JPH0631173B2 - Method for producing porous silica carrier - Google Patents

Method for producing porous silica carrier

Info

Publication number
JPH0631173B2
JPH0631173B2 JP61093660A JP9366086A JPH0631173B2 JP H0631173 B2 JPH0631173 B2 JP H0631173B2 JP 61093660 A JP61093660 A JP 61093660A JP 9366086 A JP9366086 A JP 9366086A JP H0631173 B2 JPH0631173 B2 JP H0631173B2
Authority
JP
Japan
Prior art keywords
amount
acid solution
sio
silicic acid
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61093660A
Other languages
Japanese (ja)
Other versions
JPS62252378A (en
Inventor
護郎 佐藤
悠策 有馬
博和 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP61093660A priority Critical patent/JPH0631173B2/en
Publication of JPS62252378A publication Critical patent/JPS62252378A/en
Publication of JPH0631173B2 publication Critical patent/JPH0631173B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は多孔性シリカの製造方法に関するものであっ
て、さらに詳しくは大きな細孔容積と強い粒子強度を有
する多孔性シリカ担体の製造法に係る。
TECHNICAL FIELD The present invention relates to a method for producing porous silica, and more particularly to a method for producing a porous silica carrier having a large pore volume and strong particle strength. Pertain.

[従来の技術] 多孔性シリカ粒子は、食品、医薬品の分野で、また触媒
担体、吸着剤、乾燥剤等として、従来から広く使用され
ているが、その用途によって多孔性シリカ粒子は、使用
目的に適った性状を有していなければならない。例え
ば、触媒担体として使用する多孔性シリカ粒子には、大
きな細孔容積と強い粒子強度が要求される。
[Prior Art] Porous silica particles have been widely used in the fields of foods and pharmaceuticals, as catalyst carriers, adsorbents, desiccants, etc., depending on their use. Must have suitable properties. For example, a porous silica particle used as a catalyst carrier is required to have a large pore volume and a strong particle strength.

触媒担体に使用される多孔性シリカ粒子の製造方法とし
て、特開昭61−40813号公報には、酸性シリカゾ
ルのpHを急激にアルカリ側に上昇させてゲル化させる
方法により、細孔容積が大きく、シャープな細孔分布を
有する多孔性シリカ粒子を製造する技術が開示されてい
る。また、特開昭58−135119号公報には、Si
濃度が特定されたシリカゾルをゲル化させ、これに
アンモニア水のようなアルカリを加えてpHを5〜10に
調整してから、ゲル化物に50〜95℃で水熱処理を施し、
次いでこれを酸水溶液で処理し、しかる後、低い温度で
乾燥することにより、細孔容積の大きいシリカ粒子の製
造方法が記載されている。さらにまた、特開昭59−2
32911号公報には、アルカリケイ酸塩と鉱酸との反
応によりシリカ粒子を製造する方法に於いて、反応液中
のSiO濃度を12〜25wt%の範囲に保持すると共に反
応温度を30℃以下に保持しながら、反応時のpHを第1
段目では1.5〜5.0に、第2段目では6〜10に維持して反
応を2段階で行わせ、吸油量の大きいシリカ粒子を得る
方法が教示されている。
As a method for producing porous silica particles used as a catalyst carrier, JP-A-61-40813 discloses a method in which the pH of an acidic silica sol is rapidly raised to the alkali side to cause gelation, resulting in a large pore volume. , A technique for producing porous silica particles having a sharp pore distribution is disclosed. Further, Japanese Patent Laid-Open No. 58-135119 discloses that Si
The silica sol having a specified O 2 concentration is gelled, an alkali such as ammonia water is added to the gel to adjust the pH to 5 to 10, and the gelled product is subjected to hydrothermal treatment at 50 to 95 ° C.
Then, a method for producing silica particles having a large pore volume is described by treating this with an aqueous acid solution and then drying at a low temperature. Furthermore, JP-A-59-2
No. 32911 discloses a method for producing silica particles by reacting an alkali silicate with a mineral acid, in which the SiO 2 concentration in the reaction solution is kept in the range of 12 to 25 wt% and the reaction temperature is 30 ° C. Keep the pH below the 1st pH during the reaction.
It teaches a method of obtaining silica particles having a large oil absorption amount by allowing the reaction to be carried out in two stages while maintaining the ratio of 1.5 to 5.0 in the second stage and 6 to 10 in the second stage.

[発明が解決しようとする問題点] 上に紹介した方法で製造されるシリカ粒子を含めて、従
来の多孔性シリカ粒子は、一般にその細孔容積が0.6〜
1.2ml/g程度である。然るに、或る種の化学反応系で
使用される触媒では、細孔容積が1.0〜2.5ml/g程度
で、平均細孔直径が100〜1000Åの範囲にあり、しかも
粒子強度が大きいシリカ担体が要求されているが、従来
のシリカ粒子ではこの要請に応えることができない。ち
なみに、シリカ粒子として大きな細孔容積を備えていて
も、粒子強度が小さいものは触媒担体として使用した際
に粉化しやすく、触媒反応の実施に支障を来す原因にな
るので、この種のシリカ粒子は触媒担体として工業的に
は利用できない。
[Problems to be Solved by the Invention] Conventional porous silica particles including silica particles produced by the method introduced above generally have a pore volume of 0.6 to
It is about 1.2 ml / g. However, in a catalyst used in a certain type of chemical reaction system, a silica carrier having a pore volume of about 1.0 to 2.5 ml / g, an average pore diameter of 100 to 1000Å and a large particle strength is used. Although required, conventional silica particles cannot meet this demand. By the way, even if silica particles have a large pore volume, those having a small particle strength are likely to be pulverized when used as a catalyst carrier, which may cause troubles in carrying out the catalytic reaction. The particles cannot be used industrially as a catalyst carrier.

シリカ担体も他の触媒担体同様、その細孔容積及び平均
細孔直径が大きくなればなるほど、粒子強度は低下する
のが通例である。しかして、本発明の目的は、非常に大
きな細孔容積と細孔直径を有しながら、粒子強度も大き
い多孔性シリカ担体の製造法を提供することにある。
As with other catalyst carriers, the silica carrier generally has a lower particle strength as its pore volume and average pore diameter increase. Therefore, it is an object of the present invention to provide a method for producing a porous silica carrier which has a very large pore volume and a very large pore diameter and also has a large particle strength.

