JPH0445078B2 - - Google Patents

Info

Publication number
JPH0445078B2
JPH0445078B2 JP59253433A JP25343384A JPH0445078B2 JP H0445078 B2 JPH0445078 B2 JP H0445078B2 JP 59253433 A JP59253433 A JP 59253433A JP 25343384 A JP25343384 A JP 25343384A JP H0445078 B2 JPH0445078 B2 JP H0445078B2
Authority
JP
Japan
Prior art keywords
core
coolant
reactor
support plate
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59253433A
Other languages
Japanese (ja)
Other versions
JPS60233591A (en
Inventor
Tetsuo Hineno
Hidenori Nakada
Yoshio Tokumaru
Shizuo Nakada
Hiroshi Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP59253433A priority Critical patent/JPS60233591A/en
Publication of JPS60233591A publication Critical patent/JPS60233591A/en
Publication of JPH0445078B2 publication Critical patent/JPH0445078B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【発明の詳細な説明】 本発明は、原子炉の構造に関する。[Detailed description of the invention] The present invention relates to the structure of a nuclear reactor.

従来の加圧水型軽水炉では、原子炉冷却材は、
炉心を通つて加熱されながら上昇し、上部炉心板
の多数の穴を通過後、炉心槽、上部支持板及び上
部炉心板より画成される出口プレナム内で流れ方
向を横方向へ変え、制御棒案内管及び上部炉心支
持柱の間の広いすき間を通つて出口ノズルに向つ
て流れる。
In conventional pressurized water reactors, the reactor coolant is
After rising through the reactor core while being heated and passing through a number of holes in the upper core plate, the flow direction is changed laterally in an exit plenum defined by the core barrel, the upper support plate, and the upper core plate, and the control rods It flows towards the outlet nozzle through the wide gap between the guide tube and the upper core support column.

制御棒案内管は、制御棒集合体を鉛直方向に案
内すると共に、原子炉容器の半径方向外方すなわ
ち横方向に向う冷却材の流れから細い制御要素を
保護し、制御要素の長期にわたる摩耗を防いでい
る。
The control rod guide tube guides the control rod assembly vertically and protects the thin control elements from the flow of coolant radially outward or lateral to the reactor vessel, preventing long-term wear of the control elements. Preventing.

しかるに、制御要素の数が非常に多くなり、そ
れらが炉心全体にわたつて分布しているような原
子炉では、前述のような炉内上部構造をとると、
隣接した制御棒案内管間のすき間がほとんどなく
なり、出口ノズルに向う冷却材の流れが妨害され
て、十分な冷却材流量が得られがたい。又、たと
え流量が得られるようにしえても流速が必然的に
大きくなり、該案内管に作用する流体力が大きく
なつて、種々の不具合を招来する。
However, in a nuclear reactor where the number of control elements is extremely large and they are distributed throughout the reactor core, if the reactor superstructure is adopted as described above,
There is almost no clearance between adjacent control rod guide tubes, and the flow of coolant toward the exit nozzle is obstructed, making it difficult to obtain a sufficient flow rate of coolant. Furthermore, even if a sufficient flow rate can be obtained, the flow velocity will inevitably increase, and the fluid force acting on the guide tube will increase, leading to various problems.

本発明は、前記した事情に鑑みなされたもので
ある。
The present invention has been made in view of the above-mentioned circumstances.

