JPS62252640A - Mold for continuous casting - Google Patents

Mold for continuous casting

Info

Publication number
JPS62252640A
JPS62252640A JP9635986A JP9635986A JPS62252640A JP S62252640 A JPS62252640 A JP S62252640A JP 9635986 A JP9635986 A JP 9635986A JP 9635986 A JP9635986 A JP 9635986A JP S62252640 A JPS62252640 A JP S62252640A
Authority
JP
Japan
Prior art keywords
plating
base
continuous casting
alloy
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9635986A
Other languages
Japanese (ja)
Inventor
Masato Takada
正人 高田
Katsuhiro Hori
堀 勝廣
Toshihiro Sannomiya
三宮 利宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mishima Kosan Co Ltd
Original Assignee
Mishima Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mishima Kosan Co Ltd filed Critical Mishima Kosan Co Ltd
Priority to JP9635986A priority Critical patent/JPS62252640A/en
Publication of JPS62252640A publication Critical patent/JPS62252640A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/059Mould materials or platings

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To obtain a mold for continuous casting having high heat resistance and corrosion resistance by coating Ni base alloy under close adherence on the surface of Cu-series base material for the mold. CONSTITUTION:On the surface of Cu base material 4 for the continuous casting mold, the plating by any material of Ni base, Co base, Fe base is executed as base metal, and then Cr-plating is executed. After that, the irradiation at high power of a laser beam, such as carbon dioxide laser, the substrate plating layer of the base metal and the Cr-plating layer are melted together and Ni-Cr, Co-Cr, Ni-Co-Cr, Fe-Cr, Ni-Fe-Cr alloy 5, etc., is formed. By this alloy, characteristic which is not obtd. in case of only plating by single layer, double layer plating, is added and the powerful heat resistance and corrosion resistance are obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は連続鋳造に使用する連続鋳造用鋳型のCu系母
材表面にNi基、Co基、Fe基の耐熱耐食合金を被覆
させた連続鋳造用鋳型に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a continuous casting mold in which the surface of a Cu-based base material of a continuous casting mold used for continuous casting is coated with a Ni-based, Co-based, or Fe-based heat-resistant and corrosion-resistant alloy. Regarding casting molds.

〔従来の技術〕[Conventional technology]

連続鋳造用鋳型はダンディシニから流れ込まhた溶鋼を
凝固させ連続的に鋳片を型心するものである。
Continuous casting molds are used to solidify molten steel that has flowed in from a dandelion and continuously form slabs.

連続鋳造用鋳型の強度及び抜熱特性から連続鋳造用鋳型
材質としては一般に銅が用いられている。
Copper is generally used as a material for continuous casting molds due to its strength and heat removal properties.

銅母材は鋳片との接触により、連続鋳造用鋳型上部では
ヒートクラック、連続鋳造用鋳型下部では摩耗及び腐食
等の損傷を受ける。
Due to contact with the slab, the copper base material suffers damage such as heat cracks in the upper part of the continuous casting mold and wear and corrosion in the lower part of the continuous casting mold.

従来、この連続鋳造用鋳型の寿、全向上及び耐熱耐食性
を強化する方法としては銅母材の材質自体を改善する方
法と被覆により特性を付加する方法がとられている。こ
の銅母材の材質改善方法としては銅母材を脱酸銅、銀入
り銅、析出硬化型銅(Cr−Cu、Cr−Zr−Cu 
)とする方法がある。
Conventionally, methods for improving the longevity and overall heat and corrosion resistance of continuous casting molds include improving the copper base material itself and adding properties through coating. Methods for improving the material quality of this copper base material include deoxidizing copper, silver-containing copper, and precipitation hardening copper (Cr-Cu, Cr-Zr-Cu).
).

又、後者の被ダする方法としてはメッキ法、溶射法があ
る。
The latter coating method includes a plating method and a thermal spraying method.

メッキ法では、Crメッキ、Niメッキ等の単層コーテ
ィングやNiメッキ上にCrメッキを重ねる二層コーテ
ィング、さらにはNiメッキとCrメッキ間にさらに、
もう一層設けた、三層コーティングを施す方法があり、
溶射法ではNi−Cr合金を溶射してNi−Cr合金層
を被覆形成する方法及びこれらの方法1こよって製造さ
れた連続鋳造用鋳型が知られている。
Plating methods include single-layer coating such as Cr plating and Ni plating, double-layer coating of Cr plating on top of Ni plating, and further coating between Ni plating and Cr plating.
There is a method of applying a three-layer coating, which has an additional layer.
As for the thermal spraying method, a method of thermally spraying a Ni--Cr alloy to form a Ni--Cr alloy layer and a mold for continuous casting manufactured by these method 1 are known.

