JPS62252381A - Manufacture of porous alumina sintered body - Google Patents

Manufacture of porous alumina sintered body

Info

Publication number
JPS62252381A
JPS62252381A JP61094268A JP9426886A JPS62252381A JP S62252381 A JPS62252381 A JP S62252381A JP 61094268 A JP61094268 A JP 61094268A JP 9426886 A JP9426886 A JP 9426886A JP S62252381 A JPS62252381 A JP S62252381A
Authority
JP
Japan
Prior art keywords
sintered body
alumina
sintering
particle size
porous alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61094268A
Other languages
Japanese (ja)
Inventor
恭典 岡本
善信 奥村
柳井 紘一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP61094268A priority Critical patent/JPS62252381A/en
Publication of JPS62252381A publication Critical patent/JPS62252381A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Filtering Materials (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、濾過部材、触媒担体等に使用される多孔質ア
ルミナ焼結体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a porous alumina sintered body used for filter members, catalyst carriers, etc.

〔従来の技術〕[Conventional technology]

液体分離、ガス分離等の分離処理用濾過部材、排ガスト
ラップ、あるいは触媒担体等として使用される多孔質ア
ルミナ焼結体の製造方法として、アルミナ粉末に成形用
バインダとして適宜の樹脂を加えて混練し、混練物を所
要形状の低密度成形体に成形したのち、焼結処理に付し
、成形体内のアルミナ粒子の間隙が連通孔として残存す
るように焼成する方法が行われている。
As a method for manufacturing porous alumina sintered bodies used as filtration members for separation processes such as liquid separation and gas separation, exhaust gas traps, or catalyst carriers, a suitable resin is added to alumina powder as a molding binder and kneaded. A method is used in which the kneaded product is formed into a low-density molded body of a desired shape, and then subjected to a sintering treatment so that the gaps between the alumina particles in the molded body remain as communicating pores.

[発明が解決しようとする問題点〕 しかるに、アルミナ粉末の低密度成形体を、通常のアル
ミナ焼結温度である1500〜1700℃の温度域で焼
結処理しても、粒子同士は殆ど焼結しない。
[Problems to be Solved by the Invention] However, even if a low-density molded body of alumina powder is sintered at a temperature range of 1500 to 1700°C, which is the normal alumina sintering temperature, most of the particles are not sintered together. do not.

第2図は、1600℃で焼結を行った例を示しているが
、粒子同士の結合は殆どみられず、従ってその焼結体は
極めて脆弱である。
FIG. 2 shows an example in which sintering was carried out at 1600° C., but there is almost no bonding between the particles, and therefore the sintered body is extremely fragile.

この対策として、アルミナ粉末に、高価なアルミナ賞バ
インダを添加するか、または焼結処理を、通常の焼結温
度よりもかなり高い温度(約1700〜2000℃)で
行うことにより、アルミナ粒子同士の焼結を促し、濾過
部材等として必要な強度をもたせるようにしている。
As a countermeasure for this, by adding an expensive alumina binder to the alumina powder or performing the sintering process at a temperature much higher than the normal sintering temperature (approximately 1,700 to 2,000 degrees Celsius), alumina particles can be bonded together. It promotes sintering and provides the strength necessary for filtering members and the like.

しかし、このように特殊なバインダを使用したり、焼結
処理を高温度域で行うことは、製造コストを高めること
になり、得策ではない。
However, it is not a good idea to use such a special binder or to perform the sintering process at a high temperature range as this increases manufacturing costs.

本発明は、特殊なバインダを使用せず、しかも通常の焼
結温度で焼結することにより、濾過部材等として必要な
強度を有し、かつ透過性能にすくれた多孔質アルミナ焼
結体を得ようとするものである。
The present invention produces a porous alumina sintered body that has the strength necessary for a filter member, etc. and has excellent permeability by sintering it at a normal sintering temperature without using a special binder. That's what you're trying to get.

〔問題点を解決するための手段および作用〕本発明の多
孔質アルミナ焼結体の製造方法は、通常原料粉末として
使用されている粒径:5〜50μmのアルミナ粉末10
0容量部に対し、粒径:2μm以下の微細粒径アルミナ
粉末を10〜40容量部配合した混合粉末を原料粉末と
して使用する点に特徴を有する。以下、説明の便宜上、
通常使用されている粒径5〜50μmのアルミナ粒子を
粗粒アルミナと称し、これに配合される粒径2μm以下
のアルミナ粒子を微小アルミナと称する。
[Means and effects for solving the problems] The method for producing a porous alumina sintered body of the present invention uses alumina powder with a particle size of 5 to 50 μm, which is normally used as a raw material powder.
The present invention is characterized in that a mixed powder containing 10 to 40 parts by volume of fine alumina powder with a particle size of 2 μm or less is used as the raw material powder per 0 parts by volume. Below, for convenience of explanation,
The commonly used alumina particles with a particle size of 5 to 50 μm are called coarse alumina, and the alumina particles with a particle size of 2 μm or less added thereto are called fine alumina.