すなわち、本発明は、上方側部に冷却材用入口
ノズルと出口ノズルとを具えた原子炉容器、該容
器の上方開口部に着脱自在に取着された蓋、該容
器内に垂下支持され該容器と協働して該冷却材の
下降環状空間を形成する炉心槽、該炉心槽の底部
に支持され水平方向に展延した下部炉心支持板、
該下部炉心支持板の上に鉛直方向を向いて装荷さ
れ炉心を構成する複数の燃料集合体、該蓋の上部
に林設された複数の制御棒駆動装置、及びそれぞ
れが1本の駆動軸と複数の制御要素とを具え該制
御要素が該燃料集合体の案内管に挿通されて動か
されると共に該駆動軸が各別に該駆動装置に連結
された複数の制御棒集合体を有する原子炉におい
て、該制御棒集合体を個別に取り囲む複数の案内
筒、該制御棒集合体の駆動軸のみを個別に取り囲
む複数の保護中空管、同保護中空管と前記案内筒
の間に位置する中間支持板、該炉心の直上に位置
する炉心板と該案内筒の下端との間に位置すると
共に該制御要素を個別に取り囲む短スリーブを含
むカランドリア構造体、及び該炉心槽内に垂下さ
れて該案内筒と該カランドリア構造体とを取り囲
み該炉心槽との間に該冷却材の出口環状流路を形
成する内筒をもつ上部炉内構造物を該炉心の上方
に設け、前記内筒の多数の孔が穿設された上端部
と、前記複数の保護中空管と、同保護中空管の上
下に位置する上部支持板及び前記中間支持板とが
協働して該冷却材の主出口流用転向プレナムを形
成し、前記内筒の下端部に穿設した小孔が前記出
口環状流路と前記カランドリア構造体の内部とを
連絡するバイパス流路を形成してなる原子炉構造
を提供するものである。本発明によれば、細い制
御要素のまわりでは冷却材はその長手方向に沿つ
て流れ、横向き流を生じないから、制御要素の流
体振動発生が抑制されると共に、事故に際し、カ
ランドリ構造体から原子炉容器の冷却材用出口ノ
ズルへ向うバイパス流路が形成され原子炉容器外
の冷却材再循環系と協働して冷却材循環流路が形
成され、これにより原子炉を安全に保持すること
ができる。
That is, the present invention provides a reactor vessel having an inlet nozzle and an outlet nozzle for coolant on its upper side, a lid detachably attached to the upper opening of the vessel, and a lid that is suspended and supported within the vessel. a core tank that cooperates with the vessel to form a descending annular space for the coolant; a lower core support plate supported at the bottom of the core tank and extending horizontally;
A plurality of fuel assemblies are loaded vertically on the lower core support plate and constitute the reactor core, a plurality of control rod drive devices are installed on the top of the lid, and each of the fuel assemblies has a single drive shaft. In a nuclear reactor having a plurality of control rod assemblies, the control element is inserted into a guide tube of the fuel assembly and moved, and the drive shaft is individually connected to the drive device, A plurality of guide tubes individually surrounding the control rod assembly, a plurality of protective hollow tubes individually surrounding only the drive shaft of the control rod assembly, and an intermediate support located between the protective hollow tubes and the guide tube. a calandria structure including a plate, a short sleeve located between a core plate located directly above the core and a lower end of the guide tube and individually surrounding the control elements; An upper reactor internal structure having an inner cylinder surrounding the cylinder and the calandria structure and forming an outlet annular flow path for the coolant between the core barrel and the inner cylinder is provided above the core, The upper end portion with holes, the plurality of protective hollow tubes, the upper support plate and the intermediate support plate located above and below the protective hollow tubes work together to divert the coolant to the main outlet. To provide a nuclear reactor structure in which a turning plenum is formed, and a small hole bored in the lower end of the inner cylinder forms a bypass flow path that communicates the outlet annular flow path with the inside of the calandria structure. It is. According to the present invention, the coolant flows along the longitudinal direction around the thin control element and does not cause a lateral flow, so the occurrence of fluid vibration in the control element is suppressed, and in the event of an accident, the coolant flows from the calandri structure to A bypass flow path toward the coolant outlet nozzle of the reactor vessel is formed, and a coolant circulation flow path is formed in cooperation with a coolant recirculation system outside the reactor vessel, thereby maintaining the reactor safely. Can be done.

以下本発明を図示の実施例に基づいて説明す
る。第1図において、蓋1が着脱自在に取着され
た原子炉容器3の中に炉心槽5が垂下支持されて
おり、これは、容器3の胴部と協働して環状流路
37を画成する。炉心槽5の下方に位置する下部
炉心支持板7の上に、多数の燃料集合体11より
なる炉心9を支持している。炉心9を形成する燃
料集合体11は多数あるが、図面の複雑化をさけ
るため2体だけ図示されている。
The present invention will be explained below based on illustrated embodiments. In FIG. 1, a reactor core barrel 5 is suspended and supported in a reactor vessel 3 to which a lid 1 is removably attached. define. A core 9 made up of a large number of fuel assemblies 11 is supported on a lower core support plate 7 located below the core tank 5 . Although there are many fuel assemblies 11 forming the reactor core 9, only two are shown to avoid complicating the drawing.