(発明が解決しようとする問題点〕 前者のCrメッキ、Niメッキの単層コーティング方法
では純金属の特性から合金にくらべて軟化点が低く高温
での使用には限界があり、又、特定の環境下では耐食性
を有するが種々の条件下で広範囲な耐食性を有していな
い3 Niメッキ+Crメッキ等の二層又は三層コーテ
ィングでは各金属を単に積層しただけであり、諸特性の
相乗効果は期待できない。これでは充分に耐熱性、耐食
性を得ることができず、例えばインコネルなどの様な耐
熱耐食に著しく優れたNi−Cr又はCo−Cr、N1
−Go−Cr、Fe−Cr。
(Problems to be solved by the invention) In the former single-layer coating method of Cr plating and Ni plating, due to the characteristics of pure metals, their softening point is lower than that of alloys, so there is a limit to their use at high temperatures. Although it has corrosion resistance in the environment, it does not have a wide range of corrosion resistance under various conditions.3 In two-layer or three-layer coatings such as Ni plating + Cr plating, each metal is simply laminated, and the synergistic effect of various properties is This cannot be expected. With this, sufficient heat resistance and corrosion resistance cannot be obtained.
-Go-Cr, Fe-Cr.

Ni−Fe−Cr合金を母材表面シ;形成させることが
望ましいとされている。又後者は溶射後皮膜緻密化のた
め再溶融熱処理が必要でCu母材の材質が析出硬化型に
限定され、加工が面倒であり、長時間の熱処理が必要で
あり父母材との密着性を広い面積で均一に得るためには
、高度な技術を要するといった問題点があった。
It is considered desirable to form a Ni-Fe-Cr alloy on the surface of the base material. In addition, the latter requires remelting heat treatment to densify the coating after thermal spraying, and the material of the Cu base material is limited to a precipitation hardening type, making processing cumbersome, requiring long heat treatment, and reducing adhesion to the parent material. There was a problem in that sophisticated technology was required to obtain uniformly over a wide area.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はかかる連続鋳造用鋳型のCu母材へのNi基、
θ基、Fe基合金を密着性良く被覆させることによって
耐熱性耐食性を高めた連続鋳造用鋳型を提供せんとする
ものであり、その要旨は連続鋳造用鋳型の銅又は銅合金
母材に耐熱耐食性合金のベース金属となるNi基、θ基
又はFe基メッキを下地として施し、その上面にC【メ
ッキを被着し、その後レーザービームを照射して両メッ
キ層を合金化することによって耐熱性耐食性を付与した
連続鋳造用鋳型にある。
The present invention provides a Ni base on the Cu base material of such a continuous casting mold,
The purpose is to provide a continuous casting mold that has improved heat resistance and corrosion resistance by coating with θ-based and Fe-based alloys with good adhesion. Ni-based, θ-based, or Fe-based plating, which is the base metal of the alloy, is applied as a base, and then C plating is applied on the top surface, and then a laser beam is irradiated to alloy both plating layers, thereby achieving heat resistance and corrosion resistance. It is in a continuous casting mold that has been given.

〔作用〕[Effect]

本発明ではCu母材の表面舎こNi基、Co基、 Fe
基いずれかのメッキ&10〜6000μ程の厚みをベー
ス金属として施し、その後Crメッキを行なうが、これ
らベース金属のメッキとCrメッキの厚さは所定のNi
基、■基、Fe基合金の成分配合となる様に予め調整し
ておく。その後に炭酸ガスレーザーの如く高出力のレー
ザービームを102〜106ジエール/ cdのエネル
ギー密度で照射してベース金属の下地メッキ層とCrメ
ッキ層とを溶解させてNi−Cr、Co−Cr、Ni−
Co−Cr、Fe−Cr、Ni−Fe−Cr合金等を形
成させる。
In the present invention, the surface of the Cu base material is Ni-based, Co-based, Fe-based.
The base metal is plated to a thickness of about 10 to 6000 μm, and then Cr plating is performed, but the thickness of these base metal plating and Cr plating is set to the specified Ni plating thickness.
The composition of the alloys is adjusted in advance so as to have a composition of base, (2), and Fe-based alloys. After that, a high-power laser beam such as a carbon dioxide laser is irradiated with an energy density of 102 to 106 g/cd to melt the base metal plating layer and the Cr plating layer to form Ni-Cr, Co-Cr, Ni. −
Co-Cr, Fe-Cr, Ni-Fe-Cr alloys, etc. are formed.

この合金によって単層、複層メッキのメッキ単味では得
られない特性が追加され、強力に耐熱、耐食性を得るも
のである。しかもCu又はCu合金母材とは母材との合
金層を形成することによって母材と完全に一体化して強
固に密着する。
This alloy adds properties that cannot be obtained with single-layer or multi-layer plating, and provides strong heat resistance and corrosion resistance. Furthermore, by forming an alloy layer with the base material, the Cu or Cu alloy base material is completely integrated with the base material and firmly adheres to the base material.