本発明において、粗粒アルミナに配合された微小アルミ
ナは、粗粒アルミナの粒子表面をおおい、焼結処理にお
いて、微小アルミナ同士の焼結が進行する。すなわち、
微小アルミナが結合剤として粗粒アルミナ粒子間に介在
し、粗粒アルミナ同士を結合することにより、得られる
焼結体の強度を高める。従って、従来法におけるような
特殊なバインダは不要であり、またその焼結処理は、通
常の焼結温度(1500〜1700℃)で十分に達成さ
れる。
In the present invention, fine alumina mixed with coarse alumina covers the particle surface of the coarse alumina, and in the sintering process, sintering of the fine alumina progresses. That is,
Fine alumina is interposed between coarse alumina particles as a binder, and the coarse alumina particles are bonded to each other, thereby increasing the strength of the obtained sintered body. Therefore, there is no need for a special binder as in conventional methods, and the sintering process is sufficiently accomplished at normal sintering temperatures (1500-1700°C).

粗粒アルミナに配合される微小アルミナの粒径を2μm
以下とするのは、それより大きい粒子は結合剤として十
分な機能を有しないからである。
The particle size of fine alumina mixed with coarse alumina is 2 μm.
The reason for this is that particles larger than this do not have a sufficient function as a binder.

より好ましくは、1μ1m以下である。また、微小アル
ミナの配合量を10容量部以上としたのは、それより少
ないと、結合剤としての効果が不足するからであり、4
0容量部を上限とするのは、焼結促進効果の点で、それ
以上の配合を必要としないだけでな(、それを越えて多
量に配合すると、得られる焼結体の気孔率・透過性能が
不十分なものとなるからである。
More preferably, it is 1μ1m or less. In addition, the reason why the amount of fine alumina blended is 10 parts by volume or more is because if it is less than that, the effect as a binder will be insufficient.
The reason for setting the upper limit at 0 parts by volume is not only because it does not require a larger amount to promote sintering (but if it is added in a larger amount than this, the porosity and permeability of the resulting sintered body will decrease). This is because the performance will be insufficient.

〔実施例〕〔Example〕

粒径15〜40μm(平均粒径30μm)の粗粒電融ア
ルミナ100容量部と、粒径1μm以下(平均粒径Q、
5μm)の微小アルミナ(A−16相当)30容量部と
を混合し、これに成形用バインダとしてアクリル系樹脂
5重量%を添加して混練した。混練物を一軸プレスによ
る加圧成形(加圧カニ200kg/d)に付し、平板状
成形体を成形し、成形体を乾燥後、1600”Cで焼結
することにより、板状多孔質焼結体(A)を得た。
100 parts by volume of coarse-grained fused alumina with a particle size of 15 to 40 μm (average particle size 30 μm) and 1 μm or less (average particle size Q,
5 μm) of fine alumina (equivalent to A-16) was mixed with 30 parts by volume of fine alumina (equivalent to A-16), and 5% by weight of an acrylic resin as a molding binder was added thereto and kneaded. The kneaded material is subjected to pressure molding using a uniaxial press (pressure crab 200 kg/d) to form a flat plate-shaped compact, and after drying the compact, it is sintered at 1600"C to produce a plate-shaped porous sintered product. A solid (A) was obtained.

また、比較例として、微小アルミナの配合を省略し、上
記と同じ粒径の粗粒電融アルミナを原料粉末とする以外
は、上記と同一の条件に従って多孔質焼結体(B)を得
た。
In addition, as a comparative example, a porous sintered body (B) was obtained under the same conditions as above, except that the blending of fine alumina was omitted and coarse-grained fused alumina with the same particle size as above was used as the raw material powder. .

更に、他の比較例として、微小アルミナの配合を省略し
、上記と同じ粒径の粗粒電融アルミナを原料粉末とし、
成形体の焼結処理を従来方法に従って1800℃の高温
度に設定した点を除いて、上記実施例と同じ条件で多孔
質焼結体(C)を得た。
Furthermore, as another comparative example, the blending of fine alumina was omitted, and coarse-grained fused alumina with the same particle size as above was used as the raw material powder,
A porous sintered body (C) was obtained under the same conditions as in the above example, except that the sintering treatment of the compact was set at a high temperature of 1800° C. according to a conventional method.