[問題点を解決するための手段] 本発明の方法は、シリカゲル粒子を骨材に、ケイ酸液を
バインダーにそれぞれ使用して、シリカゲル粒子を、バ
インダーに用いたケイ酸液由来のシリカによって相互に
結合させるものであって、その方法は、SiO濃度が
1〜60wt%の範囲にあるシリカゲルスラリーに、アルカ
リ水溶液を添加してスラリーのpHを8.5以上に保持し
つつ液温を50℃以上に保持しながら、1分間当りのケイ
酸液の添加量がSiO量に換算して、前記シリカゲル
スラリーに含まれるSiO量の1/1000以下になる添
加速度で、且つケイ酸液の添加総量がSiO量に換算
して、前記シリカゲルスラリーに含まれるSiO量の
50wt%を越えない範囲内で、ケイ酸液を前記のシリカゲ
ルスラリーに添加し、次いでこの混合スラリーを乾燥し
て焼成することからなる。
[Means for Solving the Problems] In the method of the present invention, silica gel particles are used as an aggregate and a silicic acid solution is used as a binder, respectively, and the silica gel particles are treated with silica derived from the silicic acid solution used as a binder. The method is to add an alkaline aqueous solution to a silica gel slurry having a SiO 2 concentration in the range of 1 to 60 wt% to maintain the pH of the slurry at 8.5 or more while maintaining the liquid temperature at 50 ° C or more. while maintaining the additive amount of silicic acid solution per minute in terms of SiO 2 amount, at an addition rate to be 1/1000 or less of the amount of SiO 2 contained in the silica gel slurry, and the addition of silicic acid solution the total amount in terms of SiO 2 amount, the amount of SiO 2 contained in the silica gel slurry
A silicic acid solution is added to the silica gel slurry described above within a range not exceeding 50 wt%, and then the mixed slurry is dried and calcined.

本発明に係る第2の方法は、SiO濃度が1〜60wt%
の範囲にあるシリカゲルスラリーに、アルカリ水溶液を
添加してスラリーのpHを8.5以上に保持しつつ、液温
を50℃以上に保持しながら、1分間当りのケイ酸液の添
加量がSiO量に換算して、前記シリカゲルスラリー
に含まれるSiO量の1/1000以下になる添加速度
で、且つケイ酸液の添加総量がSiO量に換算して、
前記シリカゲルスラリーに含まれるSiO量の50wt%
を越えない範囲内で、ケイ酸液を前記のシリカゲルスラ
リーに添加し、次いで (a)ケイ酸液が添加されたシリカゲルスラリーに酸を加
えてpHを7以下に低下させる操作、 (b)操作(a)の後、アルカリ水溶液を添加してスラリーの
pHを8.5以上に保持しつつ、液温を50℃以上に保持し
ながら、1分間当りのケイ酸液の添加量がSiO量に
換算して、前記ケイ酸液が添加されたシリカゲルスラリ
ーに含まれる総SiO量の1/1000以下になる添加速
度で、且つケイ酸液の添加総量がSiO量に換算し
て、前記ケイ酸液が添加されたシリカゲルスラリーに含
まれる総SiO量の50wt%を越えない範囲内で、ケイ
酸液をシリカゲルスラリーに添加する操作、 を1回又は複数回繰り返し、得られた混合スラリーを乾
燥して焼成することからなる。
The second method according to the present invention has a SiO 2 concentration of 1 to 60 wt%.
While keeping the pH of the slurry at 8.5 or above by adding the alkaline aqueous solution to the silica gel slurry in the range of, the addition amount of the silicic acid solution per 1 minute is kept at 50 ° C or above and the SiO 2 amount is 2 And the addition rate is 1/1000 or less of the amount of SiO 2 contained in the silica gel slurry, and the total amount of silicic acid solution added is converted to the amount of SiO 2 ,
50 wt% of the amount of SiO 2 contained in the silica gel slurry
Within a range not exceeding the above, a silicic acid solution is added to the silica gel slurry, and then (a) an acid is added to the silica gel slurry to which the silicic acid solution is added to lower the pH to 7 or less, (b) operation After (a), the amount of the silicic acid solution added per minute is converted to the amount of SiO 2 while maintaining the pH of the slurry at 8.5 or more by adding an alkaline aqueous solution and maintaining the solution temperature at 50 ° C or more. Then, at a rate of addition of 1/1000 or less of the total amount of SiO 2 contained in the silica gel slurry to which the silicic acid solution has been added, and the total amount of silicic acid solution converted into the amount of SiO 2 , The operation of adding the silicic acid solution to the silica gel slurry within a range not exceeding 50 wt% of the total amount of SiO 2 contained in the silica gel slurry to which the solution is added is repeated one or more times, and the resulting mixed slurry is dried. And firing.

[作 用] 本発明の方法で使用されるシリカゲルスラリーは、市販
のシリカゲルを水に分散させたものであっても差し支え
ないが、シリカゲルは骨材となるものなので、ゲル構造
が強いものを選ぶことが好ましい。本発明のシリカゲル
スラリーはまた、市販のシリカゾルから調製することも
できる。この場合のシリカゾルには、その濃度が1wt%
以上、好ましくは5〜40wt%の範囲にあるものを使用す
ることを可とする。シリカゾルの濃度が1wt%以下であ
ると、これから得られるシリカゲルには強固なゲル構造
を期持できないからである。シリカゲルのゲル化には、
公知の方法がいずれも採用可能であるが、シリカゲルに
酸を添加してpHを一旦酸性域にした後、アルカリ水溶
液を添加してゲル化させる方法は、ゲル構造が強いシリ
カゲルが得られる点で好ましい。市販のシリカゲルを水
に分散させる場合でも、或いはシリカゾルから調製する
場合でも、本発明で使用するシリカゲルスラリーは、そ
のSiO濃度が1〜60wt%の範囲に調整される。60wt
%以上では撹拌によってスラリー全体を均一に所望のp
Hに維持することが難しく、また、1wt%以下ではシリ
カ担体の生産効率が低く、経済的でない。
[Operation] The silica gel slurry used in the method of the present invention may be a commercially available silica gel dispersed in water, but since silica gel is an aggregate, it is preferable to select one having a strong gel structure. It is preferable. The silica gel slurry of the present invention can also be prepared from a commercially available silica sol. In this case, the silica sol has a concentration of 1 wt%
As described above, it is possible to use those in the range of preferably 5 to 40 wt%. If the concentration of the silica sol is 1 wt% or less, the silica gel obtained therefrom cannot have a strong gel structure. For gelling silica gel,
Although any known method can be adopted, a method in which an acid is added to silica gel to once adjust the pH to an acidic range and then an aqueous alkaline solution is added to gel the silica gel has a strong gel structure. preferable. Whether the commercially available silica gel is dispersed in water or prepared from silica sol, the silica gel slurry used in the present invention has a SiO 2 concentration in the range of 1 to 60 wt%. 60wt
%, The entire slurry is uniformly mixed by stirring to obtain a desired p
It is difficult to maintain H, and if it is 1 wt% or less, the production efficiency of the silica carrier is low, which is not economical.

