JPS62252378A - Manufacture of porous silica carrier - Google Patents

Manufacture of porous silica carrier

Info

Publication number
JPS62252378A
JPS62252378A JP61093660A JP9366086A JPS62252378A JP S62252378 A JPS62252378 A JP S62252378A JP 61093660 A JP61093660 A JP 61093660A JP 9366086 A JP9366086 A JP 9366086A JP S62252378 A JPS62252378 A JP S62252378A
Authority
JP
Japan
Prior art keywords
silicic acid
slurry
silica gel
amount
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61093660A
Other languages
Japanese (ja)
Other versions
JPH0631173B2 (en
Inventor
護郎 佐藤
悠策 有馬
博和 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP61093660A priority Critical patent/JPH0631173B2/en
Publication of JPS62252378A publication Critical patent/JPS62252378A/en
Publication of JPH0631173B2 publication Critical patent/JPH0631173B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Catalysts (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は多孔性シリカの製造方法に関するものであって
、さらに詳しくは大きな細孔容積と強い粒子強度を有す
る多孔性シリカ担体の製造法に係る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing porous silica, and more specifically to a method for producing a porous silica carrier having a large pore volume and strong particle strength. It depends.

[従来の技術] 多孔性シリカ粒子は、食品、医薬品の分野で、また触媒
担体、吸着剤、乾燥剤等として、従来から広く使用され
ているが、その用途によって多孔性シリカ粒子は、使用
目的に適った性状を有していなければならない。例えば
、触媒担体として使用する多孔性シリカ粒子には、大き
な細孔容積と強い粒子強度が要求される。
[Prior Art] Porous silica particles have been widely used in the food and pharmaceutical fields, and as catalyst carriers, adsorbents, desiccants, etc.; It must have properties suitable for. For example, porous silica particles used as catalyst supports require large pore volumes and strong particle strength.

触媒担体に使用される多孔性シリカ粒子の製造方法とし
て、特開昭61−4.0813号公報には、酸性シリカ
ゾルのpHを急激にアルカリ側に上昇させてゲル化させ
る方法により、細孔容積が大きく、シャープな細孔分布
を有する多孔性シリカ粒子を製造する技術が開示されて
いる。また、特開昭58−135119号公報には、S
iO,濃度が特定されたシリカゾルをゲル化させ、これ
にアンモニア水のようなアルカリを加えてpHを5〜1
0に調整してから、ゲル化物に50〜95℃で水熱処理
を施し1次いでこれを酸水溶液で処理し。
As a method for producing porous silica particles used as a catalyst carrier, JP-A-61-4.0813 discloses a method in which the pH of an acidic silica sol is rapidly raised to the alkaline side to form a gel, which reduces the pore volume. A technique for producing porous silica particles having a large pore size and a sharp pore distribution has been disclosed. Also, in Japanese Patent Application Laid-Open No. 58-135119, S
iO, silica sol with a specified concentration is gelled, and an alkali such as aqueous ammonia is added to this to adjust the pH to 5-1.
After adjusting to 0, the gelled product was subjected to hydrothermal treatment at 50 to 95°C, and then treated with an acid aqueous solution.

しかる後、低い温度で乾燥することにより、細孔容積の
大きいシリカ粒子の製造方法が記載されている。さらに
また、特開昭59−232911号公報には、アルカリ
ケイ酸塩と鉱酸との反応によリシリカ粒子を製造する方
法に於いて、反応液中のSiO□濃度を12〜25wt
%の範囲に保持すると共に反応温度を30℃以下に保持
しながら。
A method for producing silica particles with a large pore volume by subsequently drying at a low temperature is described. Furthermore, JP-A No. 59-232911 discloses a method for producing resilica particles by the reaction of an alkali silicate and a mineral acid, in which the SiO□ concentration in the reaction solution is adjusted to 12 to 25 wt.
% while keeping the reaction temperature below 30°C.

反応時のpHを第1段目では1.5〜5.0に、第2段
目では6〜lOに維持して反応を2段階で行わせ、吸油
量の大きいシリカ粒子を得る方法が教示されている。
It teaches a method to obtain silica particles with large oil absorption by carrying out the reaction in two stages by maintaining the pH during the reaction at 1.5 to 5.0 in the first stage and 6 to 1O in the second stage. has been done.

[発明が解決しようとする問題点コ 上に紹介した方法で製造されるシリカ粒子を含めて、従
来の多孔性シリカ粒子は、一般にその細孔容積が0.6
〜1.2ml/g程度で□ある。然るに、成る種の化学
反応系で使用される触媒では、細孔容積が1.0〜2.
5ml/g程度で、平均細孔直径が100〜1000人
の範囲にあり、しがち粒子強度が大きいシリカ担体が要
求されているが、従来のシリカ粒子ではこの要請に応え
ることができない。ちなみに、シリカ粒子として大きな
細孔容積を備えていても、粒子強度が小さいものは触媒
担体として使用した際に粉化しゃすく、触媒反応の実施
に支障を来す原因になるので、この種のシリカ粒子は触
媒担体として工業的には利用できない。
[Problems to be Solved by the Invention] Conventional porous silica particles, including silica particles produced by the method introduced above, generally have a pore volume of 0.6.
It is □ at about 1.2 ml/g. However, catalysts used in certain types of chemical reaction systems have pore volumes of 1.0 to 2.
A silica carrier with a particle size of about 5 ml/g, an average pore diameter in the range of 100 to 1000 pores, and a high particle strength is required, but conventional silica particles cannot meet this demand. Incidentally, even if silica particles have a large pore volume, particles with low particle strength will turn into powder when used as a catalyst carrier, causing problems in carrying out the catalytic reaction. Silica particles cannot be used industrially as a catalyst support.

シリカ担体も他の触媒担体同様、その細孔容積及び平均
細孔直径が大きくかればなるほど、粒子強度は低下する
のが通例である。しかして、本発明の目的は、非常に大
きな細孔容積と細孔直径を有しながら、粒子強度も大き
い多孔性シリカ担体の製造法を提供することにある。
As with other catalyst supports, the larger the pore volume and average pore diameter of the silica carrier, the lower the particle strength. Therefore, an object of the present invention is to provide a method for producing a porous silica carrier having a very large pore volume and pore diameter and also having high particle strength.

[問題点を解決するための手段] 本発明の方法は、シリカゲル粒子を骨材に。[Means for solving problems] The method of the present invention uses silica gel particles as aggregate.