この発明の方法では母材は合金銅以外に純銅でも採用で
き、銅板の材質が限定されない。
In the method of this invention, pure copper can be used as the base material in addition to alloyed copper, and the material of the copper plate is not limited.

〔実施例〕〔Example〕

以下実施例?もって説明する。 Examples below? Let me explain.

■実施例 実施例は鋳型の母材として脱酸銅を使用し、これに下表
のNiメッキとNi−Feメッキの二層メッキの上にC
rメッキを施してレーザー照射して母材表面にNi−C
r−Fe合金を形成した連続鋳造用鋳型の倒である。
■Example In the example, deoxidized copper is used as the base material of the mold, and on top of the two-layer plating of Ni plating and Ni-Fe plating shown in the table below.
Ni-C is applied to the surface of the base material by R plating and laser irradiation.
This is an inverted version of a continuous casting mold in which r-Fe alloy was formed.

1)材質 第1図参照 図中(1)はCr)yキ、(2)はNi−10%Feメ
ッキ、(3)はNiメッキ、(4)は脱酸銅の銅母材を
示す。
1) Materials Refer to Figure 1. In the diagram, (1) is Cr), (2) is Ni-10% Fe plating, (3) is Ni plating, and (4) is the copper base material of deoxidized copper.

2)レーザー照射条件 出カニ 400W。2) Laser irradiation conditions Crab 400W.

スキャニング幅二〇、5 yxm ビーム移動速度+100++n/分 エネルギー密度:約105〜10 ’W / cA3)
レーザー照射後の鋳型の組織状況 レーザー参照後の状態の略図を第2図に示している。結
果はNiメッキ、Ni Feメッキ、Crメッキが完全
に均一に溶融した6ONi−30Cr−10Feの合金
層(5)が形成された。この合金層では気孔は殆んどな
かった。又Cu母材の熱形うによる組織変化はなかった
。合金層と脱酸銅の母材との間には5〜10/I7の厚
みのCu−Ni合金層(6)が形成された。
Scanning width 20.5 yxm Beam movement speed +100++n/min Energy density: approx. 105~10'W/cA3)
Structure of the mold after laser irradiation A schematic diagram of the state after laser reference is shown in FIG. As a result, a 6ONi-30Cr-10Fe alloy layer (5) was formed in which Ni plating, Ni Fe plating, and Cr plating were completely and uniformly melted. This alloy layer had almost no pores. Furthermore, there was no structural change due to thermal shaping of the Cu base material. A Cu--Ni alloy layer (6) having a thickness of 5 to 10/I7 was formed between the alloy layer and the deoxidized copper base material.

4)特性 メニスカス部のヒートクラック防止及び溶融パウダーに
よる腐食防止に効果的となった。
4) Characteristics Effective in preventing heat cracks in the meniscus and corrosion caused by molten powder.

溶融パウダーによる腐食防止についてはテストピースを
用いて第3図の浸漬テストを行なった。母材をこ100
 pNtメッキと507ン入Crメツキしたものと比較
した結果は下記の通りになって溶融パウダー枦こよる腐
食にも優れていることが立証された。
Regarding corrosion prevention using molten powder, a test piece was used to perform the immersion test shown in Figure 3. Base material 100
The results of a comparison between pNt plating and 507 Cr plating are as follows, proving that it is excellent in corrosion caused by molten powder.

第3図中入+51はるつぼ、(6)は溶融パウダー、(
7)試材、(8)はヒーターである。
Figure 3: Inside +51 is a crucible, (6) is a molten powder, (
7) Sample material (8) is a heater.

テストピース10h r浸漬 5)その他 第4図tこ示す様に連続鋳造用鋳型の脱酸銅母材の腐食
環境の思い下部のみにNi−Fe−Cr合金層を形成す
ることも可能である。
Test piece 10 hours immersion 5) Others As shown in Figure 4, it is also possible to form a Ni-Fe-Cr alloy layer only in the corrosive environment of the deoxidized copper base material of the continuous casting mold.

又、第5図に示す様に母材の保護及び腐食性の向上のた
めNi−Cr−Fe合金の下端捲込み(9)・側面捲込
み(11をすることが望ましい。
Further, as shown in FIG. 5, it is desirable to roll the Ni-Cr-Fe alloy at the lower end (9) and at the side (11) in order to protect the base material and improve corrosion resistance.

〔発明の効果〕〔Effect of the invention〕

以上の様に本発明によれば従来技術と比較して加工が容
易であり所要目的とする超合金の成分比率のNi基、α
基、Fe基合金をCu母材に密着力よく被覆形成でき、
連続鋳造用鋳型の耐熱、耐食性を大巾に改善できた。
As described above, according to the present invention, processing is easier compared to the conventional technology, and the composition ratio of Ni base, α
The Fe-based alloy can be coated with good adhesion to the Cu base material,
We were able to significantly improve the heat resistance and corrosion resistance of continuous casting molds.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例のレーザー照射前の鋳型の組織
を示す断面図、第2図は銅レーザー照射後の鋳型の組織
を示す断面図、第3図は溶融パウダーによる浸漬テスト
方法を示す説明図、第4図は一部被覆の鋳型を示す説明
図、第5図は合金層の捲き込みを示す説明図である。 (1):Crメッキ (2):Ni−10%Feメ ッ キ (3)二 Niメ ッ キ (4):脱酸銅の銅母材 +5) : Ni−Cr−Fe合金層 f6):Cu−Ni合金層 特許出願人  三島光産株式会社 代  理  人          戸  島  省 
 四  部第1図    第2図 第3図 第4図 第5図
Fig. 1 is a cross-sectional view showing the structure of the mold before laser irradiation according to an example of the present invention, Fig. 2 is a cross-sectional view showing the structure of the mold after copper laser irradiation, and Fig. 3 is a sectional view showing the immersion test method using molten powder. FIG. 4 is an explanatory diagram showing a partially covered mold, and FIG. 5 is an explanatory diagram showing rolling of an alloy layer. (1): Cr plating (2): Ni-10%Fe plating (3) Ni plating (4): Copper base material of deoxidized copper +5): Ni-Cr-Fe alloy layer f6): Cu-Ni alloy layer patent applicant: Mishima Kosan Co., Ltd. Agent: Sho Toshima
Part 4 Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 1)連続鋳造用鋳型の銅又は銅合金母材に耐熱耐食性合
金のベース金属となるNi基、Co基又はFe基メッキ
を下地として施し、その上面にCrメッキを被着し、そ
の後レーザービームを照射して両メッキ層を合金化する
ことによって耐熱性耐食性を付与した連続鋳造用鋳型。
1) Ni-based, Co-based, or Fe-based plating, which is the base metal of the heat-resistant and corrosion-resistant alloy, is applied to the copper or copper alloy base material of the continuous casting mold as a base, and Cr plating is applied to the upper surface, and then a laser beam is applied. A continuous casting mold that has been given heat and corrosion resistance by irradiating both plating layers to alloy them.
JP9635986A 1986-04-24 1986-04-24 Mold for continuous casting Pending JPS62252640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9635986A JPS62252640A (en) 1986-04-24 1986-04-24 Mold for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9635986A JPS62252640A (en) 1986-04-24 1986-04-24 Mold for continuous casting

Publications (1)

Publication Number Publication Date
JPS62252640A true JPS62252640A (en) 1987-11-04

Family

ID=14162796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9635986A Pending JPS62252640A (en) 1986-04-24 1986-04-24 Mold for continuous casting

Country Status (1)

Country Link
JP (1) JPS62252640A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113388832A (en) * 2021-05-24 2021-09-14 浙江大学 Copper-based composite material with high-hardness conductive surface and laser additive manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113388832A (en) * 2021-05-24 2021-09-14 浙江大学 Copper-based composite material with high-hardness conductive surface and laser additive manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP5275285B2 (en) Iron-chromium based brazing material
US20120160901A1 (en) Method for producing steel pipe plated with metal by thermal spraying
JPH05156494A (en) Welded pipe having excellent corrosion resistance on inside surface and production thereof
WO2021240696A1 (en) Continuous casting mold and method for manufacturing continuous casting mold
JPS62253758A (en) Formation of cermet layer by laser irradiation and casting mold for continuous casting
JPH0360895A (en) Dispersion reinforced copper-based alloy for building-up
JPS62252640A (en) Mold for continuous casting
JP7010008B2 (en) Manufacturing method of mold for continuous casting
JPH055585B2 (en)
JPWO2021240696A5 (en)
JP5008113B2 (en) Solder corrosion resistant material
JP3671544B2 (en) Laser welding method
JP3651819B2 (en) Method for modifying copper or copper alloy surface
JP3096407B2 (en) Manufacturing method of mold for continuous casting
JPH079085A (en) Manufacture of partially reformed aluminum-made core for casting
JPS6335762A (en) Manufacture of continuous casting mold
JPS6179783A (en) Formation of graphitized layer onto member surface
JPS61170577A (en) Formation of alloyed layer on al alloy casting surface
JP3464841B2 (en) Method for forming molten layer of sprayed metal on copper base material
JP3368595B2 (en) Cylinder liner
JPH10175044A (en) Mold for continuous casting and manufacture thereof
JPH0469226B2 (en)
JPH01136960A (en) Cu-base material
JP3687839B2 (en) Foot roll for continuous casting
JPS5893583A (en) Joining method for aluminum and iron