バインダーとして使用されるケイ酸液は、水ガラスをイ
オン交換樹脂にて脱アルカリすることで得ることができ
る。ケイ酸液にバインダーとしての機能を発揮させるた
めには、その濃度(SiO濃度)は8wt%以下、一般
的には1〜5wt%の範囲にあることが望ましい。これ以
上高濃度であると、ケイ酸液はゾル化ないしはゲル化し
やすくなり、ゾル化ないしはゲル化すると、バインダー
としての機能が著しく低下するからである。
The silicic acid solution used as a binder can be obtained by dealkalizing water glass with an ion exchange resin. In order for the silicic acid solution to exhibit its function as a binder, its concentration (SiO 2 concentration) is preferably 8 wt% or less, generally 1 to 5 wt%. This is because when the concentration is higher than this, the silicic acid solution easily becomes sol or gel, and when it becomes sol or gel, the function as a binder is significantly deteriorated.

本発明の方法に於いては、シリカゲルスラリーに対する
ケイ酸液の添加を、連続的にもまた断続的にも行うこと
ができるが、ケイ酸液の添加に際しては次の条件が順守
されなければならない。
In the method of the present invention, the silicic acid solution can be added to the silica gel slurry continuously or intermittently, but the following conditions must be observed when adding the silicic acid solution. .

第1の条件はケイ酸液が添加されるスラリーの液温を50
℃以上、好ましくは80℃以上に保持し、pHを8.5以
上、好ましくは9以上に保持することである。その理由
は液温やpH値が低いと、シリカの溶解度を充分高める
ことができないことによる。尚、液温を100℃以上にす
る場合は、加圧容器が通常使用される。スラリーのpH
はケイ酸液が添加される間中、常に8.5以上、好ましく
は9以上に保持される関係で、ケイ酸液の添加に際して
は、これと同時にアルカリ水溶液がスラリーに添加され
る。この場合のアルカリ水溶液としては、アンモニア
水、水溶性アミン類、水酸化ナトリウム水溶液などが使
用可能である。このうち、アンモニア水の使用は、アル
カリ金属などの不純物をスラリーに持ち込まず、従って
不純物の洗浄除去を省略できる点で、極めて望ましい。
The first condition is that the temperature of the slurry to which the silicic acid solution is added is 50
It is to keep the temperature above ℃, preferably above 80 ℃, and keep the pH to above 8.5, preferably above 9. The reason is that if the liquid temperature or pH value is low, the solubility of silica cannot be sufficiently increased. When the liquid temperature is 100 ° C. or higher, a pressure vessel is usually used. PH of slurry
Is always kept at 8.5 or more, preferably 9 or more during the addition of the silicic acid solution, and at the same time as the addition of the silicic acid solution, the alkaline aqueous solution is added to the slurry. As the alkaline aqueous solution in this case, ammonia water, water-soluble amines, sodium hydroxide aqueous solution and the like can be used. Of these, the use of ammonia water is extremely desirable in that impurities such as alkali metals are not brought into the slurry, and thus cleaning and removal of impurities can be omitted.

ケイ酸液添加に際しての第2の条件は、添加速度と添加
総量に関するものであって、ケイ酸液の添加速度は、1
分間当りのケイ酸液の添加量がSiO量換算で、シリ
カゲルスラリーに含まれるSiO量の1/1000以下で
なければならず、また添加総量は、SiO量換算で、
シリカゲルスラリーに含まれるSiO量の50wt%を越
えない範囲にある。
The second condition when adding the silicic acid solution relates to the addition rate and the total amount of addition, and the addition rate of the silicic acid solution is 1
The addition amount of the silicic acid solution per minute should be 1/1000 or less of the SiO 2 amount contained in the silica gel slurry in terms of SiO 2 amount, and the total addition amount should be in terms of SiO 2 amount.
It is in a range not exceeding 50 wt% of the amount of SiO 2 contained in the silica gel slurry.

本発明者等が得た知見によれば、ケイ酸液の添加速度を
上記の規定値より増大させてシリカゲルスラリーにケイ
酸液を添加した場合には、他の条件を本発明と同一に維
持しても、大細孔容積で高粒子強度の多孔性シリカ担体
を得ることができない。このことから、本発明の方法に
より、大細孔容積で高粒子強度の多孔性シリカ担体が製
造できる理由を、次のように考えることができる。
According to the findings obtained by the present inventors, when the silicic acid solution was added to the silica gel slurry by increasing the addition rate of the silicic acid solution above the specified value, other conditions were kept the same as those of the present invention. However, a porous silica carrier having a large pore volume and high particle strength cannot be obtained. From this, the reason why a porous silica carrier having a large pore volume and high particle strength can be produced by the method of the present invention can be considered as follows.