燃料集合体11は、通常のもので、平行に配置
された多数の燃料棒と制御要素案内管とが卵枠状
の支持グリツドにより束状に固定され、更に上下
に端板ノズルをもつものである。
The fuel assembly 11 is a conventional fuel assembly, in which a large number of fuel rods and control element guide tubes arranged in parallel are fixed in a bundle by an egg-frame-shaped support grid, and further has end plate nozzles at the top and bottom. be.

炉心9の上部には、燃料集合体11を位置決め
する上部炉心板13が水平方向に展延し、後述す
るように炉内上部構造体15を形成する。炉内上
部構造体15の内筒17は、下端が上部炉心板1
3の外周部に連結し、上端が上部支持板19に接
合している。
Above the core 9, an upper core plate 13 for positioning the fuel assemblies 11 extends horizontally, forming an in-core upper structure 15 as described later. The inner cylinder 17 of the in-reactor upper structure 15 has a lower end connected to the upper core plate 1.
3, and its upper end is joined to the upper support plate 19.

上部支持板19と上部炉心板13の間には、中
間支持板すなわち中板21が水平方向に展延して
設けられ、多数の制御棒集合体23(一部分を図
示)を個別に取り囲む複数の案内筒25が上下に
延びて設けられている。制御棒集合体23の制御
要素が炉心9の中に下されたときは、案内筒25
内に制御棒集合体23の駆動軸27が位置し、制
御棒集合体23が引き上げられたとき制御要素が
案内筒25内に引きこまれる。制御棒集合体23
の数は、案内筒25の数と対応している。
Between the upper support plate 19 and the upper core plate 13, an intermediate support plate, that is, a middle plate 21 is provided extending horizontally, and a plurality of control rod assemblies 23 (partially shown) are individually surrounded. A guide tube 25 is provided extending vertically. When the control elements of the control rod assembly 23 are lowered into the core 9, the guide tube 25
The drive shaft 27 of the control rod assembly 23 is located therein, and the control element is retracted into the guide tube 25 when the control rod assembly 23 is pulled up. Control rod assembly 23
The number corresponds to the number of guide tubes 25.

制御棒集合体23は、駆動軸27の下端に位置
するスパイダ(図示しない。)に、細棒状の制御
要素が多数房状に垂下したもので、炉心9内では
制御要素は、燃料集合体11の制御要素案内管の
中を動く。蓋1の上に設けられた複数の駆動装置
29,31は、個々に多数の制御棒集合体23の
一に連結され、原子炉の運転中これらを上下さ
せ、反応度制御、出力制御を行なう。
The control rod assembly 23 is made up of a spider (not shown) located at the lower end of the drive shaft 27 and a large number of thin rod-shaped control elements hanging in the shape of a bunch. The control element moves inside the guide tube. A plurality of drive devices 29 and 31 provided on the lid 1 are individually connected to one of the many control rod assemblies 23, and move them up and down during operation of the reactor to perform reactivity control and power control. .

中板21と上部支持板19に上下端が連結され
た複数の保護中空管すなわち中空チユーブ33
は、駆動軸27のみを個別に取り囲んでいる。
A plurality of protective hollow tubes 33 whose upper and lower ends are connected to the middle plate 21 and the upper support plate 19
individually surrounds only the drive shaft 27.

案内筒25の下端には、カランドリア構造体6
0の上側管板61の上面に固定されている。カラ
ンドリア構造体60の下側管板63は、上部炉心
板13の上側に位置し、両管板61,63は、制
御棒集合体23の制御要素を個別に取り囲む短い
多数の中空チユーブ65によつて連結されてい
る。
A calandria structure 6 is provided at the lower end of the guide tube 25.
0 is fixed to the upper surface of the upper tube plate 61 of 0. The lower tubesheet 63 of the calandria structure 60 is located above the upper core plate 13, and both tubesheets 61, 63 are formed by a number of short hollow tubes 65 individually surrounding the control elements of the control rod assembly 23. are connected together.