ケイ酸液をバインダーにそれぞれ使用して、シリカゲル
粒子を、バインダーに用いたケイ酸液由来のシリカによ
って相互に結合させるものであって□、その方法は、S
iO,濃度が1〜60 wt%の範□囲に撚るシリカゲ
ルスラリーに、アルカリ水溶液を添加してスラリーのp
Hを8.5以上に保持しつつ液温を50℃以上に保持し
ながら、1分間当りのケイ酸液の添加□量が5i02量
に換算して、□前記シリカゲルスラリーに含まれるS 
i O2量の1/1000以下になる添加速度で。
A silicic acid solution is used as a binder, and silica gel particles are bonded to each other by the silica derived from the silicic acid solution used as a binder.
An alkaline aqueous solution is added to the silica gel slurry to be twisted to a concentration of iO in the range of 1 to 60 wt%.
While maintaining H at 8.5 or higher and the liquid temperature at 50°C or higher, the amount of silicic acid solution added per minute is converted to 5i02, and the amount of S contained in the silica gel slurry is
i At an addition rate that is 1/1000 or less of the amount of O2.

且つケイ酸液の添加総量がSiO□量に換算して、前記
シリカゲルスラリーに含まれる5iO2iの50wt%
を越えない範囲内で、ケイ酸液を前記のシリカゲルスラ
リーに添加し、次いでこの混合スラリーを乾燥して焼成
することからなる。
In addition, the total amount of silicic acid solution added is 50 wt% of 5iO2i contained in the silica gel slurry in terms of SiO□ amount.
The process consists of adding a silicic acid liquid to the silica gel slurry within a range not exceeding , and then drying and calcining the mixed slurry.

本発明に係る第2の方法は、SiO□濃度が1〜60w
t%の範囲にあるシリカゲルスラリーに、アルカリ水溶
液を添加してスラリーのpHを8.5以上に保持しつつ
、液温を50℃以上に保持しながら、1分間当りのケイ
酸液の添加量が5i02量に換算して、前記シリカゲル
スラリーに含まれるS i O,、量の1/1000以
下になる添加速度で、且つケイ酸液の添加総量がS i
 O。
In the second method according to the present invention, the SiO□ concentration is 1 to 60 w.
Add an alkaline aqueous solution to the silica gel slurry in the range of t% to maintain the pH of the slurry at 8.5 or higher and the liquid temperature at 50°C or higher, and add the amount of silicic acid solution per minute. is added at a rate such that S i O, contained in the silica gel slurry is 1/1000 or less of the amount of S i O contained in the silica gel slurry, and the total amount of silicic acid liquid added is
O.

量に換算して、前記シリカゲルスラリーに含まれるS 
i O,量の50wt%を越えない範囲内で。
S contained in the silica gel slurry in terms of amount
i O, within a range not exceeding 50 wt% of the amount.

ケイ酸液を前記のシリカゲルスラリーに添加し、次いで (a)ケイ酸液が添加されたシリカゲルスラリーに酸を
加えてpHを7以下に低下させる操作、 (b)操作(a)の後、アルカリ水溶液を添加してスラ
リーのpHを8.5以上に保持しつつ、液温を50℃以
上に保持しながら、1分間当りのケイ酸液の添加量が5
i02量に換算して、前記ケイ酸液が添加されたシリカ
ゲルスラリーに含まれる総SiO□量の1 /1000
以下になる添加速度で、且つケイ酸液の添加総量がSi
O2量に換算して、前記ケイ酸液が添加されたシリカゲ
ルスラリーに含まれる総SiO□量の50wt%を越え
ない範囲内で、ケイ酸液をシリカゲルスラリーに添加す
る操作、を1回又は複数回繰り返し、得られた混合スラ
リーを乾燥して焼成することからなる。
A silicic acid solution is added to the silica gel slurry, and then (a) an acid is added to the silica gel slurry to which the silicic acid solution has been added to lower the pH to 7 or less, (b) after operation (a), an alkali While adding the aqueous solution and maintaining the pH of the slurry at 8.5 or higher and the liquid temperature at 50°C or higher, the amount of silicic acid solution added per minute was 5.
In terms of iO2 amount, 1/1000 of the total SiO□ amount contained in the silica gel slurry to which the silicic acid solution was added.
The addition rate is as follows, and the total amount of silicic acid liquid added is Si
Adding the silicic acid liquid to the silica gel slurry once or multiple times within a range that does not exceed 50 wt% of the total SiO□ amount contained in the silica gel slurry to which the silicic acid liquid has been added, in terms of O2 amount. The process consists of repeating the process several times, drying and firing the resulting mixed slurry.

[作   用コ 本発明の方法で使用されるシリカゲルスラリーは、市販
のシリカゲルを水に分散させたものであっても差し支え
ないが、シリカゲルは骨材となるものなので、ゲル構造
が強いものを選ぶことが好ましい0本発明のシリカゲル
スラリーはまた、市販のシリカゾルから調製することも
できる。この場合のシリカゾルには、その濃度が1νt
%以上、好ましくは5〜401t%の範囲にあるものを
使用することを可とする。シリカゾルの濃度が1wt%
以下であると、これから得られるシリカゲルには強固な
ゲル構造を期待できないからである。シリカゾルのゲル
化には、公知の方法がいずれも採用可能であるが、シリ
カゾルに酸を添加してpHを一旦酸性域にした後、アル
カリ水溶液を添加し・てゲル化させる方法は。
[Function] The silica gel slurry used in the method of the present invention may be one obtained by dispersing commercially available silica gel in water, but since silica gel serves as an aggregate, choose one with a strong gel structure. The silica gel slurry of the present invention can also be prepared from commercially available silica sols. In this case, the silica sol has a concentration of 1νt
% or more, preferably in the range of 5 to 401 t%. The concentration of silica sol is 1wt%
If it is below, the silica gel obtained from this cannot be expected to have a strong gel structure. Any known method can be used to gel the silica sol, but there is a method in which an acid is added to the silica sol to bring the pH to an acidic range, and then an alkaline aqueous solution is added to form a gel.

ゲル構造が強いシリカゲルが得られる点で好ましい。市
販のシリカゲルを水に分散させる場合でも、或いはシリ
カゾルから調製する場合でも、本発明で使用するシリカ
ゲルスラリーは、そのSiO2濃度が1〜60wt%の
範囲に調整される。
This is preferable in that a silica gel with a strong gel structure can be obtained. Whether commercially available silica gel is dispersed in water or prepared from silica sol, the silica gel slurry used in the present invention is adjusted to have an SiO2 concentration in the range of 1 to 60 wt%.