すなわち、ケイ酸液を上記の添加速度でシリカゲルスラ
リーに添加すると、当初はスラリー中に溶解するが、添
加を続ける間にケイ酸は過飽和になって分散状態にある
シリカゲル粒子(骨材)上に析出し、これがバインダー
となって粒子同志を結合させる。ケイ酸液の添加を低速
度で行えば、上記の溶解−過飽和−析出を反復させるこ
とができるので、先に結合した粒子同志がさらに互いに
結合する事態が繰り返され、その結果として当初スラリ
ーに分散していた個々のシリカゲル粒子は、適当な粒子
間隙を保ちながら凝集して結合するため、これを乾燥、
焼成することで大細孔容積で高粒子強度の多孔性シリカ
担体が製造できるものと推察される。これに引き換え、
ケイ酸液の添加速度が速い場合は、添加されたケイ酸が
独自にゲル化してしまうため、バインダーとしての機能
を発揮できず、それ故に所望の多孔性シリカ担体を得る
ことができないものと考えられる。従って、本発明では
ケイ酸液の添加速度が極めて重要であって、シリカゲル
スラリーに対する1分間当りのケイ酸液の添加量は、S
iO量換算でシリカゲルスラリーに含まれるSiO
量の1/1000以下とすることが必要であり、好ましい添
加速度は1/4000〜1/20000の範囲内にある。
That is, when the silicic acid solution is added to the silica gel slurry at the above addition rate, it is initially dissolved in the slurry, but the silicic acid is oversaturated and dispersed on the silica gel particles (aggregate) in a dispersed state while continuing the addition. Precipitates and serves as a binder to bond the particles together. If the addition of the silicic acid solution is carried out at a low speed, the above-mentioned dissolution-supersaturation-precipitation can be repeated, so that the particles previously bonded together are further bonded to each other, and as a result, they are dispersed in the initial slurry. Since the individual silica gel particles that had been agglomerated and bonded while maintaining an appropriate particle gap, they were dried,
It is presumed that the calcination can produce a porous silica carrier having a large pore volume and high particle strength. In exchange for this,
If the addition rate of the silicic acid solution is high, the added silicic acid will gel independently, so it cannot function as a binder, and therefore it is considered that the desired porous silica carrier cannot be obtained. To be Therefore, in the present invention, the addition rate of the silicic acid solution is extremely important, and the addition amount of the silicic acid solution per minute to the silica gel slurry is S
SiO 2 contained in silica gel slurry in terms of iO 2 amount
It is necessary to set the amount to 1/1000 or less, and the preferable addition rate is within the range of 1/4000 to 1/20000.

ケイ酸液の添加総量について言えば、その量が余り多す
ぎると、適当な粒子間隙を保ちながら凝集して結合した
シリカゲル粒子の間隙部が、ケイ酸の析出によって閉塞
されてしまう心配がある。この意味から、ケイ酸液の添
加総量は、ケイ酸液を添加せんとするシリカゲルスラリ
ーの濃度を考慮して選定することが好ましいが、一般的
には添加総量はSiO量換算で、シリカゲルスラリー
に含まれるSiO量の50wt%を越えない範囲内にあ
る。
As for the total amount of the silicic acid solution added, if the amount is too large, there is a concern that the pores of the silica gel particles that are aggregated and bonded while maintaining an appropriate particle gap may be blocked by the precipitation of silicic acid. From this point of view, it is preferable to select the total addition amount of the silicic acid liquid in consideration of the concentration of the silica gel slurry to which the silicic acid liquid is added, but generally, the total addition amount is the silica gel slurry in terms of SiO 2 amount. It does not exceed 50 wt% of the amount of SiO 2 contained in.

本発明の方法に於いて、シリカゲルスラリーに対するケ
イ酸液の添加を断続的に行う場合には、各回のケイ酸添
加操作の間に、酸を添加してスラリーのpHを7以下に
低下させる操作を介在させることが好ましい。そして、
この操作で使用する酸としては、塩酸、硫酸、硝酸等の
鉱酸、酢酸、シュウ酸、ギ酸等の有機酸を任意に使用す
ることができる。
In the method of the present invention, when the silicic acid solution is intermittently added to the silica gel slurry, an operation of adding an acid to lower the pH of the slurry to 7 or less between each silicic acid addition operation. Is preferably interposed. And
As the acid used in this operation, mineral acids such as hydrochloric acid, sulfuric acid and nitric acid, and organic acids such as acetic acid, oxalic acid and formic acid can be arbitrarily used.

スラリーのpHを7以下に低下させる操作を介在させる
ことが、スラリー中のシリカゲルに如何なる作用を及ぼ
すかは、現在のところ、必ずしも明らかではない。しか
しながら、スラリーのpHを酸性域にシフトさせる操作
を介在させた方が、介在させない場合より、最終的に得
られるシリカ担体の粒子強度が向上する事実から見て、
酸性域へのシフトは、シリカゲル粒子間の結合力増強
に、大いに貢献しているものと推察される。
At present, it is not always clear how the intervention of the operation of lowering the pH of the slurry to 7 has an effect on the silica gel in the slurry. However, in view of the fact that interposing the operation of shifting the pH of the slurry to the acidic range improves the particle strength of the silica carrier finally obtained, as compared with the case where it does not intervene,
It is assumed that the shift to the acidic range greatly contributes to the enhancement of the binding force between silica gel particles.

スラリーを酸性域にシフトさせる操作を介在させたか否
かに拘らず、所定量のケイ酸液を添加し終わったシリカ
ゲルスラリーは、常法通り乾燥される。シリカ担体を成
型物として取得したい場合には、必要に応じてスラリー
を脱水後、所望の寸法及び形状に成型してから乾燥する
ことが望ましい。また、球状粒子を取得したい場合に
は、スラリーを噴霧乾燥することが好ましい。乾燥後
は、空気中で300〜1100℃の温度で焼成することによ
り、本発明の目的物たる大細孔容積で高粒子強度の多孔
性シリカ担体を得ることができる。
Regardless of whether or not an operation of shifting the slurry to an acidic region is involved, the silica gel slurry to which a predetermined amount of silicic acid solution has been added is dried by a usual method. When it is desired to obtain the silica carrier as a molded product, it is desirable that the slurry be dehydrated, if necessary, molded into a desired size and shape, and then dried. Further, when it is desired to obtain spherical particles, it is preferable to spray-dry the slurry. After drying, the porous silica carrier having a large pore volume and a high particle strength, which is an object of the present invention, can be obtained by firing in air at a temperature of 300 to 1100 ° C.

このようにして製造されたシリカ担体は、いろいろな用
途に使用できる。例えば、特願昭60−11719号の
方法によって、平均粒径5μのシリカマイクロビーズを
作ることができる。このシリカマイクロビーズの細孔容
積は1.0〜2.5cc/gと大きいため、これらを液体クロマ
トグラフの担体として使用すれば非常に有効である。ま
た同様にタンパク質等の分取用担体などにも使用でき
る。さらに、濾過助剤としても有効である。また、この
大きな細孔容積の中に、例えば色素を含浸させれば、色
素担体としても利用できる。色素にて直接蒲鉾に模様を
入れると、色素が不必要な所までにじんで鮮明な模様が
得られない欠点がある。しかし、色素担体を用いて模様
を入れると、にじむことがないので明確な模様を有する
かまぼこを得ることができる。しかもこの担体の粒径は
5μと小さいため、口当たりに関しても不都合がない。
The silica carrier thus produced can be used for various purposes. For example, silica micro beads having an average particle size of 5 μ can be produced by the method of Japanese Patent Application No. 60-11719. Since the pore volume of this silica microbead is as large as 1.0 to 2.5 cc / g, it is very effective if these are used as a carrier for liquid chromatography. Similarly, it can be used as a carrier for separating proteins and the like. Furthermore, it is also effective as a filter aid. Further, if a dye is impregnated into the large pore volume, it can be used as a dye carrier. If you put a pattern directly on the kamaboko with a dye, there is a drawback that the dye does not get to a point where a clear pattern cannot be obtained. However, when a pattern is formed by using the dye carrier, squeezing does not occur, so that a kamaboko having a clear pattern can be obtained. Moreover, since the particle size of this carrier is as small as 5 μ, there is no inconvenience in mouth feel.