第2図は、案内筒25の平断面を示したもの
で、ほゞ矩形断面の無孔のキヤン41とその軸方
向の適所に配置された案内板43をもつ。
FIG. 2 shows a plan cross section of the guide tube 25, which has a non-perforated can 41 with a substantially rectangular cross section and a guide plate 43 disposed at a proper position in the axial direction.

制御要素は、案内板43の小孔45を通つて横
方向に支持され、駆動軸27は、中心部の大孔4
7を通る。多数の小孔45を相互に連結するせま
い通路は、制御要素を一体的に連結するスパイダ
が通る。
The control element is supported laterally through a small hole 45 in the guide plate 43, and the drive shaft 27 is supported through a large hole 4 in the center.
Pass through 7. A narrow passageway interconnecting a number of small holes 45 is traversed by a spider that connects the control elements together.

冷却材は、キヤン41と案内板43の間を主と
して通つて上昇し、中空チユーブ33の外側に形
成された転向プレナム49に流出する。
The coolant rises primarily between the can 41 and the guide plate 43 and flows out into a diverting plenum 49 formed on the outside of the hollow tube 33.

前記した構成の実施例において、図示しない一
次冷却系配管から容器3の入口ノズル35を通つ
て流入した冷却材は、環状流路37の中を下向き
に流れ、下部プレナム39に至る。
In the embodiment described above, the coolant flowing from the primary cooling system piping (not shown) through the inlet nozzle 35 of the vessel 3 flows downward in the annular channel 37 and reaches the lower plenum 39 .

下部プレナム39内で流れ方向を反転した冷却
材は、下部炉心支持板7の図示しない流れ孔を通
つて上昇し、炉心9に入る。
The coolant whose flow direction has been reversed in the lower plenum 39 rises through flow holes (not shown) in the lower core support plate 7 and enters the core 9 .

炉心9内において、冷却材は、燃料集合体11
の燃料棒のまわりを上昇し、この間に核反応熱を
受けて加熱される。しかる後、上部炉心板13お
よび下側管板63の図示しない孔を通つて、カラ
ンドリア構造体60の中空チユーブ65の内外に
流入する。中空チユーブ65の中では、制御要素
の長手方向に沿い、中空チユーブ65の外ではこ
れに沿い、冷却材は流れ、上側管板61の孔を通
つて、主に案内筒25の中に流入する。
In the core 9, the coolant flows through the fuel assemblies 11.
The fuel rises around the fuel rods, during which time it is heated by the heat of the nuclear reaction. Thereafter, it flows into and out of the hollow tube 65 of the calandria structure 60 through holes (not shown) in the upper core plate 13 and the lower tube sheet 63. Inside the hollow tube 65 the coolant flows along the longitudinal direction of the control element and outside the hollow tube 65 along this, flowing mainly into the guide tube 25 through the holes in the upper tube plate 61. .

冷却材のごく少量は、案内筒25の間のせまい
隙間を流れる。
A very small amount of coolant flows through the narrow gap between the guide tubes 25.

案内筒25の中を、制御棒集合体23の駆動軸
27又は制御要素の外面に沿つて、その軸方向に
流れた冷却材の主流は、中板21の孔を通つて、
中板21と上部支持板19の間の転向プレナム4
9内に流出する。
The main flow of the coolant that has flowed in the guide tube 25 in the axial direction along the drive shaft 27 of the control rod assembly 23 or the outer surface of the control element passes through the hole in the intermediate plate 21 and
Diverting plenum 4 between middle plate 21 and upper support plate 19
It flows out within 9.

転向プレナム49の中で、横方向に流れの向き
を変えた冷却材は、内筒17の上部の複数の孔5
1を通つて内筒3の外側の出口環状流路67に流
出し、さらに下降して出口ノズル53から容器3
の外へ流出し、一次冷却系配管内へ流入する。こ
れらの昇温した冷却材は、通常の一次冷却系に含
まれる蒸気発生器を経て、入口ノズル35へ戻
る。
In the diverting plenum 49, the coolant whose flow direction has been changed laterally flows through a plurality of holes 5 in the upper part of the inner cylinder 17.
1 to the outlet annular channel 67 on the outside of the inner cylinder 3, and further descends through the outlet nozzle 53 to the container 3.
and flows into the primary cooling system piping. These heated coolants return to the inlet nozzle 35 through a steam generator included in a typical primary cooling system.