60wt%以上では攪拌によってスラリー全体を均一に
所望のpHに維持することが難しく、また、1wt%以
下ではシリカ担体の生産効率が低く、経済的でない。
If it is more than 60 wt%, it is difficult to uniformly maintain the entire slurry at a desired pH by stirring, and if it is less than 1 wt%, the production efficiency of the silica carrier is low and it is not economical.

バインダーとして使用されるケイ酸液は、水ガラスをイ
オン交換樹脂にて脱アルカリすることで得ることができ
る。ケイ酸液にバインダーとしての機能を発揮させるた
めには、その濃度(S 1021度)は8すt%以下、
一般的には1〜5tzt%の゛範囲にあることが望まし
い、これ以上高濃度であると、ケイ酸液はゾル化ないし
はゲル化しやすくなり、ゾル化ないしはゲル化すると、
バインダーとしての機能が著しく低下するからである。
The silicic acid liquid used as a binder can be obtained by dealkalizing water glass with an ion exchange resin. In order for the silicic acid liquid to function as a binder, its concentration (S 1021 degrees) must be 8% or less,
In general, it is desirable that the concentration be in the range of 1 to 5 tzt%.If the concentration is higher than this, the silicic acid solution tends to become a sol or a gel, and when it becomes a sol or a gel,
This is because the function as a binder is significantly reduced.

本発明の方法に於いては、シリカゲルスラリーに対する
ケイ酸液の添加を、連続的にもまた所続的にも行うこと
ができるが、ケイ酸液の添加に際しては次の条件が順守
されなければならない。
In the method of the present invention, the silicic acid solution can be added to the silica gel slurry either continuously or intermittently, but the following conditions must be met when adding the silicic acid solution: It won't happen.

第1の条件はケイ酸液が添加されるスラリーの液温を5
0℃以上、好ましくは80℃以上に保持し、pHを8.
5以上、好ましくは9以上に保持することである。その
理由は液温やpH値が低いと、シリカの溶解度を充分高
めることができないことによる。尚、液温を100℃以
上にする場合は、加圧容器が通常使用される。スラリー
のpHはケイ酸液が添加される間中、常に8.5以上、
好ましくは9以上に保持される関係で、ケイ酸液の添加
に際しては、これと同時にアルカリ水溶液がスラリーに
添加される。この場合のアルカリ水溶液としては、アン
モニア水、水溶性アミン類、水酸化ナトリウム水溶液な
どが使用可能である。このうち、アンモニア水の使用は
、アルカリ金属などの不純物をスラリーに持ち込まず、
従って不純物の洗浄除去を省略できる点で、極めて望ま
しい。
The first condition is that the temperature of the slurry to which the silicic acid solution is added is 5.
The temperature is maintained at 0°C or higher, preferably 80°C or higher, and the pH is adjusted to 8.
It is to be kept at 5 or more, preferably 9 or more. The reason for this is that when the liquid temperature and pH value are low, the solubility of silica cannot be sufficiently increased. Note that when the liquid temperature is 100° C. or higher, a pressurized container is usually used. The pH of the slurry is always 8.5 or higher during the addition of the silicic acid solution.
When adding the silicic acid solution, an alkaline aqueous solution is added to the slurry at the same time so that the ratio is preferably maintained at 9 or higher. As the alkaline aqueous solution in this case, ammonia water, water-soluble amines, sodium hydroxide aqueous solution, etc. can be used. Among these, the use of ammonia water does not introduce impurities such as alkali metals into the slurry.
Therefore, it is extremely desirable since cleaning and removal of impurities can be omitted.

ケイ酸液添加に際しての第2の条件は、添加速度と添加
総量に関するものであって、ケイ酸液の添加速度は、1
分間当りのケイ酸液の添加量がSi○2量換算で、シリ
カゲルスラリーに含まれるSiO□量の1 /1000
以下でなければならず、また添加総量は、S i O,
量換算で、シリカゲルスラリーに含まれるSiO2量の
50wt%を越えない範囲にある。
The second condition when adding silicic acid liquid is related to the addition rate and total amount of addition, and the addition rate of silicic acid liquid is 1
The amount of silicic acid solution added per minute is equivalent to the amount of Si○2, which is 1/1000 of the amount of SiO□ contained in the silica gel slurry.
The total amount added must be less than or equal to S i O,
In terms of amount, the amount does not exceed 50 wt% of the amount of SiO2 contained in the silica gel slurry.

本発明者等が得た知見によれば、ケイ酸液の添加速度を
上記の規定値より増大させてシリカゲルスラリーにケイ
酸液を添加した場合には、他の条件を本発明と同一に維
持しても、大細孔容積で高粒子強度の多孔性シリカ担体
を得ることができない。このことから1本発明の方法に
より、大細孔容積で高粒子強度の多孔性シリカ担体が製
造できる理由を、次のように考えることができる。
According to the knowledge obtained by the present inventors, when the silicic acid liquid is added to the silica gel slurry by increasing the addition rate of the silicic acid liquid from the above specified value, other conditions are maintained the same as in the present invention. However, it is not possible to obtain a porous silica support with a large pore volume and high particle strength. From this, the reason why a porous silica carrier with a large pore volume and high particle strength can be produced by the method of the present invention can be considered as follows.

すなわち、ケイ酸液を上記の添加速度でシリカゲルスラ
リーに添加すると、当初はスラリー中に溶解するが、添
加を続ける間にケイ酸は過飽和になって分散状態にある
シリカゲル粒子(骨材)上に析出し、これがバインダー
となって粒子同志を結合させる。ケイ酸液の添加を低速
度で行えば、上記の溶解−過飽和−析出を反復させるこ
とができるので、先に結合した粒子同志がさらに互いに
結合する事態が繰り返され、その結果として当初スラリ
ーに分散していた個々のシリカゲル粒子は、適当な粒子
間隙を保ちながら凝集して結合するため、これを乾燥、
焼成することで大細孔容積で高粒子強度の多孔性シリカ
担体が製造できるものと推察される。これに引き換え、
ケイ酸液の添加速度が高い場合は、添加されたケイ酸が
独自にゲル化してしまうため、バインダーとしての機能
を発揮できず、それ故に所望の多孔性シリカ担体を得る
ことができないものと考えられる。従って1本発明では
ケイ酸液の添加速度が極めて重要であって、シリカゲル
スラリーに対する1分間当りのケイ酸液の添加量は、S
iO2量換算でシリカゲルスラリーに含まれるSiO2
量の1 /1000以下とすることが必要であり、好ま
しい添加速度は1 /4000〜1 /20000の範
囲内にある。
In other words, when a silicic acid solution is added to a silica gel slurry at the above-mentioned addition rate, it initially dissolves in the slurry, but as the addition continues, the silicic acid becomes supersaturated and dissolves onto the dispersed silica gel particles (aggregate). This precipitates and becomes a binder that binds the particles together. If the silicic acid solution is added at a low rate, the above-mentioned dissolution-supersaturation-precipitation process can be repeated, so that the previously bonded particles are further bonded to each other, and as a result, the particles initially dispersed in the slurry are The individual silica gel particles that had been used for a long time aggregate and bond while maintaining appropriate particle gaps, so they are dried and bonded together.
It is presumed that by firing, a porous silica carrier with a large pore volume and high particle strength can be produced. In exchange for this,
It is thought that if the addition rate of the silicic acid solution is high, the added silicic acid will gel on its own and will not be able to perform its function as a binder, making it impossible to obtain the desired porous silica carrier. It will be done. Therefore, in the present invention, the addition rate of the silicic acid liquid is extremely important, and the amount of the silicic acid liquid added per minute to the silica gel slurry is S
SiO2 contained in silica gel slurry in terms of iO2 amount
It is necessary that the amount is 1/1000 or less, and the preferable addition rate is within the range of 1/4000 to 1/20000.