また、本発明のシリカ担体の細孔に香水を含浸させる
と、従来のマイクロビーズに比較して細孔容積が3〜8
倍もあるため、含浸量を増加させることにより、長持ち
する香水含有シリカ担体を得ることができる。同様にし
て、防カビ剤を含浸させれば、効果が大きく、長持ちす
る防カビ剤含有シリカマイクロビーズを得ることができ
る。
Further, when the pores of the silica carrier of the present invention are impregnated with perfume, the pore volume becomes 3 to 8 as compared with the conventional microbeads.
Since it is twice as long, it is possible to obtain a long-lasting perfume-containing silica carrier by increasing the impregnation amount. Similarly, by impregnating the antifungal agent, it is possible to obtain the antifungal agent-containing silica microbeads having a great effect and long-lasting.

さらにまた、本発明のシリカ担体を噴霧乾燥によって平
均粒径60〜100μの球状粒子とし、これを所定の温度で
焼成することにより、触媒担体とすることも可能であ
る。例えばこの種の触媒担体に、硫酸バナジルと硫酸カ
リウムを含浸させて、500℃で焼成すれば、無水フタル
酸触媒を製造することができる。
Furthermore, the silica carrier of the present invention can be used as a catalyst carrier by spray drying to obtain spherical particles having an average particle size of 60 to 100 μm and calcining the particles at a predetermined temperature. For example, a phthalic anhydride catalyst can be produced by impregnating this type of catalyst carrier with vanadyl sulfate and potassium sulfate and calcining at 500 ° C.

上記した以外にも、本発明の方法で製造されるシリカ担
体は、細孔容積が大きく、粒子強度が高いことから、様
々な用途に使用できる可能性を有している。
In addition to the above, the silica carrier produced by the method of the present invention has a large pore volume and a high particle strength, and thus has the possibility of being used in various applications.

[実施例] 実施例1 内容積50のスチームジャケット付きタンクに、SiO
濃度20%のシリカゾル20kgを収め、これを撹拌しつつ
濃度63%の硝酸を加えてpHを0.75とした後、撹拌を続
けながら濃度15%のアンモニア水を加えてpHを9.5と
することにより、シリカヒドロゲルを得た。
Example 1 Example 1 A tank with a steam jacket having an internal volume of 50 was filled with SiO 2.
2 20kg of silica sol with 20% concentration was added, and nitric acid with 63% concentration was added with stirring to adjust pH to 0.75. Then, ammonia water with 15% concentration was added with stirring to adjust pH to 9.5. , Silica hydrogel was obtained.

このゲルを高速撹拌機に供給してSiO濃度16%のシ
リカゲルスラリーを調製し、これを80℃に加温後、濃度
15%のアンモニア水を加えてpHを9.5に調節し、これ
にSiO濃度5%、pH2.83のケイ酸液を18.5g/分
の速度で、総量8880g添加してスラリー(X)を得た。
This gel was fed to a high-speed stirrer to prepare a silica gel slurry with a SiO 2 concentration of 16%, which was heated to 80 ° C and then concentrated.
The pH was adjusted to 9.5 by adding 15% ammonia water, and a silicic acid solution having a SiO 2 concentration of 5% and a pH of 2.83 was added at a rate of 18.5 g / min to a total amount of 8880 g to obtain a slurry (X). It was

前記のケイ酸液はSiO濃度5%の水ガラスを陽イオ
ン交換樹脂で処理して調整したものであり、ケイ酸液の
添加に際しては、濃度15%のアンモニア水を同時に添加
すると共に、加温を継続して常時スラリーのpHを9.5
に、液温を80℃に保持した。
The silicic acid solution was prepared by treating water glass having a SiO 2 concentration of 5% with a cation exchange resin. When adding the silicic acid solution, ammonia water having a concentration of 15% was added at the same time. Keep the temperature constant and keep the pH of the slurry at 9.5
The liquid temperature was kept at 80 ° C.

上記のようにして得られたスラリー(X)を噴霧乾燥し、
次いで400℃で3時間焼成してシリカ担体を製造した。
この担体の水銀圧入法による細孔容積は1.6cc/g、B
ET法による表面積は155m2/gであった。また、下記の
ような粒子強度評価法による粒子強度は、11.9であっ
た。
Spray drying the slurry (X) obtained as described above,
Then, it was calcined at 400 ° C. for 3 hours to produce a silica carrier.
The pore volume of this carrier measured by mercury porosimetry is 1.6 cc / g, B
The surface area by the ET method was 155 m 2 / g. The particle strength measured by the particle strength evaluation method described below was 11.9.

粒子強度評価法 シリカ担体を目開き44μの篩にかけて篩上の試料10gを
採取する。この試料を50gの水と共に100ccのビーカー
に入れて軽く撹拌した後、出力300W、19.5kHzの超
音波発振器の先端をビーカーに入れ、10分間粉砕する。
次いで、ビーカーの内容物を目開き44μの篩にあけ、篩
上を水で洗い、篩下全量を110℃で16時間乾燥する。こ
の乾燥物を秤量し、次式に従って粒子強度を算出した。
Particle Strength Evaluation Method Silica carrier is passed through a sieve having a mesh of 44 μm to collect 10 g of a sample on the sieve. This sample is put in a 100 cc beaker together with 50 g of water and stirred lightly, and then the tip of an ultrasonic oscillator with an output of 300 W and 19.5 kHz is put in a beaker and ground for 10 minutes.
Then, the contents of the beaker are opened on a sieve having an opening of 44μ, the upper side of the sieve is washed with water, and the whole amount under the sieve is dried at 110 ° C for 16 hours. The dried product was weighed and the particle strength was calculated according to the following formula.

