JPS622502A - Manufacture of spinel type ferrite base sintered magnetic material - Google Patents

Manufacture of spinel type ferrite base sintered magnetic material

Info

Publication number
JPS622502A
JPS622502A JP14021285A JP14021285A JPS622502A JP S622502 A JPS622502 A JP S622502A JP 14021285 A JP14021285 A JP 14021285A JP 14021285 A JP14021285 A JP 14021285A JP S622502 A JPS622502 A JP S622502A
Authority
JP
Japan
Prior art keywords
plate
ferrite
produced
geothite
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14021285A
Other languages
Japanese (ja)
Inventor
Kyoji Odan
恭二 大段
Yasuo Bando
坂東 康夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP14021285A priority Critical patent/JPS622502A/en
Publication of JPS622502A publication Critical patent/JPS622502A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)
  • Magnetic Heads (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To produce a magnetic head with easy sintering property, low porosity, high concentration as well as anisotropy, were proof and high mechanical strength by a method wherein a ferrite sintered body is produced using plate- type geothite with specified particle diameter and plate ratio. CONSTITUTION:A plate-type geothite with particle diameter of 0.01-0.5mum preferably 0.04-0.3mum is recommended to be formed into preferably 3-6 each of hexagonal plates or similar shape. Such a plate-type geothite can be produced by means of producing ferric hydroxide with 30-80 times mole of oxyalkyl amine such as ethanol amine added thereto when the ferric hydroxide is produced by making the ferric slat and alkali hydroxide react to each other together with water to water-heat-treat the slurry of produced ferric hydroxide. The general procedures to produce a ferrite base sintered body with spinel type structure using plate-type geothite as a part of initial material are those of material mixing, prebaking, crushing, granulating, forming and sintering operations.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は盤状ゲーサイトを使用したスピネル型構造を有
するフェライト系焼結体磁性材料の製造法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a ferrite-based sintered magnetic material having a spinel structure using plate-shaped goethite.

スピネル型フェライト焼結体は固有抵抗が高いので、高
周波磁性材料に用途があり、また結晶構造的に異方性を
示す点からは、磁気ヘッドのような用途に応用すること
ができる。
Since the spinel type ferrite sintered body has a high specific resistance, it can be used as a high frequency magnetic material, and since it exhibits anisotropy in its crystal structure, it can be applied to applications such as magnetic heads.

〔従来の技術および問題点〕[Conventional technology and problems]

スピネル型のフェライトの構造は立方晶で1等方的な物
性を示している。
The structure of spinel-type ferrite is cubic and exhibits monoisotropic physical properties.

近年このようなフェライト焼結体は磁気ヘッドのような
用途に応用される際に、磁気テープによる磨耗が生じ、
その改善が要望されている。またこのようなフェライト
の磁気ヘッドは、一般に初透磁率および磁束密度が低く
1機械的強度も弱い。
In recent years, when such ferrite sintered bodies are used in applications such as magnetic heads, they are subject to wear due to magnetic tapes.
Improvements are requested. Furthermore, such ferrite magnetic heads generally have low initial magnetic permeability and low magnetic flux density, and also have low mechanical strength.

これらの点を改良するためには、フェライトの焼結度を
向上させることが必要である。すてに空孔率が小さいフ
ェライト焼結体を作る技術として。
In order to improve these points, it is necessary to improve the degree of sintering of ferrite. As a technology to create ferrite sintered bodies with low porosity.

たとえばホットプレス法などが利用されているが。For example, the hot press method is used.

空孔率を少なくすると同時に焼結体を構成する微結晶の
特定面を揃えた焼結体を製造することが耐磨耗性を高く
1機械的強度を高くするのに有効な方法である。
It is an effective method to reduce the porosity and at the same time to produce a sintered body in which specific planes of the microcrystals constituting the sintered body are aligned, to increase wear resistance and mechanical strength.

このような方法として例えば特開昭48−46897号
公報、特開昭49−129891号公報等には。
Such methods are disclosed in, for example, Japanese Unexamined Patent Publication No. 48-46897 and Japanese Unexamined Patent Publication No. 129891-1989.