ケイ酸液の添加総量について言えば、その量が余り多す
ぎると、適当な粒子間隙を保ちながら凝集して結合した
シリカゲル粒子の間隙部が。
Regarding the total amount of silicic acid solution added, if the amount is too large, the gaps between the silica gel particles will aggregate and bond while maintaining appropriate particle gaps.

ケイ酸の析出によって閉塞されてしまう心配がある。こ
の意味から、ケイ酸液の添加総量は、ケイ酸液を添加せ
んとするシリカゲルスラリーの濃度を考慮して選定する
ことが好ましいが。
There is a concern that it may be blocked by silicic acid precipitation. In this sense, it is preferable that the total amount of the silicic acid liquid to be added be selected in consideration of the concentration of the silica gel slurry to which the silicic acid liquid is to be added.

一般的には添加総量はS i O,量換算で、シリカゲ
ルスラリーに含まれるS i O,量の50wt%を越
えない範囲内にある。
Generally, the total amount added is within a range not exceeding 50 wt% of the amount of S i O contained in the silica gel slurry, in terms of S i O amount.

本発明の方法に於いて、シリカゲルスラリーに対するケ
イ酸液の添加を断続的に行う場合には、各回のケイ酸液
添加操作の間に、酸を添加してスラリーのpHを7以下
に低下させる操作を介在させることが好ましい、そして
、この操作で使用する酸としては、塩酸、硫酸、硝酸等
の鉱酸、酢酸、シュウ酸、ギ酸等の有機酸を任意に使用
することができる。
In the method of the present invention, when the silicic acid liquid is added intermittently to the silica gel slurry, an acid is added between each silicic acid liquid addition operation to lower the pH of the slurry to 7 or less. It is preferable to intervene the operation, and as the acid used in this operation, mineral acids such as hydrochloric acid, sulfuric acid, nitric acid, etc., and organic acids such as acetic acid, oxalic acid, formic acid, etc. can be arbitrarily used.

スラリーのpHを7以下に低下させる操作を介在させる
ことが、スラリー中のシリカゲルに如何なる作用を及ぼ
すかは、現在のとこ為、必ずしも明らかではない、しか
しながら、スラリーのpHを酸性域にシフトさせる操作
を介在させた方が、介在させない場合より、最終的に得
られるシリカ担体の粒子強度が向上する事実から見て、
酸性域へのシフトは、シリカゲル粒子間の結合力増強に
、大いに貢献しているものと推察される。
At present, it is not necessarily clear what effect intervening an operation to lower the pH of the slurry to 7 or less will have on the silica gel in the slurry. Judging from the fact that the particle strength of the final silica support is improved when silica is present, compared to when it is not present,
It is presumed that the shift to the acidic region greatly contributes to the enhancement of the bonding force between silica gel particles.

スラリーを酸性域にシフトさせる操作を介在させたか否
かに拘らず、所定量のケイ酸液を添加し終わったシリカ
ゲルスラリーは、常法通り乾燥される。シリカ担体を成
型物として取得したい場合には、必要に応じてスラリー
を脱水後、所望の寸法及び形状に成型してから乾燥する
ことが望ましい。また1球状粒子を取得したい場合には
、スラリーを噴震乾燥することが好ましい。乾燥後は、
空気中で300〜1100℃の温度で焼成することによ
り2本発明の目的物たる大細孔容積で高粒子強度の多孔
性シリカ担体を得ることができる。
The silica gel slurry to which a predetermined amount of the silicic acid solution has been added is dried in a conventional manner, regardless of whether or not an operation of shifting the slurry to an acidic region is performed. When it is desired to obtain a silica carrier as a molded product, it is desirable to dehydrate the slurry as necessary, mold it into a desired size and shape, and then dry it. Moreover, when it is desired to obtain one spherical particle, it is preferable to spray-dry the slurry. After drying,
By firing in air at a temperature of 300 DEG to 1100 DEG C., a porous silica carrier with a large pore volume and high particle strength, which is the object of the present invention, can be obtained.

このようにして製造されたシリカ担体は、いろいろな用
途に使用できる。例えば、特願昭60−11719号の
方法によって、平均粒径5μのシリカマイクロビーズを
作ることができる。このシリカマイクロビーズの細孔容
積は1.0〜2.5cc/gと大きいため、これらを液
体クロマトグラフの担体として使用すれば非常に有効で
ある。また同様にタンパク質等の分取用担体などにも使
用できる。さらに、濾過助剤としても有効である。
The silica carrier produced in this way can be used for various purposes. For example, silica microbeads with an average particle size of 5 μm can be produced by the method disclosed in Japanese Patent Application No. 11719/1980. Since the pore volume of these silica microbeads is as large as 1.0 to 2.5 cc/g, their use as a carrier for liquid chromatography is very effective. It can also be similarly used as a carrier for fractionating proteins and the like. Furthermore, it is effective as a filter aid.

また、この大きな細孔容積の中に、例えば色素を含浸さ
せれば、色素担体としても利用できる。
Furthermore, if the large pore volume is impregnated with, for example, a dye, it can be used as a dye carrier.