実施例2 実施例1と同様にして得られたスラリー(X)を80℃に保
持しながら、濃度63%の硝酸を加えてpHを6.1とし
た。の状態で10分間撹拌した後、濃度15%のアンモニア
水をこれに加えてpHを再度9.5とした。
Example 2 While maintaining the slurry (X) obtained in the same manner as in Example 1 at 80 ° C., nitric acid having a concentration of 63% was added to adjust the pH to 6.1. After stirring for 10 minutes in the above state, ammonia water having a concentration of 15% was added thereto to adjust the pH to 9.5 again.

このスラリーにSiO濃度5%のケイ酸液を実施例1
と同様な条件で添加した後(但し、添加総量は2340gと
した)、これを噴無乾燥し、さらに400℃で3時間焼成
してシリカ担体を得た。このシリカ担体の水銀圧入法に
よる細孔容積は2.33cc/g、平均細孔直径は700Å、表
面積は161m2/gであった。また粒子強度は26.5であっ
た。
A silicic acid solution having a SiO 2 concentration of 5% was added to this slurry in Example 1.
After adding under the same conditions as above (however, the total amount added was 2340 g), this was spray-dried and further calcined at 400 ° C. for 3 hours to obtain a silica carrier. This silica carrier had a pore volume of 2.33 cc / g, an average pore diameter of 700Å and a surface area of 161 m 2 / g as determined by the mercury intrusion method. The particle strength was 26.5.

比較例1 実施例1と同様にして得たシリカヒドロゲルスラリー
を、液温80℃、pH9.5の条件で8時間熟成した後、こ
れを噴無乾燥し、さらに実施例1と同様な条件で焼成し
てシリカ担体を得た。このシリカ担体の水銀圧入法によ
る細孔容積は0.9cc/g、平均細孔直径は170Å、表面積
は122m2/gであった。また粒子強度は91.2であった。
Comparative Example 1 A silica hydrogel slurry obtained in the same manner as in Example 1 was aged at a liquid temperature of 80 ° C. and a pH of 9.5 for 8 hours, then dried without spraying, and further subjected to the same conditions as in Example 1. It was calcined to obtain a silica carrier. This silica carrier had a pore volume of 0.9 cc / g, a mean pore diameter of 170 Å and a surface area of 122 m 2 / g as determined by the mercury intrusion method. The particle strength was 91.2.

比較例2 シリカヒドロゲルスラリーの熟成時間を8時間から10.1
時間に変更した以外は比較例1と同様にしてシリカ担体
を得た。このシリカ担体の水銀圧入法による細孔容積は
0.9cc/g、表面積は120m2/g、粒子強度は89.5であっ
た。
Comparative Example 2 Silica hydrogel slurry aging time from 8 hours to 10.1
A silica carrier was obtained in the same manner as in Comparative Example 1 except that the time was changed. The pore volume of this silica support by mercury porosimetry is
The particle size was 0.9 cc / g, the surface area was 120 m 2 / g, and the particle strength was 89.5.

実施例3 実施例1に於けるケイ酸液の添加総量だけを変更し、44
40gとした以外は実施例1と全く同様にしてシリカ担体
を得た。この担体の水銀圧入法による細孔容積は1.25cc
/g、平均細孔直径は190Å、表面積は151m2/gであっ
た。また粒子強度は13.0であった。
Example 3 Only the total amount of silicic acid solution added in Example 1 was changed.
A silica carrier was obtained in exactly the same manner as in Example 1 except that the amount was 40 g. This carrier has a pore volume of 1.25 cc as determined by mercury porosimetry.
/ G, the average pore diameter was 190Å, and the surface area was 151 m 2 / g. The particle strength was 13.0.

実施例4 実施例1に於けるケイ酸液の添加速度だけを変更し、75
g/分とした以外は実施例1と全く同様にしてシリカ担
体を得た。この担体の水銀圧入法による細孔容積は1.52
cc/g、平均細孔直径は205Å、表面積は148m2/gであ
った。また粒子強度は11.4であった。
Example 4 Only the addition rate of the silicic acid solution in Example 1 was changed to 75
A silica carrier was obtained in exactly the same manner as in Example 1 except that g / min was set. The pore volume of this carrier measured by mercury porosimetry is 1.52.
cc / g, average pore diameter was 205Å, and surface area was 148 m 2 / g. The particle strength was 11.4.

実施例5 実施例1に於けるケイ酸液の添加総量だけを変更し、72
000gとした以外は実施例1と全く同様にしてシリカ担
体を得た。この担体の水銀圧入法による細孔容積は1.71
cc/g、平均細孔直径は220Å、表面積は147m2/gであ
った。また粒子強度は2.1であった。
Example 5 Only the total amount of the silicic acid solution added in Example 1 was changed.
A silica carrier was obtained in exactly the same manner as in Example 1 except that the amount was 000 g. This carrier has a pore volume of 1.71 as determined by mercury porosimetry.
cc / g, average pore diameter was 220Å, and surface area was 147 m 2 / g. The particle strength was 2.1.

実施例6 実施例1に於けるpHを8.6とした以外は実施例1と全
く同様にしてシリカ担体を得た。この担体の水銀圧入法
による細孔容積は1.55cc/g、平均細孔直径は200Å、
表面積は158m2/gであった。また粒子強度は14.7であ
った。
Example 6 A silica carrier was obtained in exactly the same manner as in Example 1 except that the pH in Example 1 was 8.6. This carrier has a pore volume of 1.55 cc / g and a mean pore diameter of 200Å by mercury porosimetry.
The surface area was 158 m 2 / g. The particle strength was 14.7.

比較例3 実施例1に於けるpHを8.0とした以外は実施例1と全
く同様にしてシリカ担体を得た。この担体の水銀圧入法
による細孔容積は0.92cc/g、平均細孔直径は170Å、
表面積は150m2/gであった。また粒子強度は90.8であ
った。
Comparative Example 3 A silica carrier was obtained in exactly the same manner as in Example 1 except that the pH in Example 1 was set to 8.0. This carrier has a pore volume of 0.92 cc / g and a mean pore diameter of 170Å by mercury porosimetry.
The surface area was 150 m 2 / g. The particle strength was 90.8.

実施例7 実施例1に於ける温度を53℃とした以外は実施例1と全
く同様にしてシリカ担体を得た。この担体の水銀圧入法
による細孔容積は1.53cc/g、平均細孔直径は195Å、
表面積は153m2/gであった。また粒子強度は15.1であ
った。
Example 7 A silica carrier was obtained in exactly the same manner as in Example 1 except that the temperature in Example 1 was 53 ° C. The pore volume of this carrier measured by mercury porosimetry is 1.53cc / g, the average pore diameter is 195Å,
The surface area was 153 m 2 / g. The particle strength was 15.1.

比較例4 実施例1に於ける温度を35℃とした以外は実施例1と全
く同様にしてシリカ担体を得た。この担体の水銀圧入法
よる細孔容積は0.87cc/g、平均細孔直径は140Å、表
面積は155m2/gであった。また粒子強度は87.2であっ
た。
Comparative Example 4 A silica carrier was obtained in exactly the same manner as in Example 1 except that the temperature in Example 1 was 35 ° C. This carrier had a pore volume of 0.87 cc / g, an average pore diameter of 140Å and a surface area of 155 m 2 / g as determined by the mercury porosimetry method. The particle strength was 87.2.

実施例8 実施例1に於けるシリカゲルスラリーのSiO濃度16
%を、55%に増大させた以外は実施例1と全く同様にし
てシリカ担体を得た。この担体の水銀圧入法による細孔
容積は1.52cc/g、平均細孔直径は220Å、表面積は157
m2/gであった。また粒子強度は12.4であった。
Example 8 SiO 2 concentration 16 in silica gel slurry in Example 1
A silica carrier was obtained in exactly the same manner as in Example 1 except that the content of% was increased to 55%. This carrier has a pore volume of 1.52 cc / g as determined by mercury porosimetry, an average pore diameter of 220Å, and a surface area of 157.
It was m 2 / g. The particle strength was 12.4.

実施例9 スラリー(X)のpHを酸性域にシフトさせた実施例2に
於いて、ケイ酸液の添加総量を2340gから38000gに変
更した以外は実施例2と全く同様にしてシリカ担体を得
た。この担体の水銀圧入法による細孔容積は2.45cc/
g、平均細孔直径は850Å、表面積は152m2/gであっ
た。また粒子強度は4.6であった。
Example 9 A silica carrier was obtained in exactly the same manner as in Example 2 except that the total amount of the silicic acid solution added was changed from 2340 g to 38000 g in Example 2 in which the pH of the slurry (X) was shifted to the acidic range. It was This carrier has a pore volume of 2.45cc /
g, the average pore diameter was 850Å, and the surface area was 152 m 2 / g. The particle strength was 4.6.

応用例 三酸化クロム1gをイオン交換水200mlに溶解し、この
溶液に実施例3で得られたシリカ担体50gを浸漬して室
温にて1時間撹拌した。次いで、このスラリーを湯浴上
で加熱し、水を除去後、120℃で10時間減圧乾燥した。
しかる後、この乾燥物を酸素気流下、800℃で5時間焼
成し、固体触媒を得た。この固体触媒はクロムを1wt%
含有し、このものを窒素雰囲気下、室温にてしばらく保
存した。
Application Example 1 g of chromium trioxide was dissolved in 200 ml of ion-exchanged water, 50 g of the silica carrier obtained in Example 3 was immersed in this solution, and the mixture was stirred at room temperature for 1 hour. Next, this slurry was heated on a hot water bath to remove water, and then dried under reduced pressure at 120 ° C. for 10 hours.
Thereafter, the dried product was calcined at 800 ° C. for 5 hours in an oxygen stream to obtain a solid catalyst. This solid catalyst contains 1 wt% chromium
This was stored in a nitrogen atmosphere at room temperature for a while.

次に、この固体触媒を使用して下記のような重合を行っ
た。
Next, the following polymerization was carried out using this solid catalyst.

窒素置換し、撹拌機を付した内容量2のステンレスス
チール製オートクレープに、1のヘキサン、1ミリモ
ルのジエチルアルミニウムエトキシド及び上記の固体触
媒500mgを加えて、80℃に加温した。エチレン分圧が10k
g/cm2となるようにエチレンをオートクレープに連続的
に供給し、1時間重合を行った。しかる後、オートクレ
ープを開放して溶媒を除去し、重合物を乾燥して嵩密度
0.40g/cm3の真球状ポリエチレンを得た。
To a stainless steel autoclave having an internal volume of 2 which was replaced with nitrogen and equipped with a stirrer, 1 hexane, 1 mmol of diethylaluminum ethoxide and 500 mg of the above solid catalyst were added and heated to 80 ° C. Ethylene partial pressure is 10k
Ethylene was continuously supplied to the autoclave so as to be g / cm 2, and polymerization was carried out for 1 hour. Then, open the autoclave to remove the solvent and dry the polymer to obtain the bulk density.
0.40 g / cm 3 of spherical polyethylene was obtained.

[発明の効果] 本発明の方法で得られるシリカ担体は、細孔容積が1.0
〜2.5cc/g程度で、平均細孔直径が100〜1000Åの範囲
にあり、しかも粒子強度が大きいため、各種担体として
極めて好適である。例えば、液体クロマトグラフの担
体、蒲鉾に模様を描く際などに使用される色素担体、香
水を含有させる担体などとして使用できる外、濾過助剤
としても有用である。
[Effect of the Invention] The silica carrier obtained by the method of the present invention has a pore volume of 1.0
Approximately 2.5 cc / g, the average pore diameter is in the range of 100 to 1000Å, and the particle strength is high, and therefore it is extremely suitable as various carriers. For example, it can be used as a carrier for liquid chromatographs, a pigment carrier used for drawing patterns on kamaboko, a carrier containing perfume, and also as a filter aid.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】SiO濃度が1〜60wt%の範囲にあるシ
リカゲルスラリーに、アルカリ水溶液を添加してスラリ
ーのpHを8.5以上に保持しつつ、液温を50℃以上に保
持しながら、1分間当りのケイ酸液の添加量がSiO
量に換算して、前記シリカゲルスラリーに含まれるSi
量の1/1000以下になる添加速度で、且つケイ酸液
の添加総量がSiO量に換算して、前記シリカゲルス
ラリーに含まれるSiO量の50wt%を越えない範囲内
で、ケイ酸液を前記のシリカゲルスラリーに添加し、次
いでこの混合スラリーを乾燥して焼成することからなる
多孔性シリカ担体の製造法。
1. A silica gel slurry having a SiO 2 concentration in the range of 1 to 60 wt% is added with an alkaline aqueous solution to maintain the pH of the slurry at 8.5 or higher and the liquid temperature at 50 ° C. or higher. The amount of silicic acid solution added per minute is SiO 2
Converted to the amount, Si contained in the silica gel slurry
When the addition rate is 1/1000 or less of the O 2 amount and the total addition amount of the silicic acid solution is converted into the SiO 2 amount and does not exceed 50 wt% of the SiO 2 amount contained in the silica gel slurry, A method for producing a porous silica carrier, which comprises adding an acid solution to the silica gel slurry, and then drying and firing the mixed slurry.
【請求項2】ケイ酸液の濃度がSiOとして8wt%以
下である特許請求の範囲第1項記載の方法。
2. The method according to claim 1, wherein the concentration of the silicic acid solution is 8 wt% or less as SiO 2 .
【請求項3】SiO濃度が1〜60wt%の範囲にあるシ
リカゲルスラリーに、アルカリ水溶液を添加してスラリ
ーのpHを8.5以上に保持しつつ、液温を50℃以上に保
持しながら、1分間当りのケイ酸液の添加量がSiO
量に換算して、前記シリカゲルスラリーに含まれるSi
量の1/1000以下になる添加速度で、且つケイ酸液
の添加総量がSiO量に換算して、前記シリカゲルス
ラリーに含まれるSiO量の50wt%を越えない範囲内
で、ケイ酸液を前記のシリカゲルスラリーに添加し、次
いで (a)ケイ酸液が添加されたシリカゲルスラリーに酸を加
えてpHを7以下に低下させる操作、 (b)操作(a)の後、アルカリ水溶液を添加してスラリーの
pHを8.5以上に保持しつつ、液温を50℃以上に保持し
ながら、1分間当りのケイ酸液の添加量がSiO量に
換算して、前記ケイ酸液が添加されたシリカゲルスラリ
ーに含まれる総SiO量の1/1000以下になる添加速
度で、且つケイ酸液の添加総量がSiO量に換算し
て、前記ケイ酸液が添加されたシリカゲルスラリーに含
まれる総SiO量の50wt%を越えない範囲内で、ケイ
酸液をシリカゲルスラリーに添加する操作、 を1回又は複数回繰り返し、得られた混合スラリーを乾
燥して焼成することからなる多孔性シリカ担体の製造
法。
3. An alkaline aqueous solution is added to a silica gel slurry having a SiO 2 concentration in the range of 1 to 60 wt% to maintain the pH of the slurry at 8.5 or higher and the liquid temperature at 50 ° C. or higher. The amount of silicic acid solution added per minute is SiO 2
Converted to the amount, Si contained in the silica gel slurry
When the addition rate is 1/1000 or less of the O 2 amount and the total addition amount of the silicic acid solution is converted into the SiO 2 amount and does not exceed 50 wt% of the SiO 2 amount contained in the silica gel slurry, An acid solution is added to the silica gel slurry, and then (a) an acid is added to the silica gel slurry to which the silicic acid solution is added to lower the pH to 7 or less. (B) After the operation (a), an alkaline aqueous solution is added. While maintaining the pH of the slurry at 8.5 or more and the liquid temperature at 50 ° C. or more, the addition amount of the silicic acid solution per minute is converted into the amount of SiO 2 , and the silicic acid solution is At a rate of addition of 1/1000 or less of the total amount of SiO 2 contained in the added silica gel slurry, and by converting the total amount of the silicic acid solution converted to the amount of SiO 2 , the silica gel slurry to which the silicic acid solution has been added is added. It does not exceed 50wt% of the total amount of SiO 2 contained In 囲内, operation of adding the silicic acid solution to a silica gel slurry, once or repeated a plurality of times, the preparation of porous silica support which comprises calcining and drying the mixed slurry obtained.
【請求項4】ケイ酸液の濃度がSiOとして8wt%以
下である特許請求の範囲第3項記載の方法。
4. The method according to claim 3, wherein the concentration of the silicic acid solution is 8 wt% or less as SiO 2 .
JP61093660A 1986-04-23 1986-04-23 Method for producing porous silica carrier Expired - Fee Related JPH0631173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61093660A JPH0631173B2 (en) 1986-04-23 1986-04-23 Method for producing porous silica carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61093660A JPH0631173B2 (en) 1986-04-23 1986-04-23 Method for producing porous silica carrier

Publications (2)

Publication Number Publication Date
JPS62252378A JPS62252378A (en) 1987-11-04
JPH0631173B2 true JPH0631173B2 (en) 1994-04-27

Family

ID=14088545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61093660A Expired - Fee Related JPH0631173B2 (en) 1986-04-23 1986-04-23 Method for producing porous silica carrier

Country Status (1)

Country Link
JP (1) JPH0631173B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6910252B2 (en) 2017-09-05 2021-07-28 昭和電工株式会社 Method for manufacturing silica carrier
JP6986908B2 (en) 2017-09-05 2021-12-22 昭和電工株式会社 Method for producing aliphatic carboxylic acid ester

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5085608A (en) * 1973-11-30 1975-07-10

Also Published As

Publication number Publication date
JPS62252378A (en) 1987-11-04

Similar Documents

Publication Publication Date Title
JP3200623B2 (en) Method for producing hollow spherical silicate cluster
KR880001777B1 (en) Alumina coating compositions for catalyst supports and process for their formulation
US3520654A (en) Process for the preparation of low density alumina gel
US4677084A (en) Attrition resistant catalysts, catalyst precursors and catalyst supports and process for preparing same
US4514511A (en) Preparation of spheroidal alumina particulates
US4213950A (en) Process for preparing amorphous particulate poly(alumino-silicate)
GB2166970A (en) Silica-alumina-rare earth cogels
US4704374A (en) Novel spheroidal silica particulates
US2938874A (en) Preparation of phosphate-containing alumina gels
US4039474A (en) Silica-alumina catalysts
US3948807A (en) Oxide catalysts and process for preparation thereof
JP2992536B2 (en) Alumina-based catalysts for treating sulfur compound-containing gases, the use of these catalysts for the treatment of such gases, and methods of treating the gases
US2964481A (en) Preparation of attrition-resistant siliceous gels
CA1064008A (en) Process for the preparation of globular silica particles
JPH0631173B2 (en) Method for producing porous silica carrier
US3933991A (en) Sulfuric acid contact process
CN115090319A (en) Ozone catalyst and preparation method and application thereof
CA2085952C (en) Olefin polymerization
US4111843A (en) Silica-alumina and silica catalyst support bodies
USRE29145E (en) Catalyst for sulfuric acid contact process
US3520824A (en) Method of preparing silica-alumina hydrosols
JPS629532B2 (en)
JPH07138015A (en) Silica fine spherical particle and its production
JPS5969424A (en) Manufacture of alumina having low bulk density
SU865792A1 (en) Method of producing spherical silicagel

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees