JPH0930809A - Production of silica gel - Google Patents

Production of silica gel

Info

Publication number
JPH0930809A
JPH0930809A JP18517195A JP18517195A JPH0930809A JP H0930809 A JPH0930809 A JP H0930809A JP 18517195 A JP18517195 A JP 18517195A JP 18517195 A JP18517195 A JP 18517195A JP H0930809 A JPH0930809 A JP H0930809A
Authority
JP
Japan
Prior art keywords
silica gel
drying
silica
hydrogel
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18517195A
Other languages
Japanese (ja)
Other versions
JP3719687B2 (en
Inventor
Kazuhiro Takasuga
和宏 高菅
Tadayuki Akasaki
忠行 赤崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Silica Corp
Original Assignee
Nippon Silica Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Silica Industrial Co Ltd filed Critical Nippon Silica Industrial Co Ltd
Priority to JP18517195A priority Critical patent/JP3719687B2/en
Publication of JPH0930809A publication Critical patent/JPH0930809A/en
Application granted granted Critical
Publication of JP3719687B2 publication Critical patent/JP3719687B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing silica gel sharp in fine pore diameters, capable of controlling the BET specific surface area, fine pore volume and average fine pore diameter of the silica gel to desired ranges, respectively. SOLUTION: This method for producing silica gel comprises drying silica hydrogel. Therein, the drying of the silica hydrogel is performed by a batch type fluidized drying method. The water content of the dried silica hydrogel is preferably 50-80wt.%. The batch type fluidized drying method is preferably performed in an exhaust gas temperature ranging from 20 to 150 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、乾燥法に特徴があ
る、シリカヒドロゲルからシリカゲルを製造する方法に
関する。本発明の方法によれば、所望の細孔容量と平均
細孔径を有し、かつシャープな細孔分布を示すシリカゲ
ルを効率良く製造することができる。
TECHNICAL FIELD The present invention relates to a method for producing silica gel from silica hydrogel, which is characterized by a drying method. According to the method of the present invention, silica gel having a desired pore volume and an average pore diameter and exhibiting a sharp pore distribution can be efficiently produced.

【0002】[0002]

【従来の技術】シリカはアルカリ金属珪酸塩水溶液と鉱
酸の中和反応によって製造することができ、その製造方
法は湿式法と呼ばれている。さらに、湿式法は、前記中
和反応を中性またはアルカリ性で行い、比較的濾過し易
い沈澱ケイ酸を得る沈澱法と、酸性で行い、ゲル状のケ
イ酸を得るゲル法とに分類される。沈澱法シリカの製造
方法は、例えば、特公昭39−1207号に開示されて
いる。この方法によれば、上記中和反応によって構造性
を有するように一次粒子を成長させ、得られた沈澱ケイ
酸を、水洗し、乾燥し、粉砕することにより、沈澱法シ
リカが得られる。沈澱法シリカは主として汎用のゴム補
強剤、農薬の担体、塗料の艶消し剤、粘度調整剤として
使用されている。
2. Description of the Related Art Silica can be produced by a neutralization reaction between an aqueous solution of an alkali metal silicate and a mineral acid, and its production method is called a wet method. Further, the wet method is classified into a precipitation method in which the neutralization reaction is carried out in neutral or alkaline to obtain precipitated silica which is relatively easy to filter, and a gel method in which acidic silica is obtained to obtain gel silicic acid. . A method for producing precipitated silica is disclosed in, for example, Japanese Patent Publication No. 39-1207. According to this method, the precipitated silica is obtained by growing the primary particles so as to have a structure by the above neutralization reaction, washing the obtained precipitated silicic acid with water, drying and pulverizing. Precipitated silica is mainly used as a general-purpose rubber reinforcing agent, pesticide carrier, paint delusterant, and viscosity modifier.

【0003】ゲル法シリカの製造方法は、例えば、US
P2,466,842号に開示されている。この方法に
よれば、上記中和反応を酸性側で行い、得られたゲル法
ヒドロゲル(以下、シリカヒドロゲルという)を、水洗
し、乾燥し、粉砕してゲル法シリカ(以下、シリカゲル
ともいう)が得られる。ゲル法シリカは、沈澱法シリカ
に比べて一般に構造性が高く、高シェアー下においても
その構造性を保つ。さらにゲル法シリカは、表面に多く
の細孔が存在するため、合成皮革、プラスチック等のコ
ーティングの分野、ビール濾過剤、樹脂フィルムのアン
チブロッキング剤、吸着剤、分離剤、及び触媒として使
用される。
A method for producing gel silica is disclosed in, for example, US
No. 2,466,842. According to this method, the neutralization reaction is carried out on the acidic side, and the obtained gel method hydrogel (hereinafter referred to as silica hydrogel) is washed with water, dried and pulverized to obtain gel method silica (hereinafter also referred to as silica gel). Is obtained. The gel method silica generally has a higher structural property than the precipitation method silica, and maintains the structural property even under a high shear. Furthermore, since gel-type silica has many pores on the surface, it is used as a coating field for synthetic leather, plastics, etc., as a beer filter, an anti-blocking agent for resin films, an adsorbent, a separating agent, and a catalyst. .

【0004】シリカゲルの物性の中では、BET比表面
積、細孔容積、平均細孔径および細孔径分布が重要であ
る。シリカゲルの上記物性は、用途により、必要とされ
る範囲が異なる。例えば、ビール濾過剤として使用され
る場合、BET比表面積が100〜1100m2/g、細孔
容積が0.2〜2.5ml/g及び平均細孔径が30〜20
0Åの範囲であることが好ましい。さらに、シリカゲル
の細孔径は、分布がシャープであることが、例えば、ビ
ール濾過剤、吸着剤、分離剤及び触媒等として使用する
場合、吸着や反応の選択性が高くなるという観点から好
ましい。
Among the physical properties of silica gel, BET specific surface area, pore volume, average pore diameter and pore diameter distribution are important. Regarding the above-mentioned physical properties of silica gel, the required range varies depending on the application. For example, when used as a beer filtering agent, the BET specific surface area is 100 to 1100 m 2 / g, the pore volume is 0.2 to 2.5 ml / g, and the average pore diameter is 30 to 20.
It is preferably in the range of 0 °. Further, it is preferable that the pore size of silica gel has a sharp distribution, for example, when it is used as a beer filtering agent, an adsorbent, a separating agent, a catalyst, etc., from the viewpoint of high selectivity of adsorption and reaction.

【0005】これらの物性は、反応条件、水洗条件、水
熱処理条件、及び乾燥条件を変化させることにより多少
変動することが知られている。ゲル法シリカは、一般的
に200〜800m2 /gの範囲のBET比表面積を有
する。所定のBET比表面積を有するシリカゲルを得よ
うとすると、BET比表面積と独立に細孔容積、平均細
孔径及び細孔分布を制御することは極めて難しい。ま
た、仮に細孔容積、平均細孔径が制御できても、通常得
られる細孔径分布はブロードであり、均一な細孔径とす
ることは不可能である。即ち、各物性が所望の値である
シリカゲルを得ることは、工業的には非常に難しかっ
た。
It is known that these physical properties are somewhat changed by changing reaction conditions, washing conditions, hydrothermal treatment conditions, and drying conditions. Gel-method silica generally has a BET specific surface area in the range of 200 to 800 m 2 / g. When trying to obtain silica gel having a predetermined BET specific surface area, it is extremely difficult to control the pore volume, average pore diameter and pore distribution independently of the BET specific surface area. Further, even if the pore volume and the average pore diameter can be controlled, the pore diameter distribution normally obtained is broad and it is impossible to make the pore diameter uniform. That is, it was very difficult industrially to obtain silica gel having the desired physical properties.

【0006】例えば、BET比表面積は、シリカゲルの
製造の際のシリカヒドロゲルの水熱処理の温度やpHを
変えることによりある程度変化させることができる。ま
た、細孔容積及び平均細孔径は、シリカヒドロゲルの乾
燥条件を変化させることで多少は変化させることができ
る。しかし、水熱処理条件や乾燥条件を変化させること
で、変動させることができるBET比表面積、細孔容積
及び平均細孔径の範囲は非常に狭く、所望の物性を有す
るシリカゲルを容易に得るというには程遠いものであっ
だ。
For example, the BET specific surface area can be changed to some extent by changing the temperature or pH of hydrothermal treatment of silica hydrogel during the production of silica gel. Further, the pore volume and the average pore diameter can be changed to some extent by changing the drying conditions of the silica hydrogel. However, the range of BET specific surface area, pore volume and average pore diameter that can be varied by changing hydrothermal treatment conditions and drying conditions is very narrow, and it is easy to obtain silica gel having desired physical properties. It's far from it.

【0007】さらに、上記のようにシリカヒドロゲルの
乾燥条件を変化させることで、細孔径分布もある程度変
化させることはできる。しかし、これまでの方法で得ら
れるシリカゲルの細孔径分布はシャープであるとは言え
ない。例えば、これまでの方法で得られるシリカゲルに
おいては、細孔径分布を示すピークのメジアン径をA、
半値幅をBとすると、B/Aが0.6以上であった。そ
れに対して、より高い吸着選択性や反応選択性を得ると
いう観点からは、上記B/Aは0.6未満、好ましくは
0.5以下である。
Further, the pore size distribution can be changed to some extent by changing the drying conditions of the silica hydrogel as described above. However, it cannot be said that the pore size distribution of silica gel obtained by the conventional methods is sharp. For example, in the silica gel obtained by the conventional methods, the median diameter of the peak showing the pore size distribution is A,
When the half-width was B, B / A was 0.6 or more. On the other hand, from the viewpoint of obtaining higher adsorption selectivity and reaction selectivity, the above B / A is less than 0.6, preferably 0.5 or less.

【0008】例えば、特開昭44−23011号には、
シリカヒドロゲルを有機酸で処理し、500〜600℃
で焼成して過剰の有機酸を除去する方法が開示されてい
る。この方法によれば、非常に大きい細孔を有するシリ
カゲルを得ることができる。しかし、有機酸と水を置換
する工程が必要であることから、経済性および安全性の
点から好ましくない。また、特開昭58−135119
号には、熱風乾燥機により約130℃で10〜24時間
乾燥する方法が開示されている。この方法では、均一な
所望の細孔分布を有するシリカゲルを得ることができな
いばかりか、乾燥時間が長時間であり、生産性が悪く好
ましくない。
For example, JP-A-44-23011 discloses that
Silica hydrogel is treated with organic acid, 500 ~ 600 ℃
Discloses a method of baking to remove excess organic acid. According to this method, silica gel having extremely large pores can be obtained. However, since a step of substituting the organic acid with water is required, it is not preferable in terms of economy and safety. Also, JP-A-58-135119
Japanese Patent Publication No. 1994-242242 discloses a method of drying with a hot air dryer at about 130 ° C. for 10 to 24 hours. This method is not preferable because not only silica gel having a uniform desired pore distribution cannot be obtained, but also the drying time is long and the productivity is poor.

【0009】[0009]

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

【0010】本発明の目的は、BET比表面積、細孔容
積及び平均細孔径を所望の範囲に変化制御させることが
できるシリカゲルの製造方法であって、細孔径分布がシ
ャープなシリカゲルを得ることができる製造方法を提供
することにある。
An object of the present invention is a method for producing silica gel in which the BET specific surface area, pore volume and average pore diameter can be controlled to be changed within desired ranges, and silica gel having a sharp pore diameter distribution can be obtained. An object of the present invention is to provide a possible manufacturing method.

【0011】本発明者らは、シリカゲルの製造において
乾燥工程が、単に水分を除去するものでなく、生成物で
あるシリカゲルの細孔に関する物性を決める重要な工程
であるとの認識のもと、乾燥法および乾燥条件について
種々探索した。その結果、特定の方法を採用する事によ
り、細孔径分布のピークがシャープなシリカゲルを製造
でき、かつ得られるシリカゲルのBET比表面積、細孔
容積、平均細孔径を任意にコントロールすることができ
ることを見出して本発明を完成させた。
The present inventors have recognized that in the production of silica gel, the drying step is an important step for determining the physical properties of the product silica gel pores, not simply removing water. Various searches were conducted for drying methods and conditions. As a result, by adopting a specific method, it is possible to produce silica gel having a sharp peak of pore size distribution, and it is possible to arbitrarily control the BET specific surface area, pore volume, and average pore diameter of the resulting silica gel. Found and completed the present invention.

【0012】[0012]

【課題を解決するための手段】本発明は、シリカヒドロ
ゲルを乾燥してシリカゲルを製造する方法であって、前
記シリカヒドロゲルの乾燥をバッチ式流動乾燥により行
うことを特徴とするシリカゲルの製造方法に関する。以
下、本発明を詳細に説明する。
SUMMARY OF THE INVENTION The present invention relates to a method for producing silica gel by drying silica hydrogel, which is characterized in that the silica hydrogel is dried by batch type fluidized drying. . Hereinafter, the present invention will be described in detail.

【0013】本発明の製造方法において、乾燥の対象で
あるゲル法ヒドロゲルには特に制限はない。例えば、公
知の方法により得られるゲル法ヒドロゲルをそのまま使
用することができる。例えば、SiO2 25wt%、モル
比3.3のケイ酸ナトリウム水溶液と、42wt%H2
4 とを、混合ノズルを用いてpH0.5〜2.0、温
度60℃以下の条件で混合することでシリカヒドロゾル
を得、そのゲル化によりシリカヒドロゲルを調製する方
法を挙げることができる。ゾルのゲル化は混合開始から
10分以内に生ずる。また別に同時滴下法によっても上
記シリカヒドロゲルを調製することもでき、例えば、バ
ッチ反応槽において上記ケイ酸ナトリウムとH2 SO4
をpH0.5〜2.0の条件で同時滴下しながら調製で
きる。
In the production method of the present invention, the gel method hydrogel to be dried is not particularly limited. For example, a gel method hydrogel obtained by a known method can be used as it is. For example, 25 wt% SiO 2 and a sodium silicate aqueous solution having a molar ratio of 3.3, and 42 wt% H 2 S
A method of preparing a silica hydrogel by mixing O 4 with a pH of 0.5 to 2.0 and a temperature of 60 ° C. or less by using a mixing nozzle to prepare a silica hydrogel can be mentioned. . Gelation of the sol occurs within 10 minutes of starting mixing. Alternatively, the silica hydrogel can be prepared by the simultaneous dropping method, for example, the sodium silicate and H 2 SO 4 in a batch reaction tank.
Can be prepared by simultaneous dropwise addition under the conditions of pH 0.5 to 2.0.

【0014】これらのシリカヒドロゲルの調製方法にお
いては、ケイ酸ナトリウムのSiO2 濃度は好ましくは
10〜29wt%、H2 SO4 濃度は好ましくは35〜4
5wt%の範囲とすることが適当でる。上記濃度を越える
と反応中の溶液の粘度が上昇して操作が難しくなる傾向
があり、また、上記濃度より低いと、反応中のゲル化を
コントロールすることが難しくなる傾向がある。
In these silica hydrogel preparation methods, the SiO 2 concentration of sodium silicate is preferably 10 to 29 wt%, and the H 2 SO 4 concentration is preferably 35 to 4 %.
A range of 5 wt% is suitable. When the concentration is higher than the above range, the viscosity of the solution during the reaction tends to increase and the operation tends to be difficult, and when the concentration is lower than the above range, it tends to be difficult to control gelation during the reaction.

【0015】また、これらの反応法のいずれの場合も、
反応時のpHは0.5〜2.0とする事が好ましい。p
Hが2.0を越えるとゲル化が早く、ハンドリングが難
しくなるばかりか、品質の制御も難しくなる。また、p
Hが0.5よりも低すぎると水洗、水熱処理工程におい
て多量のアルカリを必要とし好ましくない。反応温度は
好ましくは、10〜70℃、より好ましくは30〜60
℃とすることが良い。温度が70℃より高くなると細孔
分布に影響がでるので好ましくはなく、また、温度が1
0℃より低くなるとゲル化時間が長くなり好ましくな
い。
Further, in any of these reaction methods,
The pH during the reaction is preferably 0.5 to 2.0. p
When H exceeds 2.0, gelation is quick and not only handling becomes difficult, but also quality control becomes difficult. Also, p
If H is lower than 0.5, a large amount of alkali is required in the washing and hydrothermal treatment steps, which is not preferable. The reaction temperature is preferably 10 to 70 ° C, more preferably 30 to 60 ° C.
It is good to set it to ℃. When the temperature is higher than 70 ° C, the pore distribution is affected, which is not preferable, and when the temperature is 1
When the temperature is lower than 0 ° C, gelation time becomes long, which is not preferable.

【0016】上記のようにして得られたシカヒドロゲル
は、副生塩を除去する為に水洗された後、本発明の上述
した乾燥を行う。なお、この水洗に先立ってシリカヒド
ロゲルを効率的な水洗を行うために粗砕されることが好
ましい。粗砕の程度は大きすぎると水洗に時間を要し、
小さすぎると通液しにくいため、1〜30mmとするの
が良い。
The deer hydrogel obtained as described above is washed with water to remove by-product salts, and then dried according to the present invention. In addition, prior to this washing with water, it is preferable that the silica hydrogel be roughly crushed in order to perform washing with water efficiently. If the degree of crushing is too large, it will take time to wash with water,
If it is too small, it is difficult to pass the liquid, so it is preferable to set it to 1 to 30 mm.

【0017】シリカヒドロゲルの調製においては、以上
の粗砕、水洗に加えて、必要であれば、水酸ナトリウム
やアンモニアの水溶液を水洗液に添加して比表面積をコ
ントロールする為の水熱処理を行うこともできる。水熱
処理を行う場合には、処理温度を30〜95℃、好まし
くは70〜95℃で行うことが良い。この温度より低い
と比表面積を低くするのに長時間を要するため好ましく
はない。またpHは好ましくは7〜11、より好ましく
は8〜11である。この範囲より高いと水熱処理後製品
pHのコントロールが難しくなり好ましくない。また、
範囲より低いとBET比表面積を低くするのに長時間を
要するため好ましくない。本発明のシリカゲルの製造方
法において、得られるシリカゲルのBET比表面積は、
乾燥条件よりも、乾燥に供されるシリカヒドロゲルの物
性の違いによる変動幅が大きい。従って、所望のシリカ
ゲルが得られるように予め乾燥に供されるシリカヒドロ
ゲルの物性をコントロールすることが好ましい。
In the preparation of silica hydrogel, in addition to the above crushing and washing with water, if necessary, an aqueous solution of sodium hydroxide or ammonia is added to the washing liquid to carry out hydrothermal treatment for controlling the specific surface area. You can also When the hydrothermal treatment is performed, the treatment temperature is 30 to 95 ° C, preferably 70 to 95 ° C. If the temperature is lower than this temperature, it takes a long time to reduce the specific surface area, which is not preferable. The pH is preferably 7-11, more preferably 8-11. If it is higher than this range, it is difficult to control the product pH after hydrothermal treatment, which is not preferable. Also,
When it is lower than the range, it takes a long time to reduce the BET specific surface area, which is not preferable. In the method for producing silica gel of the present invention, the BET specific surface area of the obtained silica gel is
The fluctuation range due to the difference in the physical properties of the silica hydrogel to be dried is larger than that under the drying conditions. Therefore, it is preferable to control the physical properties of the silica hydrogel that has been previously dried so as to obtain the desired silica gel.

【0018】以上の粗砕、水洗、更に必要に応じて水熱
処理して調製したシカヒドロゲルはバッチ式流動乾燥に
供される。本発明においては、流動乾燥はバッチ式で行
う。バッチ式で行うことにより細孔径分布のピークがシ
ャープなシリカゲルを得ることができる。連続式の流動
乾燥では、滞留時間に幅ができ、そき結果、細孔径分布
にもブロードになる傾向がある。
The deer hydrogel prepared by the above-mentioned crushing, washing with water and, if necessary, hydrothermal treatment is subjected to batch type fluidized drying. In the present invention, fluidized drying is performed in a batch system. By carrying out the batch method, silica gel having a sharp peak of pore size distribution can be obtained. In continuous fluidized drying, the residence time has a wide range, and as a result, the pore size distribution tends to be broad.

【0019】流動乾燥は、気−固系の流動層を用いた乾
燥方法であり、粉粒体層の下から熱風を送り、粉粒体を
浮遊懸濁状態にして、粉粒体中の水分を蒸発分離させる
方法である。流動乾燥は、熱風と粉粒体との混合が非常
に良く、有効接触面積も大きい為、小型の装置を用いて
も装置容量当たりの処理量が大きく、粉粒体の層内での
混合が完全に近い為に、層全体を均一な温度および水分
に制御できるという特徴がある。本発明の流動乾燥は、
市販の流動乾燥機を用いて行うことができる。さらに本
発明の方法では、シリカヒドロゲルは常に流動しながら
乾燥される。流動しながら乾燥されことで、比較的短い
乾燥時間で均一な乾燥を行うことができる。
Fluidized drying is a drying method using a gas-solid type fluidized bed. Hot air is blown from below the granular material layer to bring the granular material into a suspended suspension state so that the water content in the granular material is increased. Is a method of evaporating and separating. In fluidized drying, the mixing of hot air and powder is very good and the effective contact area is large, so even if a small device is used, the processing amount per device capacity is large, and the mixing of powder in the layer is difficult. Since it is almost perfect, it is characterized in that the temperature and moisture of the entire layer can be controlled to be uniform. Fluidized drying of the present invention,
It can be performed using a commercially available fluid dryer. Furthermore, in the method of the present invention, the silica hydrogel is dried with constant flow. By drying while flowing, uniform drying can be performed in a relatively short drying time.

【0020】流動乾燥を行うに当たり、排気温度は物性
をコントロールする上で非常に重要である。排気温度は
20〜150℃の範囲とすることが適当である。好まし
くは、50〜120℃の範囲である。この範囲で乾燥を
行うことにより、様々な細孔にコントロールできる。例
えば、排気温度を低くすると、細孔は大きいまま保持さ
れ、細孔容積および平均細孔径は非常に大きくなる。ま
た、排気温度を高くすると、細孔は、水の表面張力によ
り収縮し、細孔容積および平均細孔径は小さくなる。
In carrying out fluidized drying, the exhaust temperature is very important for controlling the physical properties. The exhaust temperature is suitably in the range of 20 to 150 ° C. Preferably, it is in the range of 50 to 120 ° C. By drying within this range, various pores can be controlled. For example, when the exhaust temperature is lowered, the pores are kept large, and the pore volume and average pore diameter become very large. Further, when the exhaust temperature is raised, the pores contract due to the surface tension of water, and the pore volume and average pore diameter decrease.

【0021】排気温度が上記範囲より低いと乾燥時間が
非常に長くなり実用的には好ましくない。また、上記範
囲より高くなると、細孔容積及び平均細孔径をより小さ
くすることはできるが、流動乾燥機に吹き込む熱風温度
を非常に高く維持することが必要となることから、乾燥
コストが高くなる。流動乾燥に使用する流体は、例え
ば、圧縮空気、加熱空気、加熱蒸気、不活性ガス等を挙
げることができる。但し、これらに限定されるものでは
ない。
If the exhaust temperature is lower than the above range, the drying time becomes very long, which is not preferable in practice. Further, if it is higher than the above range, it is possible to further reduce the pore volume and the average pore diameter, but it is necessary to maintain the temperature of the hot air blown into the fluidized dryer to be extremely high, so that the drying cost is increased. . The fluid used for fluidized drying may include, for example, compressed air, heated air, heated steam, inert gas and the like. However, it is not limited to these.

【0022】乾燥時間は、シリカゲルの水分含有量が所
定の範囲になるように適宜選ぶことができる。シリカゲ
ルの水分含有量が所定の値になるまでの時間は、流動乾
燥機内に仕込むシリカヒドロゲルの量と流動乾燥機に供
給される流体の温度および流量により変化する。従っ
て、これらの条件を適宜変化させて、乾燥時間を1〜2
00分間の範囲とすることが適当である。好ましくは、
2〜150分間である。この範囲より長いと乾燥コスト
が高くなる。
The drying time can be appropriately selected so that the water content of silica gel falls within a predetermined range. The time until the water content of silica gel reaches a predetermined value varies depending on the amount of silica hydrogel charged in the fluidized dryer and the temperature and flow rate of the fluid supplied to the fluidized dryer. Therefore, by appropriately changing these conditions, the drying time can be 1-2.
It is appropriate that the range is 00 minutes. Preferably,
2 to 150 minutes. If it is longer than this range, the drying cost will be high.

【0023】流動乾燥に供されるシリカヒドロゲルの水
分は、例えば、50〜80wt%の範囲とすることが、細
孔容量と平均細孔径の大きいシリカゲルを得られるとう
い観点から好ましい。水分量が多ければそれだけ細孔容
量は大きくなる傾向がある。但し、乾燥効率等も考慮す
ると、より好ましくは、60〜75wt%の範囲である。
シリカヒドロゲルは水洗後、通常は60〜75wt%の水
分を保有している。従って、所望の水分量とするための
調整を行うこともできる。
The water content of the silica hydrogel subjected to fluidized drying is preferably in the range of, for example, 50 to 80 wt% from the viewpoint of obtaining silica gel having a large pore volume and a large average pore diameter. The larger the water content, the larger the pore volume tends to be. However, considering the drying efficiency and the like, the range is more preferably 60 to 75 wt%.
After washing with water, silica hydrogel usually has a water content of 60 to 75 wt%. Therefore, it is possible to make an adjustment to obtain a desired water content.

【0024】流動乾燥に供されるシリカヒドロゲルの平
均粒径は、乾燥速度のコントロール容易であり、かつ均
一な乾燥ができるという観点から、例えば、1〜30m
mの範囲であることが好ましい。より好ましくは、1〜
20mmの範囲である。シリカヒドロゲルの平均粒径が
小さ過ぎると乾燥速度のコントロールが難しくなり、大
き過ぎると乾燥ムラができ易い。
The average particle size of the silica hydrogel used for fluidized drying is, for example, 1 to 30 m from the viewpoint that the drying rate can be easily controlled and uniform drying can be performed.
It is preferably in the range of m. More preferably, 1 to
It is in the range of 20 mm. If the average particle size of the silica hydrogel is too small, it will be difficult to control the drying rate, and if it is too large, uneven drying will occur easily.

【0025】シリカヒドロゲルは、コロイド粒子三次元
網目構造の空間(即ち細孔容積)が、完全に水により満
たされていて乾燥による脱水の進行に伴って、その空
間、即ち細孔容積が収縮(減少)していく。この現象
は、水の蒸発の際の気液界面での表面張力に基づく収縮
力によりコロイド粒子の充填状態が変化するために生じ
るものである。よってこの乾燥により収縮する度合はコ
ロイド粒子三次元網目構造の構造力と表面張力に基づく
収縮力のバランスによる。即ちバッチ式流動乾燥による
排気温度、及び乾燥時間を制御する事によりこのバラン
スをコントロールし、様々な細孔容積及び平均細孔径を
もつ製品を効率良く製造できるのである。
In the silica hydrogel, the space (that is, the pore volume) of the three-dimensional network structure of colloidal particles is completely filled with water, and the space, that is, the pore volume shrinks as the dehydration by drying progresses ( Decrease). This phenomenon occurs because the packed state of the colloidal particles changes due to the contracting force based on the surface tension at the gas-liquid interface during the evaporation of water. Therefore, the degree of contraction due to this drying depends on the balance between the structural force of the three-dimensional network structure of colloidal particles and the contractive force based on the surface tension. That is, this balance can be controlled by controlling the exhaust temperature and the drying time by batch type fluidized drying, and products having various pore volumes and average pore diameters can be efficiently produced.

【0026】粒状材料の乾燥に用いられる乾燥装置とし
て一般工業的には、気流乾燥機、通気バンド乾燥機、タ
ーボ堅型乾燥機、流動乾燥機等が用いられる。気流乾燥
機は、処理能力は非常に大きく設備費も安価であるが、
熱効率が悪く、通気バンド乾燥機及びターボ堅型乾燥機
は、処理能力は非常に大きいが設備費が高く熱効率も悪
いと言う問題点がある。更に均一な所望の細孔容積及び
平均細孔径を有するシリカゲルを得ることができないと
いった問題を招いてしまう。それに対して、本発明では
バッチ式流動乾燥を行うことで、以下のような効果を有
する。
As a drying device used for drying the granular material, an airflow dryer, an aeration band dryer, a turbo type dryer, a fluidized dryer and the like are generally used industrially. A flash dryer has a very large processing capacity and a low equipment cost.
The thermal efficiency is poor, and the ventilation band dryer and the turbo-type dryer have a problem that the processing capacity is very large, but the equipment cost is high and the thermal efficiency is poor. Further, there arises a problem that silica gel having a uniform and desired pore volume and average pore diameter cannot be obtained. On the other hand, the present invention has the following effects by performing the batch type fluidized drying.

【0027】[0027]

【発明の効果】本発明によれば、BET比表面積、細孔
容積及び平均細孔径を所望の範囲に変化制御させること
ができるシリカゲルの製造方法であって、細孔径分布が
シャープなシリカゲルを得ることができる製造方法を提
供することができる。即ち、本発明の製造方法によれ
ば、B/Aが0.6未満、好ましくは0.5以下の細孔
径分布がシャープなシリカゲルを得ることができる。
EFFECTS OF THE INVENTION According to the present invention, a method for producing silica gel in which the BET specific surface area, pore volume and average pore diameter can be controlled to be changed within desired ranges, and silica gel having a sharp pore diameter distribution is obtained. It is possible to provide a manufacturing method capable of performing the above. That is, according to the production method of the present invention, it is possible to obtain a silica gel having a sharp pore size distribution with B / A of less than 0.6, preferably 0.5 or less.

【0028】[0028]

【実施例】以下、本発明を具体的に実施例で説明する
が、本発明はこれらの実施例に限定されるものではな
い。実施例において用いた各種試験方法を以下に記す。 (A)BET比表面積 島津製作所製ASAP−2400を用いて、窒素の吸脱
着等温線を測定した後、S.Brunauer, P.H.Emett, E.Tel
ler 法、J.Am.Chem.Soc.,60309(1938)記載の方法を用い
て測定した。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. Various test methods used in the examples are described below. (A) BET specific surface area After measuring the adsorption and desorption isotherms of nitrogen using ASAP-2400 manufactured by Shimadzu Corporation, S. Brunauer, PHEmett, E. Tel
It was measured using the method described by J. Am. Chem. Soc., 60309 (1938) by the Ler method.

【0029】(B)細孔容積、平均細孔径及び細孔分布 島津製作所製ASAP−2400を用いて、窒素の吸脱
着等温線を測定した後、Barrett-Joyner-Halenda法、J.
Am.Chem.Soc.,73,373(1951) 記載の方法を用いて、測定
した。 (C)水分 KETT水分計を用いて、150℃、60分で測定し
た。 (D)平均粒径 10mmの篩を用いて測定を行った。
(B) Pore Volume, Average Pore Diameter, and Pore Distribution After measuring the adsorption and desorption isotherm of nitrogen using ASAP-2400 manufactured by Shimadzu Corporation, Barrett-Joyner-Halenda method, J.
Am.Chem.Soc., 73, 373 (1951) was used for the measurement. (C) Water Content It was measured at 150 ° C. for 60 minutes using a KETT water content meter. (D) The average particle size was measured using a sieve having a diameter of 10 mm.

【0030】実施例1 20wt%のケイ酸ソーダ水溶液と35wt%の硫酸水溶液
を、混合ノズルを用いて反応させ、シリカヒドロゾルを
得た。該シリカヒドロゾルを約5分でゲル化しシリカヒ
ドロゲルを得た。該シリカヒドロゲルを篩を用いて約1
0mmに粉砕した後、90℃、pH9.5の条件で4時
間水熱処理した後、洗浄した。洗浄したシリカヒドロゲ
ル(水分72.5wt%)を流動乾燥機を用いてバッチ式
で乾燥を行った。表1に示す3通りの乾燥条件〔シリカ
ヒドロゲルの排気温度及び乾燥時間〕で、本発明のシリ
カゲルを得た。得られたシリカゲルの物性を表1に示
す。さらに、図1〜3に、得られたシリカゲルの細孔分
布を示す。
Example 1 A silica hydrosol was obtained by reacting a 20 wt% sodium silicate aqueous solution with a 35 wt% sulfuric acid aqueous solution using a mixing nozzle. The silica hydrosol was gelated in about 5 minutes to obtain a silica hydrogel. The silica hydrogel is sieved to about 1
After crushing to 0 mm, it was hydrothermally treated for 4 hours at 90 ° C. and pH 9.5, and then washed. The washed silica hydrogel (water content 72.5 wt%) was dried in a batch manner using a fluid dryer. The silica gel of the present invention was obtained under the three drying conditions shown in Table 1 [exhaust temperature and drying time of silica hydrogel]. Table 1 shows the physical properties of the obtained silica gel. Further, FIGS. 1 to 3 show the pore distribution of the obtained silica gel.

【0031】比較例1 実施例1と同様の操作を行って得たシリカヒドロゲル
(水分72.5wt%)をロータリーキルンを用いて連続
的に乾燥を行った。乾燥条件としては、炉内温度を15
0℃にセットし1時間運転を行った。連続運転中にサン
プルを採取し、物性を測定した。得られたシリカゲルの
物性を表1に示す。乾燥時間30分のシリカゲルサンプ
ルの細孔分布を図4に示す。
Comparative Example 1 Silica hydrogel (water content 72.5 wt%) obtained by performing the same operation as in Example 1 was continuously dried using a rotary kiln. As the drying condition, the furnace temperature is 15
It was set at 0 ° C. and operated for 1 hour. Samples were taken during continuous operation and physical properties were measured. Table 1 shows the physical properties of the obtained silica gel. The pore distribution of the silica gel sample having a drying time of 30 minutes is shown in FIG.

【0032】比較例2 比較例1と同様の操作で、乾燥条件として、炉内温度を
250℃にセットし、1時間運転を行った。連続運転中
にサンプルを採取し、物性を測定した。得られたシリカ
ゲルの物性を表1に示す。乾燥時間30分のシリカゲル
サンプルの細孔分布を図5に示す。
Comparative Example 2 In the same operation as in Comparative Example 1, the drying temperature was set to the furnace temperature of 250 ° C. and the operation was carried out for 1 hour. Samples were taken during continuous operation and physical properties were measured. Table 1 shows the physical properties of the obtained silica gel. The pore distribution of the silica gel sample having a drying time of 30 minutes is shown in FIG.

【0033】[0033]

【表1】 [Table 1]

【0034】表1の結果から、比較例で用いた連続式で
あるロータリーキルンでは、細孔容積及び平均細孔径の
大きいシリカゲルを得る事ができないばかりか、経時的
に細孔容積及び平均細孔径が変化し不安定である事が分
かる。それに対して、本発明の製造方法によれば、条件
を選択することで、シリカゲルの細孔容積及び平均細孔
径を変化させることができ、かつ得られるシリカゲルは
B/Aが0.5以下のシャープな細孔分布を有すること
がわかる。
From the results shown in Table 1, it is not possible to obtain silica gel having a large pore volume and a large average pore diameter in the continuous rotary kiln used in the comparative example, and the pore volume and the average pore diameter change with time. You can see that it changes and is unstable. On the other hand, according to the production method of the present invention, the pore volume and average pore diameter of silica gel can be changed by selecting the conditions, and the silica gel obtained has a B / A of 0.5 or less. It can be seen that it has a sharp pore distribution.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明のシリカゲルの細孔分布。FIG. 1 Pore distribution of silica gel of the present invention.

【図2】 本発明のシリカゲルの細孔分布。FIG. 2 is a pore distribution of the silica gel of the present invention.

【図3】 本発明のシリカゲルの細孔分布。FIG. 3 Pore distribution of the silica gel of the present invention.

【図4】 比較例1(乾燥時間30分)のシリカゲルの
細孔分布。
FIG. 4 Pore distribution of silica gel of Comparative Example 1 (drying time 30 minutes).

【図5】 比較例2(乾燥時間30分)のシリカゲルの
細孔分布。
FIG. 5: Pore distribution of silica gel of Comparative Example 2 (drying time 30 minutes).

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 シリカヒドロゲルを乾燥してシリカゲル
を製造する方法であって、前記シリカヒドロゲルの乾燥
をバッチ式流動乾燥により行うことを特徴とするシリカ
ゲルの製造方法。
1. A method for producing silica gel by drying silica hydrogel, wherein the silica hydrogel is dried by batch type fluidized drying.
【請求項2】 水分が50〜80wt%の範囲であるシリ
カヒドロゲルを乾燥する請求項1記載の製造方法。
2. The method according to claim 1, wherein the silica hydrogel having a water content in the range of 50 to 80 wt% is dried.
【請求項3】 バッチ式流動乾燥を、排気ガス温度が2
0〜150℃の範囲となるように行う請求項1または2
記載の製造方法。
3. An exhaust gas temperature of 2 is used for batch type fluidized drying.
The method according to claim 1 or 2, wherein the temperature is in the range of 0 to 150 ° C.
The manufacturing method as described.
【請求項4】 バッチ式流動乾燥時間が1〜200分間
の範囲である請求項1〜3のいずれか1項に記載の製造
方法。
4. The production method according to claim 1, wherein the batch type fluidized drying time is in the range of 1 to 200 minutes.
【請求項5】 平均粒径が1〜20mmの範囲であるヒ
ドロゲルを乾燥する請求項1〜4いずれか1項に記載の
製造方法。
5. The production method according to claim 1, wherein the hydrogel having an average particle size in the range of 1 to 20 mm is dried.
JP18517195A 1995-07-21 1995-07-21 Method for producing silica gel Expired - Lifetime JP3719687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18517195A JP3719687B2 (en) 1995-07-21 1995-07-21 Method for producing silica gel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18517195A JP3719687B2 (en) 1995-07-21 1995-07-21 Method for producing silica gel

Publications (2)

Publication Number Publication Date
JPH0930809A true JPH0930809A (en) 1997-02-04
JP3719687B2 JP3719687B2 (en) 2005-11-24

Family

ID=16166082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18517195A Expired - Lifetime JP3719687B2 (en) 1995-07-21 1995-07-21 Method for producing silica gel

Country Status (1)

Country Link
JP (1) JP3719687B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11263674A (en) * 1998-03-16 1999-09-28 Toshiba Ceramics Co Ltd Ramming material for lining induction furnace
JP2000127615A (en) * 1998-10-27 2000-05-09 Nippon Silica Ind Co Ltd Filler for paper for color ink-jet
EP1167295A1 (en) * 2000-06-30 2002-01-02 Mitsubishi Chemical Corporation Silica gel
JP2002080217A (en) * 2000-06-30 2002-03-19 Mitsubishi Chemicals Corp Method of producing silica gel
JP2003165717A (en) * 2001-03-09 2003-06-10 Mitsubishi Chemicals Corp Silica gel
JP2003171113A (en) * 2001-09-25 2003-06-17 Mitsubishi Chemicals Corp Silica hydrogel and silica
JP2003171115A (en) * 2001-09-25 2003-06-17 Mitsubishi Chemicals Corp Silica
JP2003171112A (en) * 2001-09-25 2003-06-17 Mitsubishi Chemicals Corp Silica
JP2003171116A (en) * 2001-09-25 2003-06-17 Mitsubishi Chemicals Corp Silica
JP2003221223A (en) * 2001-09-25 2003-08-05 Mitsubishi Chemicals Corp Silica
JP2004002114A (en) * 2002-05-31 2004-01-08 Mitsubishi Chemicals Corp Silica gel for ionic conductor, ionic conductor, fuel cell and rechargeable lithium-ion battery
US7101523B2 (en) 2001-09-25 2006-09-05 Mitsubishi Chemical Corporation Silica
JP2006348405A (en) * 2005-06-14 2006-12-28 Shin Etsu Chem Co Ltd Treating agent composition for glass fiber product
US7538068B2 (en) 2005-03-18 2009-05-26 Kabushiki Kaisha Toshiba Carbon dioxide gas absorbent and method of manufacturing the same
JP2011516386A (en) * 2008-04-07 2011-05-26 エボニック デグサ ゲーエムベーハー Precipitated silicic acid as reinforcing filler for elastomer mixtures
JP2013505893A (en) * 2009-09-29 2013-02-21 エボニック デグサ ゲーエムベーハー Surface-modified silicic acid semigel
US8701425B2 (en) 2007-01-10 2014-04-22 Mitsubishi Electric Corporation Refrigeration air conditioning system
US9682896B2 (en) 2013-06-07 2017-06-20 Mitsui Chemicals, Inc. Production method for olefin, and dehydration catalyst employed in same
JP2020001936A (en) * 2018-06-25 2020-01-09 富士シリシア化学株式会社 Spherical silica gel, production method thereof, and catalyst and production method thereof
JP2020511394A (en) * 2017-09-08 2020-04-16 エルジー・ケム・リミテッド Method for producing metal oxide-silica composite aerogel and metal oxide-silica composite aerogel produced thereby
JP2020511395A (en) * 2017-09-08 2020-04-16 エルジー・ケム・リミテッド Method for producing metal oxide-silica composite aerogel and metal oxide-silica composite aerogel produced thereby

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11263674A (en) * 1998-03-16 1999-09-28 Toshiba Ceramics Co Ltd Ramming material for lining induction furnace
JP2000127615A (en) * 1998-10-27 2000-05-09 Nippon Silica Ind Co Ltd Filler for paper for color ink-jet
US6838068B2 (en) 2000-06-30 2005-01-04 Mitsubishi Chemical Corporation Silica gel
EP1167295A1 (en) * 2000-06-30 2002-01-02 Mitsubishi Chemical Corporation Silica gel
JP2002080217A (en) * 2000-06-30 2002-03-19 Mitsubishi Chemicals Corp Method of producing silica gel
US7074376B2 (en) 2000-06-30 2006-07-11 Mitsubishi Chemical Corporation Silica gel
JP2003165717A (en) * 2001-03-09 2003-06-10 Mitsubishi Chemicals Corp Silica gel
JP2003171115A (en) * 2001-09-25 2003-06-17 Mitsubishi Chemicals Corp Silica
JP2003221223A (en) * 2001-09-25 2003-08-05 Mitsubishi Chemicals Corp Silica
JP2003171112A (en) * 2001-09-25 2003-06-17 Mitsubishi Chemicals Corp Silica
JP2003171113A (en) * 2001-09-25 2003-06-17 Mitsubishi Chemicals Corp Silica hydrogel and silica
US7101523B2 (en) 2001-09-25 2006-09-05 Mitsubishi Chemical Corporation Silica
JP2003171116A (en) * 2001-09-25 2003-06-17 Mitsubishi Chemicals Corp Silica
JP2004002114A (en) * 2002-05-31 2004-01-08 Mitsubishi Chemicals Corp Silica gel for ionic conductor, ionic conductor, fuel cell and rechargeable lithium-ion battery
US7538068B2 (en) 2005-03-18 2009-05-26 Kabushiki Kaisha Toshiba Carbon dioxide gas absorbent and method of manufacturing the same
JP4608373B2 (en) * 2005-06-14 2011-01-12 信越化学工業株式会社 Glass fiber product treatment composition
JP2006348405A (en) * 2005-06-14 2006-12-28 Shin Etsu Chem Co Ltd Treating agent composition for glass fiber product
US8701425B2 (en) 2007-01-10 2014-04-22 Mitsubishi Electric Corporation Refrigeration air conditioning system
JP2011516386A (en) * 2008-04-07 2011-05-26 エボニック デグサ ゲーエムベーハー Precipitated silicic acid as reinforcing filler for elastomer mixtures
JP2013505893A (en) * 2009-09-29 2013-02-21 エボニック デグサ ゲーエムベーハー Surface-modified silicic acid semigel
US9682896B2 (en) 2013-06-07 2017-06-20 Mitsui Chemicals, Inc. Production method for olefin, and dehydration catalyst employed in same
JP2020511394A (en) * 2017-09-08 2020-04-16 エルジー・ケム・リミテッド Method for producing metal oxide-silica composite aerogel and metal oxide-silica composite aerogel produced thereby
JP2020511395A (en) * 2017-09-08 2020-04-16 エルジー・ケム・リミテッド Method for producing metal oxide-silica composite aerogel and metal oxide-silica composite aerogel produced thereby
US11279625B2 (en) 2017-09-08 2022-03-22 Lg Chem, Ltd. Method of preparing metal oxide-silica composite aerogel and metal oxide-silica composite aerogel prepared by the same
US11478770B2 (en) 2017-09-08 2022-10-25 Lg Chem, Ltd. Method of preparing metal oxide-silica composite aerogel and metal oxide-silica composite aerogel prepared by the same
US11666880B2 (en) 2017-09-08 2023-06-06 Lg Chem, Ltd. Method of preparing metal oxide-silica composite aerogel and metal oxide-silica composite aerogel prepared by the same
JP2020001936A (en) * 2018-06-25 2020-01-09 富士シリシア化学株式会社 Spherical silica gel, production method thereof, and catalyst and production method thereof

Also Published As

Publication number Publication date
JP3719687B2 (en) 2005-11-24

Similar Documents

Publication Publication Date Title
JPH0930809A (en) Production of silica gel
SU1577691A3 (en) Method of obtaining spherical silica
US5256386A (en) Method for preparation of silica particles
US5589150A (en) Method for preparing spherular silica gel particles
CA2192548C (en) Method for making spherical adsorbent particles
KR20100017977A (en) Spherical agglomerates based on zeolite(s), process for the production thereof and use thereof in adsorption processes or in catalysis
US6267942B1 (en) Method for producing spherical silica particles
WO2000064810A1 (en) Very high structure, highly absorptive hybrid silica and method for making same
EP0298062B1 (en) Silica particles, a method for preparation of silica particles and use of the particles
US3411878A (en) Alumina agglomerates and method for producing same
JP2006273710A (en) Method for synthesizing aluminophosphates
JP4715230B2 (en) Aluminophosphate granule and method for producing the same
SU784751A3 (en) Method of producing silicon dioxide spherical particles
US3567645A (en) Silica desiccants and method of manufacture
US2768145A (en) Method of manufacturing silica alumina catalyst
JP3719686B2 (en) Silica gel for filter media
JPH08169710A (en) Silica gel having high specific surface area and low controlled constructive property and its production
JPH0971410A (en) Highly hydroscopic silica gel
US3203760A (en) Process for preparing silica gel
JPS6065725A (en) Preparation of spherical particles of titania
KR20160105147A (en) Method for producing a silica gel
JPH111318A (en) Production of zeolite granule with controlled pore size
JP2003160326A (en) Silica gel
JPH0764543B2 (en) Spherical silica and its manufacturing method
JP4160347B2 (en) Silica and method for producing silica

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050905

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term