色素にて直接蒲鉾に模様を入れると、色素が不必要な所
までにじんで鮮明な模様が得られない欠点がある。しか
し1色素担体を用いて模様を入れると、にじむことがな
いので明確な模様を有するかまぼこを得ることができる
。しかもこの担体の粒径は5μと小さいため1口当たり
に関しても不都合がない。
If you directly apply a pattern to kamaboko with dye, the disadvantage is that the dye bleeds into unnecessary areas, making it impossible to obtain a clear pattern. However, if a pattern is created using a single dye carrier, there will be no smudging and it is possible to obtain a kamaboko with a clear pattern. Moreover, since the particle size of this carrier is as small as 5 μm, there is no problem in terms of per-portion.

また1本発明のシリカ担体の細孔に香水を含浸させると
、従来のマイクロビーズに比較して細孔容積が3〜8倍
もあるため、含浸量を増加させることにより、長持ちす
る香水含有シリカ担体を得ることができる。同様にして
、防カビ剤を含浸させれば、効果が大きく、長持ちする
防カビ剤含有シリカマイクロビーズを得ることができる
In addition, when the pores of the silica carrier of the present invention are impregnated with perfume, the pore volume is 3 to 8 times that of conventional microbeads. A carrier can be obtained. Similarly, by impregnating them with a fungicide, it is possible to obtain fungicide-containing silica microbeads that are highly effective and last a long time.

さらにまた、本発明のシリカ担体を噴霧乾燥によって平
均粒径60〜100μの球状粒子とし。
Furthermore, the silica carrier of the present invention is formed into spherical particles with an average particle size of 60 to 100 μm by spray drying.

これを所定の温度で焼成することにより、触媒担体とす
ることも可能である0例えばこの種の触媒担体に、硫酸
バナジルと硫酸カリウムを含浸させて、500℃で焼成
すれば、無水フタル酸触媒を製造することができる。
By firing this at a predetermined temperature, it is possible to use it as a catalyst carrier. For example, if this type of catalyst carrier is impregnated with vanadyl sulfate and potassium sulfate and fired at 500°C, a phthalic anhydride catalyst can be obtained. can be manufactured.

上記した以外にも、本発明の方法で製造されるシリカ担
体は、細孔容積が大きく、粒子強度が高いことから、様
々な用途に使用できる可能性を有している。
In addition to the above, the silica carrier produced by the method of the present invention has a large pore volume and high particle strength, so it has the possibility of being used for various purposes.

[実 施 例コ 実施例1 内容積50fiのスチームジャケット付きタンクに、S
in2濃度20%のシリカゾル20kgを収め、これを
攪拌しつつ濃度63%の硝酸を加えてpHを0.75と
した後、攪拌を続けながら濃度15%のアンモニア水を
加えてpHを9.5とすることにより、シリカヒドロゲ
ルを得た。
[Example Example 1] In a steam jacketed tank with an internal volume of 50fi,
Put 20 kg of silica sol with a concentration of 20% in2 in it, add nitric acid with a concentration of 63% while stirring to bring the pH to 0.75, and then add aqueous ammonia with a concentration of 15% while stirring to bring the pH to 9.5. By doing so, a silica hydrogel was obtained.

このゲルを高速攪拌機に供給してSin、濃度16%の
シリカゲルスラリーを調製し、これを80℃に加温後、
濃度15%のアンモニア水を加えてpHを9.5に調節
し、これにSiO□濃度5%。
This gel was fed to a high-speed stirrer to prepare a silica gel slurry with a concentration of 16%, and after heating it to 80°C,
Ammonia water with a concentration of 15% was added to adjust the pH to 9.5, and to this was added a SiO□ concentration of 5%.

pH2,83のケイ酸液を18.5g/分の速度で、総
量8880g添加してスラリー(X)を得た。
A total amount of 8880 g of a silicic acid solution having a pH of 2.83 was added at a rate of 18.5 g/min to obtain a slurry (X).

前記のケイ酸液はS i O,濃度5%の水ガラスを陽
イオン交換樹脂で処理して調製したものであり、ケイ酸
液の添加に際しては、濃度15%のアンモニア水を同時
に添加すると共に、加温を継続して常時スラリーのpH
を9.5に、液温を80℃に保持した。
The silicic acid solution mentioned above was prepared by treating water glass with a concentration of 5% with a cation exchange resin, and when adding the silicic acid solution, aqueous ammonia with a concentration of 15% was added at the same time. , keep the pH of the slurry constant by continuing heating.
was maintained at 9.5 and the liquid temperature at 80°C.

上記のようにして得られたスラリー(X)を噴震乾燥し
1次いで400℃で3時間焼成してシリカ担体を製造し
た。この担体の水銀圧入法による細孔容積は1.6cc
/g、 B E T法による表面積は155rrr/g
であった。また、下記のような粒子強度評価法による粒
子強度は、 11.9であった。
The slurry (X) obtained as described above was spun-dried and then calcined at 400° C. for 3 hours to produce a silica carrier. The pore volume of this carrier by mercury intrusion method is 1.6cc.
/g, surface area by BET method is 155rrr/g
Met. Further, the particle strength according to the particle strength evaluation method described below was 11.9.

亘土伎皮■負蒸 シリカ担体を目開き44μの篩にかけて篩上の試料Lo
gを採取する。この試料を50gの水と共に100cc
のビーカーに入れて軽く攪拌した後、出力300W、 
19.5k Hzの超音波発振器の先端をビーカーに入
れ、10分間粉砕する。次いで、ビーカーの内容物を目
開き44μの篩にあけ、篩上を水で洗い、篩下金量を1
10℃で16時間乾燥する。この乾燥物を秤量し、次式
に従って粒子強度を算出した。
Wadokipi ■ Pass the negative vaporized silica carrier through a 44μ sieve and sample Lo on the sieve.
Collect g. 100cc of this sample with 50g of water
After putting it in a beaker and stirring it lightly, the output is 300W,
Place the tip of a 19.5 kHz ultrasonic oscillator in the beaker and triturate for 10 minutes. Next, pour the contents of the beaker into a 44μ sieve, wash the top of the sieve with water, and reduce the amount of gold under the sieve to 1.
Dry at 10°C for 16 hours. This dried material was weighed and the particle strength was calculated according to the following formula.

粒子強度= 廿りへ占へ−”xto。Particle strength = 廿にしえへ-”xto.

実施例2 実施例1と同様にして得られたスラリー(X)を80℃
に保持しながら、濃度63%の硝酸を加えてpHを6.
1とした。この状態で10分間攪拌した後、濃度15%
のアンモニア水をこれに加えてpHを再度9.5とした
Example 2 Slurry (X) obtained in the same manner as Example 1 was heated to 80°C.
While maintaining the pH at 6.3%, add 63% nitric acid to bring the pH to 6.
It was set to 1. After stirring in this state for 10 minutes, the concentration was 15%.
of ammonia water was added thereto to adjust the pH to 9.5 again.

