
の外側の環状空間を下降して出口ノズル53から
容器3の外へ流出し、一次冷却系配管内へ流入す
る。この出口ノズル53は、図示のように、転向
プレナム49よりも下方の位置で炉心槽5を貫い
て上記環状空間に開口している。これらの昇温し
た冷却材は、通常の一次冷却系に含まれる蒸気発
生器を経て、入口ノズル35へ戻る。
In the diverting plenum 49, the coolant changes direction by 90 degrees and exits radially outwardly through a plurality of holes 51 in the top of the inner cylinder 17. And the inner cylinder 17
It descends through the outer annular space, flows out of the container 3 from the outlet nozzle 53, and flows into the primary cooling system piping. As shown in the figure, the outlet nozzle 53 penetrates the core barrel 5 at a position below the turning plenum 49 and opens into the annular space. These heated coolants return to the inlet nozzle 35 through a steam generator included in a typical primary cooling system.

以上の説明から分かるように、本発明によれ
ば、細く剛性が小さくて振動しやすい制御要素が
移動する領域、特に案内筒25内では、冷却材
は、案内筒25(のキヤン41)に案内されてそ
の軸方向に流れるので、励振力が発生せず、制御
要素の流体振動、摩耗の発生を効果的に防止する
ことができる。
As can be seen from the above description, according to the present invention, the coolant is guided to (the can 41 of) the guide tube 25 in the area where the control element, which is thin and has low rigidity and easily vibrates, moves, particularly in the guide tube 25. Since the fluid flows in the axial direction, no excitation force is generated, and fluid vibration and wear of the control element can be effectively prevented.

また、本発明によれば、冷却材転向プレナム4
9では、相対的に太い案内筒25ではなく細い保
護管33が設けられていて駆動軸27を案内する
ので、冷却材は出口ノズル53に向かつて好適に
転向するだけでなく、駆動軸27は横方向に流れ
る冷却材から保護される。
Also according to the invention, the coolant diverting plenum 4
9, a thin protection tube 33 is provided instead of the relatively thick guide tube 25 to guide the drive shaft 27, so that not only is the coolant suitably diverted toward the outlet nozzle 53, but the drive shaft 27 is Protected from sideways flowing coolant.

更に、本発明によると、例えば一次冷却系配管
等の破損事故が発生し、原子炉をトリツプした時
には、崩壊熱により昇温した冷却材は、その一部
が、内筒17に形成された小孔55を経て環状空
間に流入し出口ノズル53に向かうだけでなく、
残りの一部が、冷却材転向プレナム49から上記
環状空間を介して出口ノズル53に向かう際に下
降流となり慣性をもつ。このようにして冷却材の
自然循環が促進され、スクラムされた炉心9を好
適に冷却することができる。尚、小孔55はその
数及び面積が小さいので、正常運転時には冷却材
はそこを殆ど流れない。
Furthermore, according to the present invention, when a nuclear reactor is tripped due to a breakage accident in the primary cooling system piping, for example, part of the coolant whose temperature has risen due to decay heat is transferred to the small pipe formed in the inner cylinder 17. Not only does it flow into the annular space through the hole 55 and head toward the outlet nozzle 53, but also
The remaining part becomes a downward flow and has inertia when it heads from the coolant diverting plenum 49 to the outlet nozzle 53 through the annular space. In this way, natural circulation of the coolant is promoted, and the scrammed core 9 can be appropriately cooled. Note that since the number and area of the small holes 55 are small, almost no coolant flows through them during normal operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例を示す断面図、第2
図は、第1図の部分断面図である。 1……蓋、3……原子炉容器、5……炉心槽、
9……炉心、11……燃料集合体、17……内
筒、23……制御棒集合体、25……案内筒、2
7……駆動軸、29,31……制御棒駆動装置、
33……保護管、35……入口ノズル、49……
冷却材転向プレナム、51……環状空間に開口す
る内筒の孔、53……出口ノズル、55……小
孔。
FIG. 1 is a sectional view showing an embodiment of the present invention, and FIG.
The figure is a partial sectional view of FIG. 1. 1...Lid, 3...Reactor vessel, 5...Reactor barrel,
9... Core, 11... Fuel assembly, 17... Inner cylinder, 23... Control rod assembly, 25... Guide tube, 2
7... Drive shaft, 29, 31... Control rod drive device,
33... Protection tube, 35... Inlet nozzle, 49...
Coolant diverting plenum, 51... hole in inner cylinder opening into annular space, 53... outlet nozzle, 55... small hole.

Claims (1)

【特許請求の範囲】[Claims] 1 上方側部に冷却材用の入口ノズル及び出口ノ
ズルを備えた原子炉容器、該原子炉容器の上方開
口部に着脱自在に取着された蓋、前記原子炉容器
内に垂下支持された炉心槽、該炉心槽の内部下方
に装荷され炉心を構成する複数の燃料集合体、該
炉心の上方で前記炉心槽から離間してその内側に
配設され、同炉心槽と協働して環状空間を画成す
ると共に、下方部位において該環状空間に開口す
る小孔を有する内筒、前記蓋の上部に林設された
複数の制御棒駆動装置、該制御棒駆動装置により
前記原子炉容器内に可動に支持され、前記内筒内
に設けられた垂直な案内筒により個別に取り囲ま
れると共に、複数の制御要素を含む複数の制御棒
集合体、前記案内筒の上方に位置して該制御棒集
合体の駆動軸のみを個別に取り囲む複数の保護
管、及び該保護管を取り囲んで前記原子炉容器を
横切つて延びるように配設され、半径方向に開放
して前記環状空間に連通する冷却材転向プレナム
を備え、前記出口ノズルは、前記炉心槽を半径方
向に貫いて延びて前記冷却材転向プレナムよりも
下方の位置で前記環状空間に開口している、原子
炉構造。
1. A reactor vessel equipped with an inlet nozzle and an outlet nozzle for coolant on the upper side, a lid detachably attached to the upper opening of the reactor vessel, and a core suspended and supported within the reactor vessel. a plurality of fuel assemblies that are loaded inside and below the core barrel and constitute the core; a plurality of fuel assemblies that are spaced apart from and arranged inside the core barrel above the core and cooperate with the core barrel to form an annular space; an inner cylinder having a small hole opening into the annular space at the lower part; a plurality of control rod drive devices installed in the upper part of the lid; a plurality of control rod assemblies movably supported and individually surrounded by vertical guide tubes provided within the inner cylinder and including a plurality of control elements; a plurality of control rod assemblies located above the guide tube; a plurality of protection tubes that individually surround only the drive shaft of the reactor; and a coolant that surrounds the protection tubes and is disposed to extend across the reactor vessel, opening in the radial direction and communicating with the annular space. A nuclear reactor structure comprising a turning plenum, the outlet nozzle extending radially through the core barrel and opening into the annular space below the coolant turning plenum.
JP58004717A 1983-01-14 1983-01-14 Reactor structure Granted JPS59218991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58004717A JPS59218991A (en) 1983-01-14 1983-01-14 Reactor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58004717A JPS59218991A (en) 1983-01-14 1983-01-14 Reactor structure

Publications (2)

Publication Number Publication Date
JPS59218991A JPS59218991A (en) 1984-12-10
JPH0413678B2 true JPH0413678B2 (en) 1992-03-10

Family

ID=11591628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58004717A Granted JPS59218991A (en) 1983-01-14 1983-01-14 Reactor structure

Country Status (1)

Country Link
JP (1) JPS59218991A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59212795A (en) * 1983-05-16 1984-12-01 ウエスチングハウス エレクトリツク コ−ポレ−シヨン Reactor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50132398A (en) * 1974-03-20 1975-10-20
JPS584006A (en) * 1981-06-26 1983-01-11 川田工業株式会社 Continuous type bridge using prestressed steel beam

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50132398A (en) * 1974-03-20 1975-10-20
JPS584006A (en) * 1981-06-26 1983-01-11 川田工業株式会社 Continuous type bridge using prestressed steel beam

Also Published As

Publication number Publication date
JPS59218991A (en) 1984-12-10

Similar Documents

Publication Publication Date Title
US4231843A (en) Guide tube flow diffuser
US4716013A (en) Nuclear reactor
JPH0797147B2 (en) Pressurized water reactor
JPH03137597A (en) Control-rod guide-support structure
US5093075A (en) Upper internal nuclear reactor equipments including a flow separation device
JPH0721545B2 (en) Reactor
US4639350A (en) Cover-plug for the core of a fast neutron nuclear reactor
KR100346126B1 (en) Core internals of pressurized water reactor vessel
JPH0353589B2 (en)
US4072560A (en) Pressurized-water reactor pressure vessel emergency core coolant connection arrangement
JPH0413678B2 (en)
US4654185A (en) Deep beam reactor vessel head and nuclear reactor including same
EP0125326B1 (en) Nuclear reactor
US4198271A (en) Liquid metal cooled nuclear reactor constructions
JP2933438B2 (en) Control rod assembly vertical guidance system for nuclear reactor
JPH0445078B2 (en)
JP3079877B2 (en) Fuel assembly
JPH03591B2 (en)
JPS591995B2 (en) water cooled reactor
EP0125325B1 (en) Nuclear reactor
JPH0153437B2 (en)
JPS61286792A (en) Cooling structure of top section in nuclear reactor vessel
JPH0512798Y2 (en)
JPH0338558B2 (en)
KR910003803B1 (en) Nuclear reactor