カランドリア構造体60の短い中空チユーブ6
5の間の空間は、内筒17の下方の小孔55を介
して出口環状流路67に連通しており、冷却材の
ごく一部は、孔55、出口環状流路67を介して
出口ノズル53へ流れ、圧力損失が比較的小さく
なる。又、一次冷却系配管等が破損した場合に
は、炉心9がスクラムされ、循環ポンプは停止す
る。
Short hollow tube 6 of calandria structure 60
5 is in communication with the outlet annular flow path 67 through the small hole 55 below the inner cylinder 17, and a small portion of the coolant flows through the hole 55 and the outlet annular flow path 67 into the outlet. It flows to the nozzle 53 and the pressure loss is relatively small. Furthermore, if the primary cooling system piping or the like is damaged, the reactor core 9 is scrammed and the circulation pump is stopped.

炉心9のスクラム後も燃料集合体11は、崩壊
熱を出し、これによつて加熱された冷却材は、カ
ランドリア構造体60の両管板61,63の間で
向きをかえ、小孔55及び出口環状流路67を通
つて出口ノズル53から冷却材再循環系(図示し
ない)に流出する。加圧水型軽水炉の冷却材再循
環系を構成する蒸気発生器や冷却材ポンプは、従
来より一般に冷却材の自然循環を許容する位置関
係を保持して設けられているので、出口ノズル5
3から流出した冷却材は蒸気発生器で冷却されて
自然循環により原子炉容器へ戻る。これにより、
スクラムされて崩壊熱を出す炉心9を効率よく冷
却し、高い安全性を確保できる。
Even after the core 9 is scrammed, the fuel assembly 11 generates decay heat, and the coolant heated by this changes its direction between the tube sheets 61 and 63 of the calandria structure 60, and flows through the small holes 55 and It exits the outlet nozzle 53 through an outlet annular channel 67 to a coolant recirculation system (not shown). The steam generator and coolant pump that constitute the coolant recirculation system of a pressurized water reactor have conventionally been installed in a positional relationship that allows natural circulation of the coolant.
The coolant flowing out from No. 3 is cooled by a steam generator and returned to the reactor vessel through natural circulation. This results in
The reactor core 9, which is scrammed and generates decay heat, can be efficiently cooled and a high level of safety can be ensured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例を示す断面図、第2
図は第1図の部分断面図である。 1……蓋、3……容器、9……炉心、15……
炉内上部構造体。
FIG. 1 is a sectional view showing an embodiment of the present invention, and FIG.
The figure is a partial sectional view of FIG. 1. 1... Lid, 3... Container, 9... Core, 15...
Furnace upper structure.

Claims (1)

【特許請求の範囲】[Claims] 1 上方側部に冷却材用入口ノズルと出口ノズル
とを具えた原子炉容器、該容器の上方開口部に着
脱自在に取着された蓋、該容器内に垂下支持され
該容器と協働して該冷却材の下降環状空間を形成
する炉心槽、該炉心槽の底部に支持され水平方向
に展延した下部炉心支持板、該下部炉心支持板の
上に鉛直方向を向いて装荷され炉心を構成する複
数の燃料集合体、該蓋の上部に林設された複数の
制御棒駆動装置、及びそれぞれが1本の駆動軸と
複数の制御要素とを具え該制御要素が該燃料集合
体の案内管に挿通されて動かされると共に該駆動
軸が各別に該駆動装置に連結された複数の制御棒
集合体を有する原子炉において、該制御棒集合体
を個別に取り囲む複数の案内筒、該制御棒集合体
の駆動軸のみを個別に取り囲む複数の保護中空
管、同保護中空管と前記案内筒の間に位置する中
間支持板、該炉心の直上に位置する炉心板と該案
内筒の下端との間に位置すると共に該制御要素を
個別に取り囲む短スリーブを含むカランドリア構
造体、及び該炉心槽内に垂下されて該案内筒と該
カランドリア構造体とを取り囲み該炉心槽との間
に該冷却材の出口環状流路を形成する内筒をもつ
上部炉内構造物を該炉心の上方に設け、前記内筒
の多数の孔が穿設された上端部と、前記複数の保
護中空管と、同保護中空管の上下に位置する上部
支持板及び前記中間支持板とが協働して該冷却材
の主出口流用転向プレナムを形成し、前記内筒の
下端部に穿設した小孔が前記出口環状流路と前記
カランドリア構造体の内部とを連絡するバイパス
流路を形成してなることを特徴とする原子炉構
造。
1. A reactor vessel having an inlet nozzle and an outlet nozzle for coolant on the upper side thereof, a lid detachably attached to the upper opening of the vessel, and a lid suspended within the vessel and cooperating with the vessel. a core tank forming a descending annular space for the coolant; a lower core support plate supported at the bottom of the core tank and extending horizontally; a core loaded vertically on the lower core support plate; a plurality of fuel assemblies, a plurality of control rod drive devices installed on the top of the lid, each of which has one drive shaft and a plurality of control elements, and the control elements guide the fuel assemblies. In a nuclear reactor having a plurality of control rod assemblies that are inserted into a tube and moved and the drive shafts are individually connected to the drive device, a plurality of guide cylinders that individually surround the control rod assemblies, and the control rods. A plurality of protective hollow tubes that individually surround only the drive shaft of the assembly, an intermediate support plate located between the protective hollow tubes and the guide tube, a core plate located directly above the reactor core, and the lower end of the guide tube. a calandria structure including a short sleeve located between and individually surrounding the control element; and a calandria structure depending within the core barrel and surrounding the guide tube and the calandria structure and extending between the core barrel and the calandria structure. An upper reactor internal structure having an inner cylinder forming a coolant outlet annular flow path is provided above the reactor core, an upper end portion of the inner cylinder having a plurality of holes formed therein, and the plurality of protective hollow tubes. , an upper support plate located above and below the protective hollow tube, and the intermediate support plate cooperate to form a main outlet flow diversion plenum for the coolant, and a small hole bored at the lower end of the inner tube is formed. A nuclear reactor structure characterized in that a hole forms a bypass passage connecting the outlet annular passage and the inside of the calandria structure.
JP59253433A 1984-11-30 1984-11-30 Nuclear reactor structure Granted JPS60233591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59253433A JPS60233591A (en) 1984-11-30 1984-11-30 Nuclear reactor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59253433A JPS60233591A (en) 1984-11-30 1984-11-30 Nuclear reactor structure

Publications (2)

Publication Number Publication Date
JPS60233591A JPS60233591A (en) 1985-11-20
JPH0445078B2 true JPH0445078B2 (en) 1992-07-23

Family

ID=17251328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59253433A Granted JPS60233591A (en) 1984-11-30 1984-11-30 Nuclear reactor structure

Country Status (1)

Country Link
JP (1) JPS60233591A (en)

Also Published As

Publication number Publication date
JPS60233591A (en) 1985-11-20

Similar Documents

Publication Publication Date Title
US4231843A (en) Guide tube flow diffuser
US3849257A (en) Guide structure for control elements
US2982713A (en) Merchant marine ship reactor
EP2238598B1 (en) Nuclear reactor with compact primary heat exchanger
US3816245A (en) Emergency core coolant system utilizing an inactive plenum
EP1548749A2 (en) Nuclear reactor fuel assemblies
US4759904A (en) Pressurized water reactor having improved calandria assembly
US4716013A (en) Nuclear reactor
US3607642A (en) Nuclear reactor fuel assembly
US4305458A (en) Reactors in which the cooling of the core is brought about by the continuous circulation of a liquid metal
US5093075A (en) Upper internal nuclear reactor equipments including a flow separation device
GB1563911A (en) Nuclear core region fastener arrangement
JPH03137597A (en) Control-rod guide-support structure
US4842813A (en) Nuclear reactor having a longitudinally elongated vessel
JPH0445078B2 (en)
US5255300A (en) Fuel assembly for boiling water reactors
EP0125326B1 (en) Nuclear reactor
JPH0413678B2 (en)
JP3079877B2 (en) Fuel assembly
GB1582107A (en) Nuclear reactor
JPH03591B2 (en)
JP2531910B2 (en) Device for reducing parasitic bypass flow in boiling water reactors.
KR810001336B1 (en) Pressurized water reactor flow arrangement
JPH0746156B2 (en) Reactor with low core coolant intake
JPS6039994B2 (en) control rod