このスラリーにSin、濃度5%のケイ酸液を実施例1
と同様な条件で添加した後(但し。
Example 1 Adding Sin to this slurry, silicic acid solution with a concentration of 5%
After adding under the same conditions as (however.

添加総量は2340gとした)、これを噴霧乾燥し、さ
らに400℃で3時間焼成してシリカ担体を得た。この
シリカ担体の水銀圧入法による細孔容積は2.33cc
/g、平均細孔直径は700人、表面積は161m/g
であった。また粒子強度は26.5であった・ 比較例1 実施例1と同様にして得たシリカヒドロゲルスラリーを
、液温80℃、pH9,5の条件で8時間熟成した後、
これを噴震乾燥し、さらに実施例1と同様な条件で焼成
してシリカ担体を得た。
The total amount added was 2340 g), which was spray-dried and further calcined at 400° C. for 3 hours to obtain a silica carrier. The pore volume of this silica carrier by mercury intrusion method is 2.33cc.
/g, average pore diameter is 700 people, surface area is 161m/g
Met. The particle strength was 26.5.Comparative Example 1 After aging the silica hydrogel slurry obtained in the same manner as in Example 1 for 8 hours at a liquid temperature of 80°C and a pH of 9.5,
This was spun-dried and then fired under the same conditions as in Example 1 to obtain a silica carrier.

このシリカ担体の水銀圧入法による細孔容積は0.9c
c/g、平均細孔直径は170人1表面積は122d1
gであった。また粒子強度は91.2であった。
The pore volume of this silica support by mercury intrusion method is 0.9c.
c/g, average pore diameter is 170 people 1 surface area is 122 d1
It was g. Moreover, the particle strength was 91.2.

比較例2 シリカヒドロゲルスラリーの熟成時間を8時間から10
.1時間に変更した以外は比較例1と同様にしてシリカ
担体を得た。このシリカ担体の水銀圧入法による細孔容
積は0.9cc/g、表面積は120n?/g、粒子強
度は89.5であった。
Comparative Example 2 Aging time of silica hydrogel slurry ranged from 8 hours to 10 hours
.. A silica carrier was obtained in the same manner as in Comparative Example 1 except that the time was changed to 1 hour. The pore volume of this silica carrier by mercury intrusion method is 0.9 cc/g, and the surface area is 120 n? /g, and the particle strength was 89.5.

実施例3 実施例1に於けるケイ酸液の添加総量だけを変更し、4
440gとした以外は実施例1と全く同様にしてシリカ
担体を得た。この担体の水銀圧入法による細孔容積は1
.25cc/g、平均細孔直径は190人、表面積は1
51rrr/gであった。また粒子強度は13.0であ
った。
Example 3 Only the total amount of silicic acid liquid added in Example 1 was changed, and 4
A silica carrier was obtained in exactly the same manner as in Example 1 except that the amount was changed to 440 g. The pore volume of this carrier by mercury intrusion method is 1
.. 25cc/g, average pore diameter 190, surface area 1
It was 51rrr/g. Moreover, the particle strength was 13.0.

実施例4 実施例1に於けるケイ酸液の添加速度だけを変更し、7
5g1分とした以外は実施例1と全く同様にしてシリカ
担体を得た。この担体の水銀圧入法による細孔容積は1
.52cc/g、平均細孔直径は205人、表面積は1
48rrr/gであった。また粒子強度は11.4であ
った。
Example 4 Only the addition rate of the silicic acid liquid in Example 1 was changed, and 7
A silica carrier was obtained in exactly the same manner as in Example 1, except that the amount was changed to 5 g for 1 minute. The pore volume of this carrier by mercury intrusion method is 1
.. 52cc/g, average pore diameter is 205 people, surface area is 1
It was 48rrr/g. Moreover, the particle strength was 11.4.

実施例5 実施例1に於けるケイ酸液の添加総量だけを変更し、7
2000gとした以外は実施例1と全く同様にしてシリ
カ担体を得た。この担体の水銀圧入法による細孔容積は
1.71cc/g、平均細孔直径は220人、表面積は
147rrf’/gであった。また粒子強度は2.1で
あった。
Example 5 Only the total amount of silicic acid liquid added in Example 1 was changed, and 7
A silica carrier was obtained in exactly the same manner as in Example 1 except that the amount was 2000 g. The pore volume of this carrier by mercury porosimetry was 1.71 cc/g, the average pore diameter was 220 cc/g, and the surface area was 147 rrf'/g. Moreover, the particle strength was 2.1.

実施例6 実施例1に於けるpHを8.6とした以外は実施例1と
全く同様にしてシリカ担体を得た。この担体の水銀圧入
法による細孔容積は1.55cc/g、平均細孔直径は
200人1表面積は158rrr/gであった。また粒
子強度は14.7であった。
Example 6 A silica carrier was obtained in exactly the same manner as in Example 1 except that the pH in Example 1 was changed to 8.6. The pore volume of this carrier by mercury intrusion method was 1.55 cc/g, and the average pore diameter was 158 rrr/g per 200 people. Moreover, the particle strength was 14.7.

比較例3 実施例1に於けるpHを8.6とした以外は実施例1と
全く同様にしてシリカ担体を得た。この担体の水銀圧入
法による細孔容積は0.92cc/g、平均細孔直径は
170人、表面積は150+v?/gであった。また粒
子強度は90.8であった。
Comparative Example 3 A silica carrier was obtained in exactly the same manner as in Example 1 except that the pH in Example 1 was changed to 8.6. The pore volume of this carrier by mercury intrusion method is 0.92 cc/g, the average pore diameter is 170, and the surface area is 150+v? /g. Moreover, the particle strength was 90.8.

実施例7 実施例1に於ける温度を53℃とした以外は実施例1と
全く同様にしてシリカ担体を得た。この担体の水銀圧入
法による細孔容積は1.53cc/g、平均細孔直径は
195人、表面積は153rrr/gであった。また粒
子強度は15.1であった。
Example 7 A silica carrier was obtained in exactly the same manner as in Example 1 except that the temperature in Example 1 was changed to 53°C. The pore volume of this carrier by mercury intrusion method was 1.53 cc/g, the average pore diameter was 195 mm, and the surface area was 153 rrr/g. Moreover, the particle strength was 15.1.

比較例4 実施例1に於ける温度を35℃とした以外は実施例1と
全く同様にしてシリカ担体を得た。この担体の水銀圧入
法による細孔容積はQ、87cc/g、平均細孔直径は
140人1表面積は155rrr/gであった。また粒
子強度は87.2であった。
Comparative Example 4 A silica carrier was obtained in the same manner as in Example 1 except that the temperature in Example 1 was changed to 35°C. The pore volume of this carrier measured by mercury intrusion method was Q, 87 cc/g, and the average pore diameter was 140 people/155 rrr/g. Moreover, the particle strength was 87.2.

実施例8 実施例1に於けるシリカゲルスラリーのSiO2濃度1
6%を、55%に増大させた以外は実施例1と全く同様
にしてシリカ担体を得た。この担体の水銀圧入法による
細孔容積は1.52cc/g。
Example 8 SiO2 concentration 1 of silica gel slurry in Example 1
A silica carrier was obtained in exactly the same manner as in Example 1 except that 6% was increased to 55%. The pore volume of this carrier by mercury intrusion method was 1.52 cc/g.

平均細孔直径は220人1表面積は157rrf/gで
あった。また粒子強度は12.4であった。
The average pore diameter was 220 people and the surface area was 157 rrf/g. Moreover, the particle strength was 12.4.

実施例9 スラリー(X)のpHを酸性域にシフトさせた実施例2
に於いて、ケイ酸液の添加総量を2340gから380
00gに変更した以外は実施例2と全く同様にしてシリ
カ担体を得た。この担体の水銀圧入法による細孔容積は
2.45cc/g、平均細孔直径は850人1表面積は
152n?/gであった。また粒子強度は4.6であっ
た。
Example 9 Example 2 in which the pH of slurry (X) was shifted to the acidic range
In this case, the total amount of silicic acid liquid added was changed from 2340g to 380g.
A silica carrier was obtained in exactly the same manner as in Example 2 except that the amount was changed to 00 g. The pore volume of this carrier as measured by mercury intrusion method is 2.45 cc/g, and the average pore diameter is 850 people.The surface area is 152 n? /g. Moreover, the particle strength was 4.6.

応用例 二酸化クロム1gをイオン交換水200■aに溶解し、
この溶液に実施例3で得られたシリカ担体50gを浸漬
して室温にて1時間攪拌した。次いで、このスラリーを
湯浴上で加熱し、水を除去後、120℃で10時間減圧
乾燥した。しかる後、この乾燥物を酸素気流下、800
℃で5時間焼成し、固体触媒を得た。この固体触媒はク
ロムを1%ft%含有し、このものを窒素雰囲気下、室
温にてしばらく保存した。
Application example: Dissolve 1 g of chromium dioxide in 200 μa of ion-exchanged water,
50 g of the silica carrier obtained in Example 3 was immersed in this solution and stirred at room temperature for 1 hour. Next, this slurry was heated on a hot water bath to remove water, and then dried under reduced pressure at 120° C. for 10 hours. After that, this dried product was heated under an oxygen stream for 800 min.
It was calcined at ℃ for 5 hours to obtain a solid catalyst. This solid catalyst contained 1% ft% of chromium and was stored for a while at room temperature under a nitrogen atmosphere.

次に、この固体触媒を使用して下記のような重合を行っ
た。
Next, the following polymerization was performed using this solid catalyst.

窒素置換し、攪拌機を付した内容量2Qのステンレスス
チール製オートクレーブに、IQのヘキサン、1ミリモ
ルのジエチルアルミニウムエトキシド及び上記の固体触
媒500■を加えて、80℃に加温した。エチレン分圧
が10kg/cdとなるようにエチレンをオートクレー
ブに連続的に供給し、1時間重合を行った。しかる後、
オートクレーブを開放して溶媒を除去し、重合物を乾燥
して嵩密度0.40g/dの真球状ポリエチレンを得た
IQ hexane, 1 mmol of diethylaluminum ethoxide, and 500 μm of the above solid catalyst were added to a stainless steel autoclave with an internal capacity of 2Q, which was purged with nitrogen and equipped with a stirrer, and heated to 80°C. Ethylene was continuously supplied to the autoclave so that the ethylene partial pressure was 10 kg/cd, and polymerization was carried out for 1 hour. After that,
The autoclave was opened to remove the solvent, and the polymer was dried to obtain true spherical polyethylene having a bulk density of 0.40 g/d.

[発明の効果] 本発明の方法で得られるシリカ担体は、細孔容積が1.
0〜2.5cc/g程度で、平均細孔直径が100〜1
000人の範囲にあり、しかも粒子強度が大きいため、
各種担体として極めて好適である。
[Effects of the Invention] The silica support obtained by the method of the present invention has a pore volume of 1.
Approximately 0 to 2.5 cc/g, with an average pore diameter of 100 to 1
000 people, and because the particle strength is large,
It is extremely suitable as a variety of carriers.

例えば、液体クロマトグラフの担体、蒲鉾に模様を描く
際などに使用される色素担体、香水を含有させる担体な
どとして使用できる外、濾過助剤としても有用である。
For example, it can be used as a carrier for liquid chromatography, a dye carrier used for drawing patterns on kamaboko, a carrier for containing perfume, and is also useful as a filter aid.

Claims (1)