本発明方法により得られた焼結体(A)の粒子結合状況
を第1図に示す。また、第2図は比較例として製造され
た焼結体(B)の粒子結合状態を示している(いずれも
、1000倍率)。本発明方法により得られた焼結体(
A)(第1図)は、比較例の焼結体(B)(第2図)に
比し、良好な粒子結合状態を有していることがわかる。
FIG. 1 shows the state of particle bonding in the sintered body (A) obtained by the method of the present invention. Moreover, FIG. 2 shows the particle bonding state of the sintered body (B) manufactured as a comparative example (all magnifications are 1000 times). Sintered body obtained by the method of the present invention (
It can be seen that A) (FIG. 1) has a better particle bonding state than the comparative sintered body (B) (FIG. 2).

各供試焼結体(A)、(B)および(C)について、曲
げ強度および気孔率を測定し、次の結果を得た。
The bending strength and porosity of each sample sintered body (A), (B), and (C) were measured, and the following results were obtained.

曲げ強度   気孔率 (kg/m嘗2)(%) 焼結体(八)(発明例)    532    39焼
結体(B)(比較例)     70    45焼結
体(C)(比較例)    530    41焼結体
(B)のように、微小アルミナを配合しない原料粉末を
用いて通常の焼結処理を経て得られる焼結体は、曲げ強
度が70 kg f / mm ”と低く、極めて脆弱
であるが、本発明方法により得られた焼結体(A)は、
焼結処理温度が低いにも拘らず、高い曲げ強度を有して
いる。その強度は高温で焼結処理して得られた従来品相
当の焼結体(C)と同等のレベルにあり、また気孔率も
十分に高く、従来品と同等の透過性を有していることが
わかる。
Bending strength Porosity (kg/m 2) (%) Sintered body (8) (invention example) 532 39 Sintered body (B) (comparative example) 70 45 Sintered body (C) (comparative example) 530 41 A sintered body like sintered body (B), which is obtained through normal sintering using raw material powder that does not contain fine alumina, has a bending strength as low as 70 kg f/mm and is extremely fragile. However, the sintered body (A) obtained by the method of the present invention is
Despite the low sintering temperature, it has high bending strength. Its strength is at the same level as the conventional sintered body (C) obtained by sintering at high temperatures, and the porosity is also sufficiently high and has the same permeability as the conventional product. I understand that.

〔発明の効果〕〔Effect of the invention〕

本発明方法によhば、従来法のように特殊なバインダを
使用せずに、通常の焼結温度で、アルミナ粒子の焼結が
達成され、濾過部材等としての使用に耐える十分な強度
を備えた多孔質アルミナ焼粘体を製造することができる
。従って、本発明方法は、特殊バインダの使用や高温焼
結を必要とする従来法に比し、工程が簡素で、安価であ
り、濾過部材、触媒担体等の製造方法として工業的に大
きな意義を有する。
According to the method of the present invention, alumina particles can be sintered at a normal sintering temperature without using a special binder unlike conventional methods, and have sufficient strength to withstand use as a filter member, etc. It is possible to produce a porous alumina sintered body having the following properties. Therefore, the process of the present invention is simpler and cheaper than conventional methods that require the use of special binders and high-temperature sintering, and has great industrial significance as a method for producing filter members, catalyst carriers, etc. have

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法により得られた焼結体の粒子結合状
況を示す図面代用顕微鏡写真(1000倍率)、第2図
は比較法により得られた焼結体の粒子結合状況を示す図
面代用顕微鏡写真(1000倍率)である。
Fig. 1 is a photomicrograph (1000x magnification) used as a substitute for a drawing showing the state of particle bonding in a sintered body obtained by the method of the present invention, and Fig. 2 is a photo substituted for a drawing showing the state of particle bonding in a sintered body obtained by a comparative method. This is a micrograph (1000x magnification).

Claims (1)

【特許請求の範囲】[Claims] (1)粒径:5〜50μmのアルミナ粉末100容量部
に対し、粒径2μm以下のアルミナ粉末10〜40容量
部を加えた混合粉末を原料粉末とする多孔質アルミナ焼
結体の製造方法。
(1) A method for producing a porous alumina sintered body using a mixed powder obtained by adding 10 to 40 parts by volume of alumina powder with a particle size of 2 μm or less to 100 parts by volume of alumina powder with a particle size of 5 to 50 μm as a raw material powder.
JP61094268A 1986-04-22 1986-04-22 Manufacture of porous alumina sintered body Pending JPS62252381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61094268A JPS62252381A (en) 1986-04-22 1986-04-22 Manufacture of porous alumina sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61094268A JPS62252381A (en) 1986-04-22 1986-04-22 Manufacture of porous alumina sintered body

Publications (1)

Publication Number Publication Date
JPS62252381A true JPS62252381A (en) 1987-11-04

Family

ID=14105531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61094268A Pending JPS62252381A (en) 1986-04-22 1986-04-22 Manufacture of porous alumina sintered body

Country Status (1)

Country Link
JP (1) JPS62252381A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121087A (en) * 2000-10-13 2002-04-23 Toshiba Ceramics Co Ltd Ceramics porous sintered compact and method for producing the same
JP2004315358A (en) * 2003-03-31 2004-11-11 Nippon Tungsten Co Ltd Porous alumina sintered compact and method for manufacturing the same
JP2005154227A (en) * 2003-11-27 2005-06-16 Ngk Insulators Ltd Alumina sintered compact and production method therefor
WO2013187182A1 (en) 2012-06-15 2013-12-19 株式会社ノリタケカンパニーリミテド Alumina porous body and method for manufacturing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126575A (en) * 1984-07-12 1986-02-05 林 辰郎 Porous ceramic structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126575A (en) * 1984-07-12 1986-02-05 林 辰郎 Porous ceramic structure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121087A (en) * 2000-10-13 2002-04-23 Toshiba Ceramics Co Ltd Ceramics porous sintered compact and method for producing the same
JP2004315358A (en) * 2003-03-31 2004-11-11 Nippon Tungsten Co Ltd Porous alumina sintered compact and method for manufacturing the same
JP4502683B2 (en) * 2003-03-31 2010-07-14 日本タングステン株式会社 Porous alumina sintered body and method for producing the same
JP2005154227A (en) * 2003-11-27 2005-06-16 Ngk Insulators Ltd Alumina sintered compact and production method therefor
JP4498727B2 (en) * 2003-11-27 2010-07-07 日本碍子株式会社 Alumina sintered body and manufacturing method thereof
WO2013187182A1 (en) 2012-06-15 2013-12-19 株式会社ノリタケカンパニーリミテド Alumina porous body and method for manufacturing same
KR20150032843A (en) 2012-06-15 2015-03-30 가부시키가이샤 노리타케 캄파니 리미티드 Alumina porous body and method for manufacturing same
US10392309B2 (en) 2012-06-15 2019-08-27 Noritake Co., Limited Alumina porous body and method for manufacturing same

Similar Documents

Publication Publication Date Title
CN107200599B (en) Porous alumina ceramic and preparation method and application thereof
US20030057581A1 (en) Method of making silicon nitride-bonded silicon carbide honeycomb filters
CN103274693A (en) Porous silicon carbide ceramic provided with novel pore wall structure and preparation method thereof
JPH09157060A (en) Inorganic sintered porous body and filter
JPS62252381A (en) Manufacture of porous alumina sintered body
US5340532A (en) Method for forming ceramic powders by temperature induced flocculation
EP0992467A2 (en) Production of porous mullite bodies
WO1993005190A1 (en) Process for producing porous metallic body
JP2003206185A (en) Aluminum oxide ceramic porous body and method for producing the same
JP4420171B2 (en) Sialon ceramic porous body and method for producing the same
JP2958472B2 (en) High strength porous member and method of manufacturing the same
JPS62287027A (en) Manufacture of porous cu-alloy sintered compact
陳永鋒 et al. Pore structure and permeation properties of kaolin-silica-alumina ceramics
JPS62278175A (en) Manufacture of porous ceramics
JPH0597537A (en) Production of ceramic porous material
OKUMOTO et al. Influence of alumina-slurry-dispersion characteristics on microstructure of granules and uniaxially pressed green bodies
JP2934866B2 (en) Silica glass gas filter
KR102124783B1 (en) Liquid phase sintered silicon carbide porous body having dual pore structure and method for producing same
JP2005336539A (en) Porous sintered compact and its production method
JPS62223065A (en) Composite ceramic sintered body
JPS6183689A (en) Silicon carbide base honeycomb structure
Lukin et al. Porous permeable ceramics based on aluminum oxide
JPH0881259A (en) Mullite-based ceramics and their production
JPH013083A (en) Silicon carbide porous material and its manufacturing method
JP2581841B2 (en) Method for producing porous PZT ceramics