出発原料と°して板状(雲母状、うろこ状)酸化鉄(α
−Fe203 )を使用して得られるスピネル型フェラ
イト焼結体が有効であることが開示されている。しかし
、空孔率1機械的強度の点では未だ十分とは言えない。
The starting material is platy (mica-like, scale-like) iron oxide (α
-Fe203) is disclosed to be effective. However, it is still not sufficient in terms of porosity and mechanical strength.

また広田らは、セラミックス18゜Nα3P190(1
983)において、スピネル型結晶構造をもつMn−Z
nフェライトは(1’11)の結晶面において磨耗が大
きく、そのため磁気ヘッドをフェライト焼結体で作製す
る場合には、磁気ヘッドのトラック面に焼結体を構成す
る微結晶の(111)面が少ないような異方性の焼結体
を作ることが重要であシ、また一方焼結体を構成する各
々の微結晶の(1,1,1)面を揃えた異方性焼結体を
作製すると。
In addition, Hirota et al.
983), Mn-Z with spinel crystal structure
N-ferrite has a large amount of wear on the (1'11) crystal plane, so when a magnetic head is made of a ferrite sintered body, the (111) plane of the microcrystal that makes up the sintered body is attached to the track surface of the magnetic head. It is important to create an anisotropic sintered body that has a small amount of When you create .

<11′、1〉面に垂直な面で磨耗に強い<110> 
面が得られ、磁気ヘッドとして耐磨耗性がよくなるとし
ている。またこのような異方性フェライト焼結体を得る
ためには、板状のα−Fe203および短冊状α−Fe
OOHを原料にすることが有効であると報告している。
<110> is resistant to wear because it is perpendicular to the <11', 1> plane.
It is said that this will improve the abrasion resistance of the magnetic head. In addition, in order to obtain such an anisotropic ferrite sintered body, plate-shaped α-Fe203 and strip-shaped α-Fe
It has been reported that using OOH as a raw material is effective.

しかし、この板状(雲母状)のα−Fe203は。However, this plate-like (mica-like) α-Fe203.

板状比は大きいが1粒子径が大きく0.5μm以下の微
粒子を製造することが難しい。そのため粒子の充填性が
低く、得られる焼結体の密度を高くすることが困難であ
る。また短冊状α−Fθ001(は。
Although the plate-like ratio is high, it is difficult to produce fine particles with a large single particle diameter of 0.5 μm or less. Therefore, the filling properties of the particles are low, and it is difficult to increase the density of the obtained sintered body. Also, the strip-shaped α-Fθ001 (ha).

一般に針状性であり、短冊状にすると粒子長が1〜6μ
m1幅0.2〜0.5μmとなり、この場合にも嵩密度
が高く、充填性が悪くなって、高密度で。
Generally acicular, and when made into strips, the particle length is 1 to 6 μm.
m1 width is 0.2 to 0.5 μm, and in this case too, the bulk density is high and the filling property is poor, resulting in high density.

低空孔率の焼結体を得ることが難し、い。また、これら
の原料を使用する場合には1300°C以上の温度にし
なければ、高い特性の焼結フェライトを得ることが困難
である。
It is difficult to obtain a sintered body with low porosity. Furthermore, when these raw materials are used, it is difficult to obtain sintered ferrite with high properties unless the temperature is 1300°C or higher.

本発明者らは上記の問題点を解決するとともに。The present inventors have solved the above-mentioned problems.

磁気ヘッド用フェライトとして磨耗が小さく1機械的強
度の高いものを得ようとした。すなわち。
An attempt was made to obtain a ferrite for magnetic heads with low wear and high mechanical strength. Namely.

フェライトの焼結体の空孔率が小さく、密度が高く、シ
かも結晶面で異方性の高いものを得ようとした。
We attempted to obtain a ferrite sintered body with low porosity, high density, and high anisotropy in the crystal planes.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

この問題点を解決するに当り1粒子径0.01〜0.5
μm、盤状比1〜10の盤状ゲーサイト(α−Fe20
3 )を使用してフェライト焼結体を得ると、易焼結性
、低空孔率、高密度になシしかも異方性になることを知
見した。
To solve this problem, one particle size is 0.01 to 0.5.
μm, platy goethite with a platy ratio of 1 to 10 (α-Fe20
It has been found that when a ferrite sintered body is obtained using 3), it has easy sinterability, low porosity, high density, and is anisotropic.

このスピネル型異方性フェライト焼結体は耐磨耗性およ
び高機械的強度の磁気ヘッドになる。
This spinel type anisotropic ferrite sintered body becomes a magnetic head with wear resistance and high mechanical strength.

この発明において盤状ゲーサイトは1粒子径0.01〜
0.5μm、好ましくは0.04〜0.3μml盤状比
1〜10.好ましくは3〜6の六角盤ないしそれに近似
した形態のものが好適に使用される。
In this invention, the plate-shaped goethite has a particle diameter of 0.01 to
0.5 μm, preferably 0.04-0.3 μml disk ratio 1-10. Preferably, a 3 to 6 hexagonal disc or a shape similar to the hexagonal disc is preferably used.

このような盤状ゲーサイトは第二鉄塩と水酸化アルカリ
とを水の存在下に反応させて水酸化第二鉄を生成させる
際にエタノールアミンの如きオキシアルキルアミンを第
二鉄塩に対して30〜80倍モル添加して水酸化第二鉄
を生成させ、得られた水酸化第二鉄のスラリを水熱処理
する方法で製造することができる。盤状ゲーサイト及び
その製造法の詳細は1例えば特願昭60−7832号明
細書に記載されている。またこの盤状ゲーサイトととも
に用いる出発原料の他の成分原料としては。
Such platy goethite is produced by reacting an oxyalkylamine such as ethanolamine with a ferric salt when reacting a ferric salt with an alkali hydroxide in the presence of water to produce ferric hydroxide. It can be produced by adding 30 to 80 times the mole of ferric hydroxide to generate ferric hydroxide, and hydrothermally treating the resulting slurry of ferric hydroxide. Details of the disc-shaped goethite and its manufacturing method are described in, for example, Japanese Patent Application No. 1983-7832. In addition, other raw materials for the starting materials used together with this disc-shaped goethite include:

たとえばZn+ Ni+Mn等の酸化物、水酸化物、炭
酸塩、硝酸塩および有機酸塩が代表される。
For example, oxides such as Zn+Ni+Mn, hydroxides, carbonates, nitrates, and organic acid salts are representative.

盤状ゲーサイトとともに用いる他の成分原、料の。Other ingredients used with platy goethite.

具体例としては酸化亜鉛、水酸化亜鉛、硝酸亜鉛。Specific examples include zinc oxide, zinc hydroxide, and zinc nitrate.

酢酸亜鉛等の亜鉛化合物、二酸化マンガン、炭酸マンガ
ン、硝酸マンガン、 酢酸マンガン等のマンガン化合物
、酸化ニッケル、水酸化ニッケル、炭酸ニッケル、硝酸
ニッケル、酢酸ニッケル等のニッケル化合物を挙げるこ
とができる。
Examples include zinc compounds such as zinc acetate, manganese compounds such as manganese dioxide, manganese carbonate, manganese nitrate, and manganese acetate, and nickel compounds such as nickel oxide, nickel hydroxide, nickel carbonate, nickel nitrate, and nickel acetate.

スピネル型フェライト焼結体になりうる他の成分原料の
粒子径は、なるべく微粒子が望ましい。
It is desirable that the particle diameters of the other component raw materials that can become the spinel type ferrite sintered body are as fine as possible.

たとえば使用する盤状ゲーサイトの粒子径より小さいも
のが良い。なお、水およびアルコールに不溶な他の成分
の原料は粒子径を0.5μm以下のものを使用すること
が望ましい。
For example, it is preferable that the particle size is smaller than the particle size of the disc-shaped goethite used. Note that it is desirable to use raw materials for other components insoluble in water and alcohol with a particle size of 0.5 μm or less.

本発明の盤状ゲーサイトを出発原料の一部として用いス
ピネル型構造を有するフェライト系焼結体を製造する方
法としては一般に原料混合、仮焼成、粉砕、造粒、成形
および焼成の工程を経る方法が採用される。それぞれの
工程の操作は通常の方法で十分満足のいく製品が得られ
る。しかし9これらの工程をすべて完遂する必要はなく
1部分的に例えば仮焼成を省くことも可能である。
A method for producing a ferritic sintered body having a spinel structure using the plate-like goethite of the present invention as part of the starting raw material generally involves the steps of mixing raw materials, pre-calcining, pulverizing, granulating, molding, and firing. method is adopted. A fully satisfactory product can be obtained by operating each step in a conventional manner. However, it is not necessary to complete all of these steps, and it is possible to partially omit, for example, calcination.

まず、原料を所望のフェライト組成になるように各原料
を混合する。混合は均一な組成を得るたカニ。ホールミ
ル、振動ミル等による湿式法で行なうのがよい。その時
の溶媒としてはアルコール。
First, raw materials are mixed so that the raw materials have a desired ferrite composition. Mix the crabs to obtain a uniform composition. A wet method using a whole mill, vibration mill, etc. is preferable. Alcohol is the solvent at that time.

水等を使用するのが好ましいが、アルコールおよび水に
限定するものではない。
Although it is preferable to use water or the like, it is not limited to alcohol and water.

仮焼成は9本焼成の温度より200〜600°C程度低
い温度で行なう。しかし異方性をもたせる成形操作を行
なう場合には仮焼成操作を行なわないこともある。
Preliminary firing is performed at a temperature approximately 200 to 600°C lower than the temperature for firing nine pieces. However, when performing a molding operation that imparts anisotropy, the temporary firing operation may not be performed.

粉砕は、ボールミル、振動ミル等を使用する湿式粉砕を
採用することが望ましい。しかしこれらの方法に限定す
るものではない。
For pulverization, it is preferable to employ wet pulverization using a ball mill, vibration mill, or the like. However, the method is not limited to these methods.

造粒は成形作業を容易にするだめに施こすものであり、
粉末粒子の配向性を改善したり、成形金型との摩擦減少
のため9一般にpvA(ポリビニルアルコール)かCM
C(カルボキシルメチルセルローズ)グリセリン、ステ
アリン酸亜鉛等を添加して行うのが好適である。
Granulation is something that is done to make the molding work easier.
9 Generally, pvA (polyvinyl alcohol) or CM is used to improve the orientation of powder particles and reduce friction with the molding die.
It is preferable to add C (carboxylmethyl cellulose) glycerin, zinc stearate, or the like.

成形方法としては、圧縮成形、押出成形、静水圧成形、
加熱成形等いずれの成形法でもよい。
Molding methods include compression molding, extrusion molding, isostatic pressing,
Any molding method such as heat molding may be used.

仮焼成せずに、外部から振動を加えて成形する場合は、
アルコール、水等の溶媒を除去して成形した方が盤状ゲ
ーサイト1またはそれから得られた粉の整列度合は高い
。一般には十分なアルコールまたは水中に混合物を一様
に分散せしめてこれを成形用の金型に入れ、−軸性の加
水で水、アルコール等をしぼり出すとともに成形体を作
る。この時の圧力は大きいほど良いが1通常200〜2
oooKg/−程度を用いる。
When molding by applying external vibration without pre-firing,
The degree of alignment of the plate-like goethite 1 or the powder obtained therefrom is higher when it is molded after removing a solvent such as alcohol or water. In general, the mixture is uniformly dispersed in sufficient alcohol or water, placed in a mold, and the water, alcohol, etc. are squeezed out by adding water in an axial manner, and a molded article is produced. The higher the pressure at this time, the better, but 1 usually 200 to 2
oooKg/- degree is used.

焼成は、フェライト成形体を加熱してフェライト化に完
結させることであり、所要の寸法2機械的強度および電
磁気特性を決定するものであり。
Firing is heating the ferrite molded body to complete the formation of ferrite, and determines the required dimensions, mechanical strength, and electromagnetic properties.

焼成温度は1100〜1500°Cが適当である。A suitable firing temperature is 1100 to 1500°C.

焼成時間は長いほどよいが、長すぎても経済的でないの
で、一般には1〜50時間程度が好ましい。
The longer the firing time, the better; however, if it is too long, it is not economical, so generally about 1 to 50 hours is preferred.

またこのような成形体を通常の方法で焼結してフェライ
トを作れば、成形体中の0面にほぼ垂直な方向にフェラ
イトの<N1>面が揃った異方性のフェライト系焼結体
磁性材料が得られる。この成形体の焼結に際し外部から
一軸性の加圧力を加えるホットプレス焼成法を採用する
とよりち密な焼結体が得られ、空孔が少なく、密度もさ
らに高くなる。
Furthermore, if ferrite is produced by sintering such a molded body using a conventional method, an anisotropic ferrite-based sintered body in which the <N1> plane of the ferrite is aligned in a direction almost perpendicular to the 0 plane in the molded body is produced. A magnetic material is obtained. When sintering this compact, a hot press firing method in which a uniaxial pressing force is applied from the outside is employed, resulting in a denser sintered compact with fewer pores and a higher density.

〔実施例〕〔Example〕

実施例1 塩化第二鉄(FeCl2 H6H20〕500 S’を
蒸留水10tに溶解させ28゛Cに保持した溶液を、水
酸化ナトリウム7507およびモノエタノールアミンS
Z(塩化第二鉄に対して45倍モル)を蒸留水201に
溶解させ、20°Cに保持した溶液中に滴下し、約20
°Cに保持しながら十分に攪拌して反応させ、水酸化第
二鉄スラリを得た。
Example 1 A solution of ferric chloride (FeCl2 H6H20) 500 S' dissolved in 10 tons of distilled water and maintained at 28°C was mixed with sodium hydroxide 7507 and monoethanolamine S
Z (45 times the mole relative to ferric chloride) was dissolved in distilled water 201, and added dropwise to the solution kept at 20°C.
While maintaining the temperature at °C, the mixture was sufficiently stirred and reacted to obtain a ferric hydroxide slurry.

このスラリを30°Cで約20時間放置して熟成した後
、上澄液を除去し、濃度10チの水酸化ナトリウム水溶
液で洗浄してスラリのpHを11に調整し、スラリを内
容107のオートクレーブに仕込み、+ao’Cで1時
間水熱処理を施し、盤状ゲーサイトスラリを得た。
After this slurry was aged at 30°C for about 20 hours, the supernatant liquid was removed, and the pH of the slurry was adjusted to 11 by washing with an aqueous solution of sodium hydroxide with a concentration of 10%. The mixture was placed in an autoclave and subjected to hydrothermal treatment at +ao'C for 1 hour to obtain a plate-shaped goethite slurry.

盤状ゲーサイトスラリは、これを水洗、ろ過。The plate-shaped goethite slurry is washed with water and filtered.

乾燥して粉末状で盤状ゲーサイトを得た。After drying, a powdery plate-like goethite was obtained.

得られた盤状ゲーサイトの粉末の透過型電子顕微鏡写真
(5万倍に拡大)を第1図に示す。またX線回折による
分析で、この盤状ゲーサイトはα−Fe00H構造であ
ることが確認された。
A transmission electron micrograph (magnified 50,000 times) of the obtained platy goethite powder is shown in FIG. Moreover, analysis by X-ray diffraction confirmed that this disc-shaped goethite had an α-Fe00H structure.

盤状ゲーサイトは透過型電子顕微鏡(Tgn)によシ観
察し1粒子径(盤径)、盤状比(粒子径/厚み)等を測
定した。(30粒の平均)その結果。
The platy goethite was observed using a transmission electron microscope (Tgn), and the particle diameter (disc diameter), disc ratio (particle diameter/thickness), etc. were measured. (Average of 30 grains) The results.

粒子径は0.21μmであり、盤状比は6.5であった
The particle size was 0.21 μm, and the platelet ratio was 6.5.

上記の操作で得られた盤状ゲーサイト(粒子径0.21
μm、盤状比3.5 ) i 37.4 r、炭酸マン
ガフ (Mnc03)49.8 ? 、および水酸化亜
鉛(Zn(OH)2] 32..27にエチル7 A/
 コ−/L/ 3001を加えて、ボールミルで10時
間混合した。
The plate-shaped goethite obtained by the above procedure (particle size 0.21
μm, disc ratio 3.5) i 37.4 r, Manga carbonate (Mnc03) 49.8? , and zinc hydroxide (Zn(OH)2) 32..27 with ethyl 7 A/
Co-/L/3001 was added and mixed in a ball mill for 10 hours.

この混合物を成形用金型中に充填し7エチルアルコール
を除去した。その後500にり/肩の一軸性の加圧力で
しかも800’Cの温度下で加熱成形し、径20閣、高
さ1011111の円柱状の成形体を作った。
This mixture was filled into a mold and 7 ethyl alcohol was removed. Thereafter, it was heat-formed under a uniaxial pressing force of 500 mm/shoulder and at a temperature of 800'C to produce a cylindrical molded body with a diameter of 20 mm and a height of 1011111 mm.

つぎにこの成形体を2%酸素含有ガスを流通しながら、
1250°Cで15時間焼成した。
Next, this molded body is passed through a gas containing 2% oxygen,
It was baked at 1250°C for 15 hours.

得られたMn−Znフェライト系焼結体の空孔率は2%
(理論密度98%)であり、平均結晶粒径は、55/j
m程度であった。またX線で配向度を調べたところ、フ
ェライトの<111>面が成型時の加圧方向に垂直に約
55%配列していた。
The porosity of the obtained Mn-Zn ferrite sintered body was 2%.
(theoretical density 98%), and the average grain size is 55/j
It was about m. Further, when the degree of orientation was examined using X-rays, it was found that the <111> planes of the ferrite were approximately 55% aligned perpendicularly to the pressing direction during molding.

実施例2 実施例1と同様な方法で盤状ゲーサイトを得だ。Example 2 A plate-shaped goethite was obtained in the same manner as in Example 1.

この盤状ゲーサイト(粒子径0.21μm、盤状比ろ、
5)148rと水酸化ニッケル[: Ni(OH)2]
2 B、59 、水酸化亜鉛(Zn(OH)2 〕5 
L39にエチルアルコール3002加えてボールミルで
10時間混合した。
This disc-shaped goethite (particle size 0.21 μm, disc-shaped goethite,
5) 148r and nickel hydroxide [: Ni(OH)2]
2 B, 59, zinc hydroxide (Zn(OH)2) 5
Ethyl alcohol 3002 was added to L39 and mixed in a ball mill for 10 hours.

この混合物からエチルアルコールを除去した後。After removing the ethyl alcohol from this mixture.

成型用金型中に充填し、  500 Ky/cr?rの
一軸性の加圧ツノで、しかも800°Cの円柱状の成形
体を作った。
Fill it into a mold for 500 Ky/cr? A cylindrical molded body was made using a uniaxial pressurizing horn of 800°C.

つぎに、この成形体を2%酸素含有ガス中で1250°
Cで15時間焼成した。
Next, this molded body was heated at 1250° in a gas containing 2% oxygen.
It was fired at C for 15 hours.

得られたNi−Znフェライト焼結体の空孔率は3%(
理論密度97チ)であり、平均結晶粒径は32μm程度
であった。
The porosity of the obtained Ni-Zn ferrite sintered body was 3% (
The theoretical density was 97 cm), and the average crystal grain size was about 32 μm.

またX線で配向度を調べたところ、フェライトの<11
1>面が成型時の加圧方向に垂直に約55チ配列してい
た。
In addition, when examining the degree of orientation with X-rays, it was found that <11
1> planes were arranged perpendicularly to the pressing direction during molding by about 55 inches.

比較例1 α−Fe203 (粒子径10μm、板状比10)13
39、酸化ニッケル(N10粒子径0.5μm)。
Comparative example 1 α-Fe203 (particle size 10 μm, plate ratio 10) 13
39, nickel oxide (N10 particle size 0.5 μm).

酸化亜鉛(粒子径0.6μm)にエチルアルコール30
02を加えてボールミルで16時間混合した。
Ethyl alcohol 30% to zinc oxide (particle size 0.6μm)
02 was added and mixed in a ball mill for 16 hours.

この混合物からエチルアルコールを除去した後。After removing the ethyl alcohol from this mixture.

成形用金型中に充填し、5ooKp/−の−軸性の加圧
・加熱装置で800°Cで成形し、径201o++高さ
10m1の円柱状の成形体を得た。
The mixture was filled into a mold and molded at 800°C using a 5ooKp/- negative axis pressure/heating device to obtain a cylindrical molded body with a diameter of 201 o++ and a height of 10 m1.

つぎにこの成形体を2チ酸素含有ガス中で1250”C
,15時間焼成した。
Next, this molded body was heated to 1250"C in an oxygen-containing gas.
, baked for 15 hours.

得られたNi−Znフェライト焼結体の空孔率は7チ(
理論密度96チ)であり、平均結晶粒径は。
The porosity of the obtained Ni-Zn ferrite sintered body was 7 inches (
The theoretical density is 96 cm), and the average grain size is .

22μm程度であった。またX線で配向度を調べたとこ
ろ、フェライト<111>面が成形時の加圧方向に垂直
に約56%配列していた。
It was about 22 μm. Further, when the degree of orientation was examined using X-rays, it was found that approximately 56% of the ferrite <111> planes were aligned perpendicularly to the pressing direction during molding.

〔発明の効果〕〔Effect of the invention〕

本発明によると、低空孔率で密度が高く異方性の高いフ
ェライト系焼結体磁性材料が得られる。
According to the present invention, a ferrite-based sintered magnetic material with low porosity, high density, and high anisotropy can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1で使用した盤状ゲーサイトの粒子形態
(倍率: 5oooo倍)を示す図面にかえる電子顕微
鏡写真である。
FIG. 1 is an electron micrograph that is converted into a drawing showing the particle morphology (magnification: 500 times) of the platy goethite used in Example 1.

Claims (2)

【特許請求の範囲】[Claims] (1)盤状ゲーサイトを出発原料の一部として用いるこ
とを特徴とするスピネル型構造を有するフェライト系焼
結体磁性材料の製造法。
(1) A method for producing a ferrite-based sintered magnetic material having a spinel-type structure, which is characterized by using plate-shaped goethite as part of the starting material.
(2)盤状ゲーサイトが六角盤状ないしそれに近似した
形態で、粒子径(盤径)が0.01〜0.5μm、盤状
比(粒子径/厚み)が1〜10である特許請求の範囲第
1項記載のスピネル型構造を有するフェライト系焼結体
磁性材料の製造法。
(2) A patent claim in which the disc-shaped goethite has a hexagonal disc shape or a shape similar to it, a particle diameter (disc diameter) of 0.01 to 0.5 μm, and a disc ratio (particle diameter/thickness) of 1 to 10. A method for producing a ferrite-based sintered magnetic material having a spinel structure according to item 1.
JP14021285A 1985-06-28 1985-06-28 Manufacture of spinel type ferrite base sintered magnetic material Pending JPS622502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14021285A JPS622502A (en) 1985-06-28 1985-06-28 Manufacture of spinel type ferrite base sintered magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14021285A JPS622502A (en) 1985-06-28 1985-06-28 Manufacture of spinel type ferrite base sintered magnetic material

Publications (1)

Publication Number Publication Date
JPS622502A true JPS622502A (en) 1987-01-08

Family

ID=15263525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14021285A Pending JPS622502A (en) 1985-06-28 1985-06-28 Manufacture of spinel type ferrite base sintered magnetic material

Country Status (1)

Country Link
JP (1) JPS622502A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62219903A (en) * 1986-03-20 1987-09-28 Tohoku Metal Ind Ltd Manufacture of low loss oxide magnetic material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4842008A (en) * 1971-09-29 1973-06-19
JPS49124599A (en) * 1973-04-02 1974-11-28
JPS559431A (en) * 1978-07-07 1980-01-23 Toshiba Corp Method of manufacturing oxide cores for high frequencies and large amplitudes
JPS5550603A (en) * 1978-10-06 1980-04-12 Matsushita Electric Ind Co Ltd Manufacturing of anisotropic-oxide sintered material
JPS5590471A (en) * 1978-12-28 1980-07-09 Matsushita Electric Ind Co Ltd Manufacture of anisotropic oxide sintering material
JPS61168534A (en) * 1985-01-18 1986-07-30 Agency Of Ind Science & Technol Plate-shaped goethite and production thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4842008A (en) * 1971-09-29 1973-06-19
JPS49124599A (en) * 1973-04-02 1974-11-28
JPS559431A (en) * 1978-07-07 1980-01-23 Toshiba Corp Method of manufacturing oxide cores for high frequencies and large amplitudes
JPS5550603A (en) * 1978-10-06 1980-04-12 Matsushita Electric Ind Co Ltd Manufacturing of anisotropic-oxide sintered material
JPS5590471A (en) * 1978-12-28 1980-07-09 Matsushita Electric Ind Co Ltd Manufacture of anisotropic oxide sintering material
JPS61168534A (en) * 1985-01-18 1986-07-30 Agency Of Ind Science & Technol Plate-shaped goethite and production thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62219903A (en) * 1986-03-20 1987-09-28 Tohoku Metal Ind Ltd Manufacture of low loss oxide magnetic material
JPH0523484B2 (en) * 1986-03-20 1993-04-02 Tokin Corp

Similar Documents

Publication Publication Date Title
JP3542319B2 (en) Single crystal ferrite fine powder
JPH0148207B2 (en)
CN102260072A (en) Method for synthesizing high-performance barium ferrite by using molten salt as flux and reaction medium
JPH0725553B2 (en) Method for producing plate-like magnetic powder
JPS5841646B2 (en) Manufacturing method of hexagonal plate-shaped magnetoplumbite type ferrite particle powder
US4116752A (en) Production of single crystalline ferrite particles
GB1586783A (en) Process for the production of a hexagonalsystem ferrite powder a plastic-ferrite composite magnet containing the ferrite powder so produced and a process for producing the composite magnet
JPS622502A (en) Manufacture of spinel type ferrite base sintered magnetic material
US4042516A (en) Bonded magnets containing single crystalline ferrite particles
JPS60245704A (en) Manufacture of ferromagnetic cubic needle-like crystal ferrite powder
JPS6343359B2 (en)
JPS5841728A (en) Manufacture of fine ferrite powder
KR960011787B1 (en) Proces for preparing ferromagnetic fine particles for magnetic recording
JP3894298B2 (en) Fe (2) O (3) and production method thereof
JPS5841647B2 (en) Manufacturing method of hexagonal plate-shaped magnetoplumbite type ferrite particle powder
JPS6090828A (en) Manufacture of needlelike spinel ferrite powder
JP2938261B2 (en) Manufacturing method of ferrite molding
JPS62138330A (en) Production of magnetic powder for magnetic recording
JPS6090829A (en) Treatment of barium ferrite
JPS63225534A (en) Production of hexagonal plate-shaped barium ferrite
JPH02252625A (en) Production of spinel-type ferrite
JPS60233803A (en) Manufacture of anisotropic oxide permanent magnet
JPH049738B2 (en)
JPS5814508A (en) Manufacture of magnetic powder for high-density recording
SU1763089A1 (en) Method of obtaining manganese-zing ferrites