【特許請求の範囲】 1、SiO_2濃度が1〜60wt%の範囲にあるシリ
カゲルスラリーに、アルカリ水溶液を添加してスラリー
のpHを8.5以上に保持しつつ、液温を50℃以上に
保持しながら、1分間当りのケイ酸液の添加量がSiO
_2量に換算して、前記シリカゲルスラリーに含まれる
SiO_2量の1/1000以下になる添加速度で、且
つケイ酸液の添加総量がSiO_2量に換算して、前記
シリカゲルスラリーに含まれるSiO_2量の50wt
%を越えない範囲内で、ケイ酸液を前記のシリカゲルス
ラリーに添加し、次いでこの混合スラリーを乾燥して焼
成することからなる多孔性シリカ担体の製造法。 2、ケイ酸液の濃度がSiO_2として8wt%以下で
ある特許請求の範囲第1項記載の方法。 3、SiO_2濃度が1〜60wt%の範囲にあるシリ
カゲルスラリーに、アルカリ水溶液を添加してスラリー
のpHを8.5以上に保持しつつ、液温を50℃以上に
保持しながら、1分間当りのケイ酸液の添加量がSiO
_2量に換算して、前記シリカゲルスラリーに含まれる
SiO_2量の1/1000以下になる添加速度で、且
つケイ酸液の添加総量がSiO_2量に換算して、前記
シリカゲルスラリーに含まれるSiO_2量の50wt
%を越えない範囲内で、ケイ酸液を前記のシリカゲルス
ラリーに添加し、次いで(a)ケイ酸液が添加されたシ
リカゲルスラリーに酸を加えてpHを7以下に低下 させる操作、 (b)操作(a)の後、アルカリ水溶液を添加してスラ
リーのpHを8.5以上に保持 しつつ、液温を50℃以上に保持しなが ら、1分間当りのケイ酸液の添加量が SiO_2量に換算して、前記ケイ酸液 が添加されたシリカゲルスラリーに含 まれる総SiO_2量の1/1000以下になる添加速
度で、且つケイ酸液の添加総 量がSiO_2量に換算して、前記ケイ 酸液が添加されたシリカゲルスラリー に含まれる総SiO_2量の50wt%を越えない範囲
内で、ケイ酸液をシリカゲ ルスラリーに添加する操作、 を1回又は複数回繰り返し、得られた混合スラリーを乾
燥して焼成することからなる多孔性シリカ担体の製造法
。 4、ケイ酸液の濃度がSiO_2として8wt%以下で
ある特許請求の範囲第3項記載の方法。
[Claims] 1. Adding an alkaline aqueous solution to a silica gel slurry with a SiO_2 concentration in the range of 1 to 60 wt% to maintain the pH of the slurry at 8.5 or higher and the liquid temperature at 50°C or higher. While the amount of silicic acid solution added per minute is
The addition rate is such that the amount of SiO_2 contained in the silica gel slurry is 1/1000 or less in terms of the amount of SiO_2 contained in the silica gel slurry, and the total amount of silicic acid liquid added is 50wt
A method for producing a porous silica carrier, which comprises adding silicic acid liquid to the silica gel slurry in an amount not exceeding %, and then drying and calcining the mixed slurry. 2. The method according to claim 1, wherein the concentration of the silicic acid solution is 8 wt% or less as SiO_2. 3. Add an alkaline aqueous solution to a silica gel slurry with a SiO_2 concentration in the range of 1 to 60 wt% to maintain the pH of the slurry at 8.5 or higher and the liquid temperature at 50°C or higher for 1 minute. The amount of silicic acid added is SiO
The addition rate is such that the amount of SiO_2 contained in the silica gel slurry is 1/1000 or less in terms of the amount of SiO_2 contained in the silica gel slurry, and the total amount of silicic acid liquid added is 50wt
Adding a silicic acid liquid to the silica gel slurry within a range not exceeding %, and then (a) adding an acid to the silica gel slurry to which the silicic acid liquid has been added to lower the pH to 7 or less, (b) After operation (a), add an alkaline aqueous solution to maintain the pH of the slurry at 8.5 or higher, maintain the liquid temperature at 50°C or higher, and increase the amount of silicic acid solution added per minute by SiO_2 amount. The silicic acid is added at a rate that is 1/1000 or less of the total amount of SiO_2 contained in the silica gel slurry to which the silicic acid liquid is added, and the total amount of the silicic acid liquid is converted to the amount of SiO_2. The operation of adding a silicic acid solution to a silica gel slurry within a range not exceeding 50 wt% of the total amount of SiO_2 contained in the silica gel slurry to which the solution has been added is repeated one or more times, and the resulting mixed slurry is dried. A method for producing a porous silica carrier, which comprises firing the porous silica carrier. 4. The method according to claim 3, wherein the concentration of the silicic acid solution is 8 wt% or less as SiO_2.
JP61093660A 1986-04-23 1986-04-23 Method for producing porous silica carrier Expired - Fee Related JPH0631173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61093660A JPH0631173B2 (en) 1986-04-23 1986-04-23 Method for producing porous silica carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61093660A JPH0631173B2 (en) 1986-04-23 1986-04-23 Method for producing porous silica carrier

Publications (2)

Publication Number Publication Date
JPS62252378A true JPS62252378A (en) 1987-11-04
JPH0631173B2 JPH0631173B2 (en) 1994-04-27

Family

ID=14088545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61093660A Expired - Fee Related JPH0631173B2 (en) 1986-04-23 1986-04-23 Method for producing porous silica carrier

Country Status (1)

Country Link
JP (1) JPH0631173B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049839A1 (en) 2017-09-05 2019-03-14 Showa Denko K.K. Method for producing silica carrier, and silica carrier
US10919836B2 (en) 2017-09-05 2021-02-16 Showa Denko K.K. Production method of aliphatic carboxylic acid ester

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5085608A (en) * 1973-11-30 1975-07-10

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5085608A (en) * 1973-11-30 1975-07-10

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049839A1 (en) 2017-09-05 2019-03-14 Showa Denko K.K. Method for producing silica carrier, and silica carrier
US10919836B2 (en) 2017-09-05 2021-02-16 Showa Denko K.K. Production method of aliphatic carboxylic acid ester
US11890592B2 (en) 2017-09-05 2024-02-06 Resonac Corporation Method for producing silica carrier, and silica carrier

Also Published As

Publication number Publication date
JPH0631173B2 (en) 1994-04-27

Similar Documents

Publication Publication Date Title
US4248852A (en) Process for the production of alumina suitable for use as a catalyst carrier
US4640807A (en) Process for the preparation of silica spheres
JP3200623B2 (en) Method for producing hollow spherical silicate cluster
TW513384B (en) Granulates which contain titanium silicalite-1
RU1771427C (en) Method for production of aluminosilicate carrier
US4619908A (en) Non-aged inorganic oxide-containing aerogels and their preparation
US3520654A (en) Process for the preparation of low density alumina gel
US4499197A (en) Co-gel catalyst manufacture
US5589150A (en) Method for preparing spherular silica gel particles
JPS62275022A (en) Ceric oxide with novel morphologic characteristics and manufacture
EP0149816A1 (en) Inorganic oxide aerogels and their preparation
JPH0930809A (en) Production of silica gel
US6251823B1 (en) Production of spherical catalyst carrier
US3948807A (en) Oxide catalysts and process for preparation thereof
CA1243010A (en) Zirconia-titania-silica tergels and their use as catalyst supports
JPS62252378A (en) Manufacture of porous silica carrier
US3974101A (en) Olefin polymerization catalyst
JPS62182116A (en) Production of antimony pentoxide sol
US3520824A (en) Method of preparing silica-alumina hydrosols
US3993589A (en) Preparation of spheroidal silico-alumina particles
JPH07138015A (en) Silica fine spherical particle and its production
JPS629532B2 (en)
SU865792A1 (en) Method of producing spherical silicagel
JPS5969424A (en) Manufacture of alumina having low bulk density
JP2729521B2 (en) Method for producing silica gel

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees