JPS5841647B2 - Manufacturing method of hexagonal plate-shaped magnetoplumbite type ferrite particle powder - Google Patents

Manufacturing method of hexagonal plate-shaped magnetoplumbite type ferrite particle powder

Info

Publication number
JPS5841647B2
JPS5841647B2 JP54052773A JP5277379A JPS5841647B2 JP S5841647 B2 JPS5841647 B2 JP S5841647B2 JP 54052773 A JP54052773 A JP 54052773A JP 5277379 A JP5277379 A JP 5277379A JP S5841647 B2 JPS5841647 B2 JP S5841647B2
Authority
JP
Japan
Prior art keywords
particles
ferrite
hexagonal plate
particle
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54052773A
Other languages
Japanese (ja)
Other versions
JPS55145304A (en
Inventor
利夫 高田
尚周 坂東
恵久 山本
七生 堀石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP54052773A priority Critical patent/JPS5841647B2/en
Publication of JPS55145304A publication Critical patent/JPS55145304A/en
Publication of JPS5841647B2 publication Critical patent/JPS5841647B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)

Description

【発明の詳細な説明】 本発明は、異方性フェライト磁石用材料としての六角板
状を呈したマグネトブランバイト型Ba。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a magnetoblanbite type Ba having a hexagonal plate shape as a material for an anisotropic ferrite magnet.

Sr又はPbフェライト粒子粉末(MO+ n F e
203 +n=5〜6但し、MはBa、Sr又はPb
)の製造法に関するものであり、焼結磁石及びゴム、
プラスチック磁石として最適のフェライト粒子粉末を容
易且つ経済的に製造することを目的とする。
Sr or Pb ferrite particle powder (MO+ n Fe
203 +n=5-6 However, M is Ba, Sr or Pb
), sintered magnets and rubber,
The purpose of this invention is to easily and economically produce ferrite particles suitable for use as plastic magnets.

現在、一般に工業的規模において量産化され、且つ、最
も多量fこ汎用されている異方性フェライト磁石用材料
磁性粒子粉末は不定形の粒子形状を有し、且つ、粒子及
び粒子相互間が焼結をひき起しており、しかも焼晶中に
歪を有するBa、Sr又はPbフェライト粒子粉末であ
る。
At present, the magnetic particle powder of anisotropic ferrite magnet material, which is generally mass-produced on an industrial scale and is widely used in the largest quantity, has an irregular particle shape, and the particles and particles are not sintered. It is a Ba, Sr or Pb ferrite particle powder that causes crystallization and has distortion in the sintered crystal.

本発明は、この粒子粉末を用いて、板状比の優れた六角
板状粒子であり、結晶のC軸面の平均長径が数μm1殊
に1μm程度の単磁区構造の大きさを有し、粒子は一個
一個バラバラであり、結晶性が完全で内部歪がなく、且
つ、異方性焼結フェライト磁石の製造工程Iこ於けるプ
レス成型時のフェライト粒子の配向性能又はゴム、プラ
スチック磁石の製造工程に於ける樹脂への分散性能及び
配向性能が優れたBa、Sr又はPbフェライト粒子粉
末を容易に製造することができる新規技術手段を提供す
るものである。
The present invention uses this particle powder to produce hexagonal plate-like particles with an excellent plate-like ratio, and has a single magnetic domain structure with an average major axis of the C-axis plane of the crystal of several μm, especially about 1 μm, The particles are individually separated, have perfect crystallinity, and have no internal strain.Also, the orientation performance of ferrite particles during press molding in the manufacturing process I of anisotropic sintered ferrite magnets, or the manufacturing of rubber and plastic magnets. The object of the present invention is to provide a new technical means that can easily produce Ba, Sr, or Pb ferrite particle powder that has excellent dispersibility in resin and orientation performance in the process.

焼結磁石及びゴム、プラスチック磁石の製造に際して本
発明の方法により得られた六角板状を呈したBa、Sr
又はPbフェライト粒子粉末を用いた場合には、該粒子
粉末が六角板状の粒子形状を有し、且つ、粒子が一個一
個バラバラであり、しかも異方性焼結フェライト磁石の
製造工程に於けるプレス成型時のフエライii子の配向
性能又は、ゴム、プラスチック磁石の製造工程に於ける
樹脂への分散性能及び配向性能が優れていることに起因
して磁気異方性化を容易に向上させることができ、従っ
て、大きな残留磁束密度Brを有し、また、同時に該粒
子粉末の結晶のC軸面の平均長径が数μm1殊に1μm
程度の単磁区構造の大きさであり、且つ、結晶性が完全
で内部歪のないことに起因して高い保磁力IHcを有す
るのでエネルギー積(BHm a x ’l)大きい高
性能異方性フェライト磁石用材料磁性粉末として非常に
好ましいものである。
Ba, Sr exhibiting a hexagonal plate shape obtained by the method of the present invention in the production of sintered magnets, rubber, and plastic magnets
Alternatively, when Pb ferrite particles are used, the particles have a hexagonal plate-like particle shape, and the particles are individually separated, and in addition, in the manufacturing process of anisotropic sintered ferrite magnets, Easily improve magnetic anisotropy due to excellent orientation performance of Ferrite II during press molding or excellent dispersion performance and orientation performance in resin during the manufacturing process of rubber and plastic magnets. Therefore, it has a large residual magnetic flux density Br, and at the same time, the average major axis of the C-axis plane of the crystal of the particle powder is several μm, especially 1 μm.
A high-performance anisotropic ferrite with a single magnetic domain structure of about 100%, and a high coercive force IHc due to perfect crystallinity and no internal strain, resulting in a large energy product (BHm a x 'l). It is very preferable as a magnetic powder material for magnets.

近年、電気機器の小型化、軽量化に伴ない、これら(こ
組み込まれる磁石も小型化の傾向にあり、磁石の高性能
化即ち、エネルギー積(BHmax)の増大と残留磁束
密度Brの向上が益々要求されている。
In recent years, with the miniaturization and weight reduction of electrical equipment, the magnets that are incorporated in these devices have also tended to become smaller. It is increasingly demanded.

このような特性を有する高性能異方性フェライト磁石を
得るためには、磁石用の材料磁性粒子粉末として粉体特
性及び磁気特性の優れたものが要求される。
In order to obtain a high-performance anisotropic ferrite magnet having such characteristics, the material magnetic particles for the magnet are required to have excellent powder properties and magnetic properties.

即ち、粉体特性としては、機械又は磁場配向(こより容
易に磁気異方性化しやすい粒子粉末であることが必要で
あり、磁気異方性化に影響を与える要因としては、粒子
の形状、大きさ、集合粒子の状態、結晶性及び加工性等
がある。
In other words, it is necessary for the powder properties to be such that the particles can easily become magnetically anisotropic due to mechanical or magnetic field orientation, and the factors that influence magnetic anisotropy include particle shape, size, etc. These include the state of aggregate particles, crystallinity, processability, etc.

Ba、Sr又はPbフェライト粒子の形状は、結晶のC
軸面の平均長径とC軸方向への厚みの比(板状比)が大
きい六角板状粒子であり、且つ、粒子の大きさは、結晶
のC軸面の平均長径が数μm1殊に1μm程度の単磁区
構造であることが必要である。
The shape of Ba, Sr or Pb ferrite particles is
They are hexagonal plate-like particles with a large ratio of the average major axis of the axial plane to the thickness in the C-axis direction (plate ratio), and the particle size is such that the average major axis of the C-axis plane of the crystal is several μm, especially 1 μm. It is necessary to have a single magnetic domain structure of about 100%.

Ba、Sr又はPbフェライト粒子粉末の集合状態につ
いて言えば、粒子が一個一個バラバラに独立しており、
且つ、粒度外布巾のせまいものが好ましい。
Regarding the aggregation state of Ba, Sr or Pb ferrite particles, each particle is independent one by one,
In addition, it is preferable that the cloth has a narrow particle size.

また、Ba、Sr又はPbフェライト粒子の結晶性は、
結晶性が完全で内部歪がないことが必要である。
In addition, the crystallinity of Ba, Sr or Pb ferrite particles is
It is necessary to have perfect crystallinity and no internal strain.

更に、加工性は、異方性焼結フェライト磁石では、磁石
の製造工程に於けるプレス成型時のフェライト粒子の配
向性能が優れていることが必要であり、一方、ゴム、プ
ラスチック磁石では磁石の製造工程に於ける樹脂への分
散性能及び配向性能が優れていることが必要である。
Furthermore, in terms of workability, anisotropic sintered ferrite magnets require excellent orientation of ferrite particles during press molding in the magnet manufacturing process, while rubber and plastic magnets require excellent It is necessary that the resin has excellent dispersion performance and orientation performance in the manufacturing process.

次に、Ba、Sr又はPbフェライト粒子粉末の磁気特
性としては、保磁力IHc、残留磁束密度Brができる
だけ高く、配向度Br/Bmが優れていることが要求さ
れる。
Next, as for the magnetic properties of the Ba, Sr or Pb ferrite particles, it is required that the coercive force IHc, the residual magnetic flux density Br be as high as possible, and the degree of orientation Br/Bm be excellent.

高い保磁力IHcを得ようとすれば、粒子は単磁区構造
をとる大きさで、結晶の歪がなく、且つ配向性が優れて
いることが必要である。
In order to obtain a high coercive force IHc, the particles must be sized to have a single magnetic domain structure, have no crystal distortion, and have excellent orientation.

結晶粒子は、単磁区構造をとる時高い保磁力IHcを有
することが知られており、バリウム又はストロンチウム
フェライト粒子が単磁区構造をとるのは結晶粒子の大き
さが1μm程度の時である。
It is known that crystal grains have a high coercive force IHc when they have a single-domain structure, and barium or strontium ferrite particles have a single-domain structure when the crystal grain size is about 1 μm.

このことは、例えば特公昭49−38917号公報の「
磁気的に単磁区構造をとる臨界粒子径(約1μ)より非
常に大きい粒子径であるためIHd7)極端な低下をま
ねくものである。
This can be seen, for example, in Japanese Patent Publication No. 49-38917.
Since the particle size is much larger than the critical particle size (approximately 1 .mu.m) for magnetically forming a single domain structure, it causes an extreme decrease in IHd7).

」という記添からも明らかである。It is clear from the note ``.

また、高い残留磁束密度Brを得る為(こは、粒子粉末
の充填性、配向性を向上させることが必要であり、その
為には、異方性焼結フェライト磁石の製造工程における
プレス成型時のフエライiH子の配向性能又はゴム、プ
ラスチック磁石の製造工程に於ける樹脂への分散性能及
び配向性能が優れている粒子粉末が要求される。
In addition, in order to obtain a high residual magnetic flux density Br (this means that it is necessary to improve the filling properties and orientation of the particles, it is necessary to There is a demand for particle powders that have excellent orientation performance for Ferray iH particles, or excellent dispersion performance and orientation performance in resins in the manufacturing process of rubber and plastic magnets.

次(こ、優れた配向寒Br/Bmを得るためζこは、板
状比の優れた六角板状粒子であり、粒子が一個一個バラ
バラに独立しており、結晶が完全で内部歪がなく且つ、
異方性焼結フェライト磁石の製造工程に於けるプレス成
型時のフェライト粒子の配向性能又はゴム、プラスチッ
ク磁石の製造工程に於ける樹脂への分散性能及び配向性
能が優れている粒子粉末が要求される。
Next (In order to obtain excellent oriented cold Br/Bm, ζ is a hexagonal plate-like particle with an excellent plate-like ratio, each particle is independent one by one, and the crystal is perfect and there is no internal strain. and,
Particle powder is required that has excellent orientation performance of ferrite particles during press molding in the manufacturing process of anisotropic sintered ferrite magnets, or excellent dispersion performance and orientation performance in resins in the manufacturing process of rubber and plastic magnets. Ru.

従来から、一般に、工業的規模において量産化され、且
つ、最も多量に汎用されているBa、Sr又はPbフェ
ライト粒子は、酸化鉄粒子とBa。
Conventionally, Ba, Sr, or Pb ferrite particles, which have been mass-produced on an industrial scale and are widely used in the largest quantities, are iron oxide particles and Ba.

Sr又はPb化合物との混合物を1.1000C〜1.
400℃の高温で加熱焼成するという方法により得られ
ている(以下、これを乾式法という。
The mixture with Sr or Pb compound is heated to 1.1000C to 1.
It is obtained by a method of heating and firing at a high temperature of 400°C (hereinafter, this is referred to as a dry method).

)。この乾式法による場合には、1.100’c〜1,
400℃という高温で加熱焼成する為に、フェライト化
反応と同時に粒子自身の粒子成長と粒子相互間の焼結を
引き起して100μm以上の大きな固まりになってしま
う為、このまSでは磁石用材料磁性粒子粉末として使用
できず、加熱焼成後、必ず、強力な粉砕をする必要があ
る。
). In the case of this dry method, 1.100'c~1,
Due to heating and firing at a high temperature of 400℃, at the same time as the ferrite reaction, the particles themselves grow and sinter between particles, resulting in a large mass of 100 μm or more. The material cannot be used as magnetic particle powder, and must be strongly pulverized after heating and firing.

加熱焼成物は、粒子及び粒子相互間で焼結を引き起し、
強固に凝結しているので、前述したようにBa、Sr又
はPbフェライト粒子が単磁区構造となる結晶のC軸面
の平均長径1μm程度にする為には、まず、ロールクラ
ッシャー等を用いて粗粉砕した後、アトマイザ−、パイ
ブレイションミル、アトライター等を用いて、中粉砕及
び微粉砕する等、数段階の強力な粉砕を施さなければな
らない。
The heated and fired product causes sintering between particles and between particles,
Since the Ba, Sr, or Pb ferrite particles are solidly coagulated, they must first be coarsened using a roll crusher or the like in order to make the average length of the C-axis plane of the crystals into a single-domain structure to about 1 μm, as described above. After pulverization, several stages of strong pulverization, such as medium pulverization and fine pulverization, must be performed using an atomizer, a vibrating mill, an attritor, or the like.

このように強力な数段階の粉砕を施すために、得られた
BatSr又はPbフェライト粒子粉末は、粒子形状が
不定形となり、結晶粒子中には衝撃歪を有するものとな
る。
Because of the several stages of powerful pulverization, the obtained BatSr or Pb ferrite particles have an amorphous particle shape and have impact strain in the crystal particles.

しかも、機械的粉砕によっては、粒子及び粒子相互間で
焼結をひき起して大きな固りとなっている加熱焼成物を
、−個一個バラバラの粒子(こすることは不可能である
Moreover, it is impossible to rub the heated and fired product, which has become a large lump due to sintering between particles and particles, by mechanical crushing into individual particles.

上述したように、乾式法により得られたBa。As mentioned above, Ba obtained by a dry method.

Sr又はPbフェライト粒子粉末は、不定形の粒子形状
を有し、且つ、粒子及び粒子相互間が焼結をひき起して
おり、しかも強力な粉砕による衝撃歪を有するものであ
る為、これらの粒子粉末を用いて高性能異方性フェライ
ト磁石を得ることには限界があった。
Sr or Pb ferrite particles have irregular particle shapes, sintering occurs between particles, and impact strain due to strong crushing. There were limitations to obtaining high-performance anisotropic ferrite magnets using particle powder.

上述したことについて特公昭49−38917号公報に
次のように記載されている。
The above-mentioned matter is described in Japanese Patent Publication No. 49-38917 as follows.

「酸化鉄と炭酸バリウムを所定の配合比になる様ボール
ミル等で長時間混合し、これを1.100〜1.200
℃で焼成した後、微粉砕する方法がとられているが」
「酸化鉄とバリウム塩を完全に反応させるべく 1,1
00℃以上の高温で焼成するがため、粒子間の焼結が著
しく平均粒子径も100μ程度と非常に大きくなる。
"Iron oxide and barium carbonate are mixed for a long time in a ball mill etc. to a predetermined mixing ratio of 1.100 to 1.200.
The method used is to pulverize it after firing it at ℃.
``In order to completely react iron oxide and barium salt, 1,1
Since the firing is carried out at a high temperature of 00° C. or higher, sintering between particles is significant and the average particle diameter becomes very large, about 100 μm.

」これは、「磁気的に単磁区構造をとる臨界粒子径(約
1μ)より非常に大きい粒子径であるため■HdD極端
な低下をまねくものである。
``Because the particle size is much larger than the critical particle size (approximately 1 μm) that magnetically assumes a single domain structure, it leads to an extreme decrease in HdD.

従って、焼成の後一般的には微粉砕の工程が採られるが
微粉砕により粒子又は結晶の微細化は結晶の不完全性に
つながり再びIHcを大きく低下させるものである。
Therefore, after firing, a process of pulverization is generally adopted, but the refinement of particles or crystals by pulverization leads to incompleteness of the crystals, which again greatly reduces IHc.

」また、特公昭46−11704号公報には次の様な記
載が見られる。
In addition, the following description can be found in Japanese Patent Publication No. 11704/1970.

「BaCO3とa−Fe203を混合し、これを約1.
200℃以上、通常1,280〜1,300℃の温度で
一次焼成を行い、次に機械的に粉砕して粉末として、該
粉末を磁場中成型等の方法によってバJウムフエライト
粒子の磁化容易方向を平行に配列せしめた後、二次焼結
させる方法が採られている。
"Mix BaCO3 and a-Fe203, and mix this with about 1.
Primary firing is performed at a temperature of 200°C or higher, usually 1,280 to 1,300°C, and then mechanically pulverized to form a powder, which is then molded in a magnetic field to easily magnetize the Bajoum ferrite particles. A method is adopted in which the directions are arranged in parallel and then secondary sintering is performed.

しかし、か\る粒子配列法においては、周知の如くその
バリウムフェライト粒子の粒度、粒子形態、粒度分布等
によって配列の仕方、度合が著しく影響され、粒子制御
を一次焼成の条件、粉砕方法、粉砕時間等によって行な
うことには限界がある。
However, in such a particle arrangement method, as is well known, the manner and degree of arrangement are significantly affected by the particle size, particle morphology, particle size distribution, etc. of the barium ferrite particles, and particle control is limited to primary firing conditions, pulverization method, and pulverization. There are limits to what can be done due to time etc.

従って、より高性能のバリウムフェライトを得るために
は粒子生成に関する新たな製法が要望されている。
Therefore, in order to obtain barium ferrite with higher performance, a new manufacturing method for particle generation is required.

」前述したように磁石の高性能化は、材料磁性粒子粉末
の磁気異方性化を如何に向上させるかにあり、近年、磁
石の高性能化の傾向に伴い、磁気異方性化の為の加工特
性、即ち、配向性の優れた異方性フェライト磁石用材料
磁性粒子粉末が益々要求されている。
” As mentioned above, improving the performance of magnets lies in how to improve the magnetic anisotropy of the material magnetic particle powder.In recent years, with the trend of improving the performance of magnets, it has become difficult to improve the magnetic anisotropy of the magnetic particles. There is an increasing demand for anisotropic ferrite magnet material magnetic particle powder with excellent processing characteristics, that is, excellent orientation.

このような特性を有する材料磁性粒子粉末として、従来
、板状の粒子形状を有し、且つ粒子が一個一個バラバラ
であるBa、Sr又はpbフェライト粒子粉末の製造法
が提案されており、例えば、特公昭47−25796号
公報、特開昭47−5819号公報、特開昭47−49
29号公報、特開昭47−4930号公報、特開昭49
−63997号公報、特開昭50−32498号公報、
特開昭50−121200号公報、特開昭50−135
000号公報、特開昭53−131499号公報及びオ
ーストラリア特許284335号公報記載の方法がある
Conventionally, methods for producing Ba, Sr, or Pb ferrite particles, which have a plate-like particle shape and each particle is disjointed, have been proposed as magnetic particles having such characteristics. JP 47-25796, JP 47-5819, JP 47-49
No. 29, JP-A No. 47-4930, JP-A No. 49-Sho.
-63997 publication, JP-A-50-32498 publication,
JP-A-50-121200, JP-A-50-135
There are methods described in Japanese Patent Publication No. 000, Japanese Patent Application Laid-Open No. 53-131499, and Australian Patent No. 284335.

特公昭47−25796号公報に記載の方法は、針状の
a−FeO−OH結晶粒子を含むp)(>llの水酸化
バリウム水溶液をオートクレーブを使用して260°C
〜300℃で加熱するものである。
In the method described in Japanese Patent Publication No. 47-25796, a barium hydroxide aqueous solution containing needle-shaped a-FeO-OH crystal particles (p)(>11) is heated at 260°C using an autoclave.
It is heated at ~300°C.

この方法による場合は、高圧下の反応であるため、オー
トクレーブ等の高価な設備と特殊な操作技術が必要であ
る。
In this method, since the reaction is performed under high pressure, expensive equipment such as an autoclave and special operating techniques are required.

特開昭47−5819号公報、特開昭47−4929号
公報、特開昭47−4930号公報、特開昭49−63
997号公報、特開昭50−32498号公報、特開昭
50−121200号公報、特開昭50−135000
号公報、特開昭53−131499号公報及びオースト
ラリア特許284335号公報記載の方法は、いずれも
酸化鉄粒子とBa、Sr又はPb化合物との混合物を融
剤の存在下で、加熱焼成するものである。
JP-A-47-5819, JP-A-47-4929, JP-A-47-4930, JP-A-49-63
997, JP 50-32498, JP 50-121200, JP 50-135000
The methods described in Japanese Patent Application Publication No. 53-131499 and Australian Patent No. 284335 all involve heating and calcining a mixture of iron oxide particles and Ba, Sr or Pb compounds in the presence of a flux. be.

本発明者は、上押した従来技術に鑑み、現在、工業的規
模(こおいて量産化され、且つ、最も多量に汎用されて
いる乾式法により得られた不定形の粒子形状を有し、且
つ、粒子及び粒子相互間が焼結をひき起しており、しか
も結晶粒子中に歪を有するBa、Sr又はPbフェライ
ト粒子粉末を用いて、高性能異方性フェライト磁石用磁
性粒子粉末として好ましい粉体特性(粒子の形状、大き
さ、集合粒子の状態、結晶性、及び加工性)と優れた磁
気特性(保磁力IHc、残留磁束密度Br及び配向度B
r/Bm)を有するBa、Sr又はPbフェライト粒子
粉末とすべく種々検討した結果、本発明に到達したので
ある。
In view of the above-mentioned prior art, the present inventor has discovered that particles having an amorphous shape obtained by a dry method, which is currently mass-produced on an industrial scale and widely used in large quantities, In addition, Ba, Sr, or Pb ferrite particles are preferably used as magnetic particles for high-performance anisotropic ferrite magnets by using Ba, Sr, or Pb ferrite particles that cause sintering between the particles and between the particles and have strain in the crystal grains. Powder properties (particle shape, size, condition of aggregated particles, crystallinity, and processability) and excellent magnetic properties (coercive force IHc, residual magnetic flux density Br, and degree of orientation B)
As a result of various studies aimed at producing Ba, Sr, or Pb ferrite particle powder having the following characteristics:

即ち、本発明は、出発原料である不定形のBa。That is, the present invention uses amorphous Ba as a starting material.

Sty又はPbのフェライト粒子に対し、Ba或はSr
の塩化物若しくは弗化物又はPbの臭化物、沃化物若し
くは酸化物から選ばれた一種又は二種以上の融剤を5〜
90wt%混在させた後、該融剤の融点以上の温度で加
熱焼成することにより、上記出発原料の粒子形状で六角
板状粒子とすることよりなる六角板状を呈したマグネト
ブランバイト型Ba、Sr又はPbフェライト粒子粉末
の製造法に関するものである。
For Sty or Pb ferrite particles, Ba or Sr
5 to 5 or more fluxing agents selected from chloride or fluoride of Pb or bromide, iodide or oxide of Pb.
After mixing 90 wt%, magnetobrambite-type Ba exhibiting a hexagonal plate shape is obtained by heating and firing at a temperature higher than the melting point of the flux to form hexagonal plate-shaped particles in the particle shape of the starting raw material. The present invention relates to a method for producing Sr or Pb ferrite particles.

本発明の構成、効果を説明すれば以下の通りである。The structure and effects of the present invention will be explained as follows.

先ず、本発明の基礎とする諸知見(こついて述べる。First, we will discuss the various findings on which the present invention is based.

本発明者は、好ましい粉体特性と優れた磁気特性を有す
る異方性フェライト磁石用材料磁性粒子粉末とは、板状
比の優れた六角板状粒子であり、結晶のC軸面の平均長
径が数μm1殊に1μm程度の単磁区構造の大きさを有
し、、粒子は一個一個バラバラであり、結晶性が完全で
内部歪がなく、且つ、異方性焼結フェライト磁石の製造
工程に於けるプレス成型時のフェライト粒子の配向性能
又はゴム、プラスチック磁石の製造工程に於ける樹脂へ
の分散性能及び配向性能が優れているものであることを
知った。
The present inventor has determined that the anisotropic ferrite magnet material magnetic particle powder having preferable powder characteristics and excellent magnetic properties is hexagonal plate-like particles with an excellent plate-like ratio, and the average major axis of the C-axis plane of the crystal. has a single domain structure size of several μm, especially about 1 μm, the particles are individually separated, the crystallinity is perfect, there is no internal strain, and it is suitable for the manufacturing process of anisotropic sintered ferrite magnets. It was found that the ferrite particle orientation performance during press molding, and the dispersion performance and orientation performance in resin during the manufacturing process of rubber and plastic magnets are excellent.

そこで、本発明者は、現在、工業的規模において量産化
され、且つ、最も多量に汎用されている乾式法により得
られた不定形粒子からなるBa。
Therefore, the present inventors have developed Ba consisting of amorphous particles obtained by the dry process, which is currently mass-produced on an industrial scale and is widely used in large quantities.

Sr又はPbフェライト粒子粉末を用いて、該粒子粉末
の粒子形状、粒子の大きさ、集合粒子の状態及び結晶性
を所期のものに調整すべく種々検討した結果、出発原料
である不定形のBa、Sr又はPbフェライト粒子に対
し、Ba或はSrの塩化物若しくは弗化物又はPbの臭
化物、沃化物若しくは酸化物から選ばれた一種又は二種
以上の融剤を全重量で5〜90wt%混在させた後、該
融剤の融点以上の温度で加熱焼成した場合には、板状比
の優れた六角板状粒子であり、結晶のC軸面の平均長径
が数μm1殊に1μm程度の単磁区構造の大きさを有し
、粒子は一個一個バラバラであり、結晶性が完全で内部
歪がなく、異方性焼結フェライト磁石の製造工程に於け
るプレス成型時のフェライト粒子の配向性能又はゴム、
プラスチック磁石の製造工程に於ける樹脂への分散性能
及び配向性能が優れたBa、Sr又はPbフェライト粒
子粉末を得ることができるという新しい現象を見つけ出
したのである。
As a result of various studies using Sr or Pb ferrite particles to adjust the particle shape, particle size, state of aggregated particles, and crystallinity of the particles to the desired ones, we found that the starting material, an amorphous 5 to 90 wt% of one or more fluxes selected from Ba or Sr chloride or fluoride or Pb bromide, iodide or oxide to Ba, Sr or Pb ferrite particles. When the mixture is heated and fired at a temperature higher than the melting point of the flux, it becomes hexagonal plate-like particles with an excellent plate-like ratio, and the average major axis of the crystal C-axis is several μm, especially about 1 μm. It has the size of a single magnetic domain structure, the particles are individually separated, and the crystallinity is perfect and there is no internal strain.The orientation performance of ferrite particles during press molding in the manufacturing process of anisotropic sintered ferrite magnets. Or rubber,
They have discovered a new phenomenon in which it is possible to obtain Ba, Sr, or Pb ferrite particle powder that has excellent dispersion performance and orientation performance in resin in the manufacturing process of plastic magnets.

上記の現象(こついて以下に詳述する。The above phenomenon will be explained in detail below.

本発明による場合、乾式法(こより得られた不定形の粒
子形状を有し、且つ、粒子及び粒子相互間が焼結をひき
起しており、しかも結晶中に歪を有するBa、Sr又は
Pbフェライト粒子粉末はBa2+、Sr2+、Pb2
+イオンを含む融液中テ加熱さイすると前記フェライト
粒子は、粒子内威分の拡散、結晶の多形変化、共晶変化
等の転移及び粒子内部応力の除去をもたらし、その結果
、不定形粒子から成るBa、Sr又はPbフェライト粒
子粉末は一個一個がバラバラであり、しかも、結晶性が
完全で内部歪がない板状比の優れた六角板状を呈するB
a、Sr又はPbフェライト粒子粉末になるものと考え
られる。
In the case of the present invention, Ba, Sr, or Pb which has an amorphous particle shape obtained by the dry process, and which has caused sintering between the particles and between the particles and has strain in the crystal. Ferrite particle powder is Ba2+, Sr2+, Pb2
When heated in a melt containing + ions, the ferrite particles undergo transitions such as diffusion of internal particles, polymorphic changes in crystals, and eutectic changes, and removal of internal stress in the particles, resulting in an amorphous shape. The Ba, Sr or Pb ferrite particles consisting of particles are individually separated and exhibit a hexagonal plate shape with perfect crystallinity and an excellent plate-like ratio with no internal distortion.
It is thought that it becomes a, Sr or Pb ferrite particle powder.

本発明にみられる乾式法により得られた粒子及び粒子相
互間で焼結をひき起し、大きな固りとなっている不定形
粒子からなるBa、Sr又はPbフェライト粒子が、−
個一個がバラバラであり、しかも結晶性が完全で内部歪
のない板状比の優れた六角板状粒子に変形するという現
象は本来まったく考えられない現象であり、本発明者が
はじめて見い出した新規な現象である。
Ba, Sr, or Pb ferrite particles obtained by the dry method of the present invention and consisting of irregularly shaped particles that cause sintering between particles and become large agglomerates are -
The phenomenon in which individual particles are separated into hexagonal plate-like particles with perfect crystallinity, no internal strain, and an excellent plate-like ratio is an entirely unthinkable phenomenon, and the present inventor discovered this for the first time. This is a phenomenon.

次(こ、本発明方法実施(こあたっての具体的諸条件に
ついて述べる。
Next, specific conditions for carrying out the method of the present invention will be described.

本発明における出発原料としては、現在、工業的規模に
おいて量産化され、且つ、最も多量に汎用されている乾
式法により得られる不定形のBa。
The starting material used in the present invention is amorphous Ba obtained by a dry process, which is currently mass-produced on an industrial scale and is widely used in large quantities.

Sr又はPbフェライト粒子粉末が用いられ、そのフェ
ライト組成MO−nFe203(但し、MはBa、Sr
又はpb )は、磁気特性の面から一般(こn=5〜6
の範囲である。
Sr or Pb ferrite particles are used, and the ferrite composition is MO-nFe203 (where M is Ba, Sr
or pb) is generally used from the viewpoint of magnetic properties (this n = 5 to 6
is within the range of

このことは、日本化学会誌1号(1978年)の42ペ
ージに「バリウムフェライトの化学量論的な組成はBa
O−nFe2O3゜n = 6であるが、磁気特性はn
= 5〜6の範囲で得られる。
This is explained on page 42 of the Journal of the Chemical Society of Japan, No. 1 (1978), stating that ``The stoichiometric composition of barium ferrite is Ba
O-nFe2O3゜n = 6, but the magnetic properties are n
= obtained in the range of 5 to 6.

」と記載されている。出発原料としてのBa、Sr又は
Pbフェライト粒子粉末の平均粒子径は、希望する生成
物Ba。
” is stated. The average particle size of the Ba, Sr or Pb ferrite particles as starting material is the same as the desired product Ba.

Sr又はPbフェライト粒子粉末の大きさを考慮して選
択すればよい。
It may be selected by considering the size of the Sr or Pb ferrite particles.

1μm程度の単磁区構造を有する生成物Ba、Sr又は
Pbフェライト粒子粉末を得ようとすれば出発原料粒子
は、ブレーン法による平均粒子径が0.5〜5μm程度
の範囲内で選べばよい。
In order to obtain product Ba, Sr or Pb ferrite particles having a single magnetic domain structure of about 1 μm, the starting material particles may be selected within the range of about 0.5 to 5 μm in average particle diameter by Blaine method.

本発明における融剤としてはBa或はSrの塩化物若し
くは弗化物又はPbの臭化物、沃化物若しくは酸化物か
ら選ばれた一種又は二種以上を使用することができるが
、工業的見地からすればBaCl2又は5rCt2が好
ましい。
As the flux in the present invention, one or more selected from chlorides or fluorides of Ba or Sr, or bromides, iodides, or oxides of Pb can be used, but from an industrial standpoint, BaCl2 or 5rCt2 are preferred.

本発明における融剤の混在量は、出発原料である不定形
のBa、Sr又はPbフェライト粒子と融剤どからなる
混合物の全重量に対し5〜90wt饅である。
The amount of the flux mixed in the present invention is 5 to 90 wt based on the total weight of the mixture consisting of the amorphous Ba, Sr or Pb ferrite particles as the starting material and the flux.

5wt%以下である場合は、本発明の目的とする効果を
十分達成することが出来ず、90wt%以上であっても
本発明の目的を達成することができるが、工業資材の材
質及び設備構造面より経済性を考慮した場合、90wt
%以下で十分である。
If it is less than 5 wt%, the desired effect of the present invention cannot be fully achieved, and even if it is more than 90 wt%, the object of the present invention can be achieved, but the material and equipment structure of the industrial material Considering economy rather than surface, 90wt
% or less is sufficient.

六角板状を呈する生成物Ba、Sr又はpbフェライト
粒子粉末の板状比は、融剤の混在量が多くなる程、大き
くなる傾向にあり、板状比を考慮した場合、10〜70
wt%が好ましい。
The plate ratio of the product Ba, Sr or Pb ferrite particles exhibiting a hexagonal plate shape tends to increase as the amount of flux increases, and when the plate ratio is considered, it is 10 to 70.
wt% is preferred.

本発明における焼成温度は、融剤の融点以上であり、上
限は1400℃以下が望ましい。
The firing temperature in the present invention is preferably higher than the melting point of the flux, and the upper limit is preferably 1400°C or lower.

融剤の融点以下である場合には、本発明の目的を充分に
達成することができない。
If it is below the melting point of the flux, the object of the present invention cannot be fully achieved.

尚1400℃以上である場合は、Ba、Sr又はpbフ
ェライト粒子の粒子成長が急激であるため、粒子の形状
及び粒度の調整が困難であり、また、設備上、環境上好
ましくない。
If the temperature is 1400° C. or higher, the Ba, Sr or Pb ferrite particles grow rapidly, making it difficult to adjust the shape and size of the particles, and also being unfavorable in terms of equipment and environment.

本発明により得られた加熱焼成物は塊状になっているが
、常法により水又は酸水溶液を用いて洗浄すれば粒子−
個一個がバラバラの板状比の優れた六角板状Ba、Sr
又はPbフェライト粒子粉末となる。
Although the heat-fired product obtained by the present invention is in the form of lumps, if it is washed with water or an acid aqueous solution by a conventional method, the particles will be removed.
Hexagonal plate-shaped Ba, Sr with excellent plate-like ratio that each piece is separate.
Or it becomes Pb ferrite particle powder.

以上の通りの構成の本発明は、次の通りの効果を奏する
ものである。
The present invention configured as described above has the following effects.

即ち、本発明lこよれば、板状比の優れた六角板状粒子
であり、結晶のC軸面の平均長径が数μ四殊に1μm程
度の単磁区構造の大きさを有し、粒子は一個一個バラバ
シであり、結晶性が完全で内部型のないBa、Sr又は
Pbフェライト粒子粉末を得ることができるので、焼結
磁石及びゴム、プラスチック磁石の製造に際して優れた
配向性により磁気異方性を向上させることができ、また
開時にすぐれた磁石特性即ち、大きな残留磁束密度Br
と高い保磁力IHC,配向度Br/Bmを有するので高
性能異方性フェライト磁石を得ることができる。
That is, according to the present invention, the particles are hexagonal plate-like particles with an excellent plate-like ratio, and have a single magnetic domain structure with an average major axis of the C-axis plane of the crystal of several μm, particularly about 1 μm. Ba, Sr, or Pb ferrite particles are individually disjointed, have perfect crystallinity, and have no internal molds, so they can be used to produce sintered magnets, rubber, and plastic magnets due to their excellent orientation and magnetic anisotropy. Br
Since it has a high coercive force IHC and an orientation degree Br/Bm, a high performance anisotropic ferrite magnet can be obtained.

尚、近年、磁気記録分野における記録密度の高度化に伴
い、従来方式に比べ、約3倍の高密度記録ができる垂直
磁化方式(磁性体膜面に垂直に磁化して記録する方式)
が考案され、実用化が進められているが、本発明により
得られた板状比の優れた六角板状Ba、Sr又はPbフ
ェライト粒子粉末は、上記垂直磁化方式の材料磁性粒子
粉末としての利用も期待される。
In addition, in recent years, with the advancement of recording density in the field of magnetic recording, the perpendicular magnetization method (a method in which recording is performed by magnetizing perpendicular to the magnetic film surface), which allows for approximately three times higher density recording than conventional methods.
has been devised and put into practical use, but the hexagonal plate-shaped Ba, Sr or Pb ferrite particles with an excellent plate-like ratio obtained by the present invention cannot be used as the material magnetic particles of the perpendicular magnetization method. is also expected.

次(こ実施例により、本発明を説明する。The present invention will be explained by the following example.

尚、実施例の粒子形状及び粒度は走査型電子顕微鏡によ
り観察測定した。
Incidentally, the particle shape and particle size of the examples were observed and measured using a scanning electron microscope.

また、出発原料の粒度はブレーン法により測定した。Furthermore, the particle size of the starting materials was measured by the Blaine method.

〈出発原料Ba又はSrフェライト粒子粉末の製造〉出
発原料 1〜2; 出発原料 l 炭酸バリウム1.26kgと酸化第二鉄5.75kgと
を湿式ボールミルにて5時間混合した後、濾過、成型、
乾燥した後、この成型物を1210’Cで3時間焼成し
だ。
<Production of starting material Ba or Sr ferrite particle powder> Starting materials 1 to 2; Starting materials l 1.26 kg of barium carbonate and 5.75 kg of ferric oxide were mixed in a wet ball mill for 5 hours, followed by filtration, molding,
After drying, the molded product was fired at 1210'C for 3 hours.

焼成物をロールクラッシャーで粗砕した後、パイブレイ
ションミルで微粉砕し、Baフェライト粒子粉末を得た
The fired product was crushed with a roll crusher and then finely crushed with a pibration mill to obtain Ba ferrite particle powder.

得られたBaフェライト粒子粉末は、図1(こ示す走査
型電子顕微鏡写真(X 27,000 )からも明らか
なように粒子形状が不定形であり、又、ブレーン法Eこ
よる平均粒子径は1.43μmであった。
The obtained Ba ferrite particle powder has an irregular particle shape as is clear from the scanning electron micrograph (X 27,000) shown in FIG. It was 1.43 μm.

また、磁気特性は、次の方法により測定した。Moreover, the magnetic properties were measured by the following method.

上記Baフェライト粒子粉末201とPVA6.5%水
溶液2mlとを良く混合し、直径25間の金型を用い圧
力1000 kg/fflで圧縮して直径25關φ、厚
さ15關の圧粉成型体を得た。
The above Ba ferrite particle powder 201 and 2 ml of PVA 6.5% aqueous solution are mixed well and compressed at a pressure of 1000 kg/ffl using a mold with a diameter of 25 mm to form a powder compact with a diameter of 25 mm and a thickness of 15 mm. I got it.

この圧粉成型体を、直流BHトレーサー((株)横河電
機製住所Type3257 )を用いて測定磁場10に
、Oeで測定した結果、残留磁束密度Brが1480G
auss、保磁力IHJ(16000eであった。
This powder compact was measured at Oe in a measuring magnetic field of 10 using a DC BH tracer (manufactured by Yokogawa Electric Corporation, address Type 3257). As a result, the residual magnetic flux density Br was 1480 G.
auss, coercive force IHJ (16000e).

出発原料 2 炭酸ストロンチウム1.0kgと酸化第二鉄6.0kg
とを湿式ボールミルにて5時間混合した後、濾過、底型
、乾燥した後、この成型物を1200℃で3時間焼成し
た。
Starting materials 2 Strontium carbonate 1.0 kg and ferric oxide 6.0 kg
After mixing in a wet ball mill for 5 hours, filtering, molding and drying, this molded product was fired at 1200° C. for 3 hours.

焼成物をロールクラッシャーで粗砕した後、バイブレー
ションミルで微粉砕し、Srフェライト粒子粉末を得た
The fired product was roughly crushed using a roll crusher and then finely crushed using a vibration mill to obtain Sr ferrite particle powder.

得られたSrフェライト粒子粉末は、走査型電子顕微鏡
観察の結果、不定形粒子であり、又、ブレーン法(こよ
る平均粒子径は、1.38μmであった。
As a result of observation using a scanning electron microscope, the obtained Sr ferrite particles were found to be amorphous particles, and the average particle diameter was 1.38 μm as determined by the Blaine method.

また、磁気特性は、出発原料1の場合と同様な方法によ
り測定した結果、残留磁束密度Brが1490 Gau
s s。
In addition, the magnetic properties were measured using the same method as in the case of starting material 1, and as a result, the residual magnetic flux density Br was 1490 Gau
s s.

保磁力IH(支)i18200eであった。The coercive force was IH (branch) i18200e.

〈六角板状Ba又はSrフェライト粒子粉末の製造法〉
実施例 1〜12; 実施例 1 出発原料1の不定形粒子からなるBaフェライト粒子粉
末500vとBaC/:22000 f (全重量に対
し80wt%)とを混合してアルミナ製ルツギに入れ、
電気炉を用いて900℃で2.0時間加熱焼成した。
<Production method of hexagonal plate-shaped Ba or Sr ferrite particle powder>
Examples 1 to 12; Example 1 500v of Ba ferrite particle powder consisting of amorphous particles of starting material 1 and BaC/:22000f (80wt% based on the total weight) were mixed and placed in an alumina rutsugi,
It was heated and baked at 900° C. for 2.0 hours using an electric furnace.

次いで、加熱焼成物を10tの水を用いて常法をこより
水洗してBaCl2を除去した後、濾過、乾燥してBa
フェライト粒子粉末を得た。
Next, the heated and calcined product was washed with 10 tons of water in a conventional manner to remove BaCl2, and then filtered and dried to remove BaCl2.
Ferrite particle powder was obtained.

得られたBaフェライト粒子粉末は、図2に示す走査型
電子顕微鏡写真(X52,000)からも明らかなよう
に、C軸面の平均長径1.1μm1結晶のC軸方向の厚
み0.15μm(板状比7/1)を有する六角板状粒子
であり、且つ、粒子が一個一個バラバラなものであった
As is clear from the scanning electron micrograph (X52,000) shown in FIG. 2, the obtained Ba ferrite particle powder has an average major diameter of 1.1 μm on the C-axis plane and a thickness of 0.15 μm in the C-axis direction of each crystal. The particles were hexagonal plate-like particles with a plate-like ratio of 7/1), and the particles were individually separated.

また、磁気特性は、出発原料1の場合と閂様な方法によ
り測定し、た結果、残留磁束密度Brが152 Q G
auss、保磁力IHcIJi 30100eであった
In addition, the magnetic properties were measured using a method similar to that used for starting material 1, and as a result, the residual magnetic flux density Br was 152 Q G
auss, coercive force IHcIJi 30100e.

実施例 2〜12 出発原料の種類、融剤の種類、量及び割合、焼成温度及
び焼成時間を種々変化させた以外は、実施例1とまった
く閂様にしてフェライト粒子粉末を得た。
Examples 2 to 12 Ferrite particle powders were obtained in exactly the same manner as in Example 1, except that the type of starting material, the type, amount and proportion of the flux, firing temperature and firing time were varied.

実施例2〜12で得られたフェライト粒子粉末は、走査
型電子顕微鏡観察の結果、いずれも六角板状粒子であっ
た。
As a result of scanning electron microscope observation, the ferrite particles obtained in Examples 2 to 12 were all hexagonal plate-shaped particles.

また、得られた六角板状フェライト粒子粉末の粉体特性
及び磁気特性を表1に示す。
Further, Table 1 shows the powder properties and magnetic properties of the obtained hexagonal plate-shaped ferrite particle powder.

〈ゴム、プラスチック磁石及び焼結磁石の製造〉実施例
13〜26 比較例 1〜4; 実施例 13 実施例1で得たBaフェライト粒子粉末881とエチレ
ン酢酸ビニール共重合樹脂(製品名エバフレックス#、
EV−410三井ポリケミカル(株)製)121とステ
アリン酸亜鉛0.69とを700Cに加熱した熱間ロー
ルで混練し、均一な混練物とした後、厚み1.0mmの
シート状とした。
<Manufacture of rubber, plastic magnets, and sintered magnets> Examples 13 to 26 Comparative examples 1 to 4; Example 13 Ba ferrite particle powder 881 obtained in Example 1 and ethylene vinyl acetate copolymer resin (product name Evaflex # ,
EV-410 (manufactured by Mitsui Polychemical Co., Ltd.) 121 and 0.69% of zinc stearate were kneaded using a hot roll heated to 700C to form a uniform kneaded product, and then a sheet having a thickness of 1.0 mm was formed.

このシートを、直径25朋φのポンチで打ち抜き積層し
て、直径25mmφ、厚み12關の円柱状サンプルを作
成し、出発原料1の場合と閂様な方法により磁気特性を
測定した結果を表2に示す。
These sheets were punched and stacked using a punch with a diameter of 25 mm to create a cylindrical sample with a diameter of 25 mm and a thickness of 12 mm, and the magnetic properties were measured using a bolt-like method as in the case of starting material 1. Table 2 shows the results. Shown below.

実施例 14 材料磁性粒子粉末として実施例7で得られたSrフェラ
イト粒子粉末を用いた以外は実施例13とまったく同様
にしてシートを作成した。
Example 14 Material A sheet was prepared in exactly the same manner as in Example 13 except that the Sr ferrite particles obtained in Example 7 were used as the magnetic particles.

このシートを用いて実施例13とまったく同様fどして
円柱状サンプルを作成し、出発原料1の場合と同様な方
法により、磁気特性を測定した結果を表2に示す。
Using this sheet, a cylindrical sample was prepared in exactly the same manner as in Example 13, and the magnetic properties were measured in the same manner as in the case of starting material 1. Table 2 shows the results.

実施例 15 実施例1で得たBaフェライト粒子粉末120ノとイソ
プレンラバー(製品名カリフレックス#IR−500,
シェル化学(株)製)12.5fとステアリン酸0.6
1とを100℃に加熱した熱間ロールで混練し、均一な
混合物とした後、厚み1.0mmのシート状とした。
Example 15 120 pieces of Ba ferrite particle powder obtained in Example 1 and isoprene rubber (product name Cauliflex #IR-500,
Shell Chemical Co., Ltd.) 12.5f and stearic acid 0.6
1 and kneaded with a hot roll heated to 100°C to form a uniform mixture, which was then formed into a sheet with a thickness of 1.0 mm.

このシートを用いて、実施例13とまったく同様にして
円柱状サンプルを作成し、出発原料1の場合と閂様な方
法により磁気特性を測定した結果を表2(こ示す。
Using this sheet, a cylindrical sample was prepared in exactly the same manner as in Example 13, and the magnetic properties were measured using a method similar to that used for starting material 1. The results are shown in Table 2.

実施例 16 材料磁性粒子粉末として、実施例7で得られたSrフェ
ライト粒子粉末を用いた以外は、実施例15とまったく
同様にしてシートを作成した。
Example 16 Material A sheet was prepared in exactly the same manner as in Example 15, except that the Sr ferrite particles obtained in Example 7 were used as the magnetic particles.

このシートを用いて実施例13とまったく同様にして円
柱状サンプルを作威し、出発原料1の場合と同様な方法
により磁気特性を測定した結果を表2に示す。
Using this sheet, a cylindrical sample was prepared in exactly the same manner as in Example 13, and the magnetic properties were measured in the same manner as in the case of starting material 1. Table 2 shows the results.

実施例 17 実施例1で得たBaフェライト粒子粉末88グとポリエ
チレン(製品名#J 519宇部興産(株)製)121
とジオクチルフタレート2ccとを120℃に加熱した
熱間ロールで混練し、均一な混合物とした後、厚み10
mmのシート状とした。
Example 17 88 grams of Ba ferrite particle powder obtained in Example 1 and 121 grams of polyethylene (product name #J 519 manufactured by Ube Industries, Ltd.)
and 2 cc of dioctyl phthalate were kneaded with a hot roll heated to 120°C to form a homogeneous mixture.
It was made into a sheet of mm.

このシートを用いて、実施例13とまったく同様にして
円柱状サンプルを作成し、出発原料1の場合と同様な方
法により磁気特性を測定した結果を表2に示す。
Using this sheet, a cylindrical sample was prepared in exactly the same manner as in Example 13, and the magnetic properties were measured in the same manner as in the case of starting material 1. Table 2 shows the results.

実施例 18 材料磁性粒子粉末として、実施例7で得られたSrフェ
ライト粒子粉末を用いた以外は、実施例17とまったく
同様にしてシートを作成した。
Example 18 Material A sheet was prepared in exactly the same manner as in Example 17, except that the Sr ferrite particles obtained in Example 7 were used as the magnetic particles.

このシートを用いて実施例13とまったく同様にして円
柱状サンプルを作成し、出発原料1の場合と同様な方法
により磁気特性を測定した結果を表2に示す。
Using this sheet, a cylindrical sample was prepared in exactly the same manner as in Example 13, and the magnetic properties were measured in the same manner as in the case of Starting Material 1. Table 2 shows the results.

実施例 19 実施例1で得たBaフェライト粒子粉末1151とナイ
ロン6(製品名11013B宇部興産(株)製)15.
7fとを230℃に加熱したニーダ−で混練し、均一な
混練物とした後粗砕し、この粗砕物26fを直径25m
mφの金型に投入し、180℃、圧力500kg/iで
加熱圧縮成型し、直径25朋φ、厚み15mπの円柱状
成型体を得た。
Example 19 Ba ferrite particle powder 1151 obtained in Example 1 and nylon 6 (product name 11013B manufactured by Ube Industries, Ltd.) 15.
7f and kneaded in a kneader heated to 230°C to make a uniform kneaded product, and then coarsely crushed.
The mixture was put into a mφ mold and heated and compression molded at 180° C. and a pressure of 500 kg/i to obtain a cylindrical molded body with a diameter of 25 mm and a thickness of 15 mπ.

この成型体を、出発原料1の場合と同様な方法により、
磁気特性を測定した結果を表2に示す。
This molded body was prepared in the same manner as in the case of starting material 1.
Table 2 shows the results of measuring the magnetic properties.

実施例 20〜24 材料磁性粒子粉末の種類を種々変化させた以外は実施例
19とまったく同様にして円柱状成型体を得た。
Examples 20 to 24 Cylindrical molded bodies were obtained in exactly the same manner as in Example 19, except that the types of magnetic particles were varied.

この成型体を出発原料1の場合と同様な方法により磁気
特性を測定した結果を表2に示す。
The magnetic properties of this molded body were measured in the same manner as in the case of starting material 1, and the results are shown in Table 2.

比較例 1〜2 材料磁性粒子粉末としてそれぞれ出発原料1及び出発原
料2を用いた以外は実施例13とまったく同様にし、て
シートを作成した。
Comparative Examples 1 and 2 Sheets were prepared in exactly the same manner as in Example 13, except that Starting Material 1 and Starting Material 2 were used as the magnetic particle powders, respectively.

このシートを用いて実施例13とまったく同様にして円
柱状サンプルを作成し1、出発原料1の場合と同様な方
法により磁気特性を測定した結果を表2に示す。
Using this sheet, a cylindrical sample was prepared in exactly the same manner as in Example 13 (1), and the magnetic properties were measured in the same manner as in the case of starting material 1. Table 2 shows the results.

比較例 3〜4 材料磁性粒子粉末としてそれぞれ出発原料1及び出発原
料2を用いた以外は実施例15とまったく同様にしてシ
ートを作成した。
Comparative Examples 3 to 4 Material Sheets were prepared in exactly the same manner as in Example 15, except that Starting Material 1 and Starting Material 2 were used as the magnetic particle powders, respectively.

このシートを用いて実施例13とまったく同様にして円
柱状サンプルを作成し、出発原料1の場合と同様な方法
により磁気特性を測定した結果を表2に示す。
Using this sheet, a cylindrical sample was prepared in exactly the same manner as in Example 13, and the magnetic properties were measured in the same manner as in the case of Starting Material 1. Table 2 shows the results.

く焼結磁石の製造〉 実施例 25〜26;実施例 2
5 実施例1で得たBaフェライト粒子粉末20fとPVA
6.5%水溶液2mlとを良く混合し、直径25關φ
の金型を用い、圧力1000kg/−で圧縮して、直径
25關φ、厚さ15關の圧粉成型体を得た。
Manufacturing of sintered magnet> Examples 25 to 26; Example 2
5 Ba ferrite particle powder 20f obtained in Example 1 and PVA
Mix well with 2 ml of 6.5% aqueous solution and make a 25 mm diameter
A compacted powder body having a diameter of 25 mm and a thickness of 15 mm was obtained by compressing with a pressure of 1000 kg/- using a mold.

この圧粉体を乾燥した後、電気炉を用い、1200℃で
60分間焼成し、焼結サンプルを得た。
After drying this green compact, it was fired at 1200° C. for 60 minutes using an electric furnace to obtain a sintered sample.

この焼結サンプルを出発原料1の場合と同様な方法によ
り磁気特性を測定した結果、エネルギー積BHma x
1.2 M、G、Oe、残留磁束密度(Br)240
0 Gauss、配向度(Br78m)0.57及び保
磁力IHC35000eであった。
The magnetic properties of this sintered sample were measured in the same manner as in the case of starting material 1. As a result, the energy product BHmax
1.2 M, G, Oe, residual magnetic flux density (Br) 240
0 Gauss, degree of orientation (Br78m) 0.57, and coercive force IHC35000e.

実施例 26 実施例7で得たSrフェライト粒子粉末20L?と水5
0ccとをよく混合しスラリー化した後、直径30mm
φの金型を用い、10に、Oeの磁場で配向後圧力10
0kg/fflで圧縮成型し1直径30山φ、厚さ10
mmの円柱状圧粉体を作成した。
Example 26 20L of Sr ferrite particle powder obtained in Example 7? and water 5
After mixing well with 0cc to form a slurry, the diameter is 30mm.
Using a mold of φ, the pressure was 10 after orientation in a magnetic field of Oe.
Compression molded at 0kg/ffl, 1 diameter 30 threads φ, thickness 10
A cylindrical powder compact with a diameter of mm was prepared.

この圧粉体を乾燥した後、電気炉中1230℃で60分
間焼成して焼結サンプルを得た。
After drying this green compact, it was fired in an electric furnace at 1230° C. for 60 minutes to obtain a sintered sample.

この焼結サンプルを出発原料1の場合と同様な方法によ
り、磁気特性を測定した結果、エネルギ;−積BHma
x3.8M、G、Oe、残留磁束密度(Br)4130
Gauss1配向度(Br78m)0.91及び保磁力
IHc31000eであった。
The magnetic properties of this sintered sample were measured in the same manner as for starting material 1. As a result, the energy;
x3.8M, G, Oe, residual magnetic flux density (Br) 4130
The degree of Gauss1 orientation (Br78m) was 0.91 and the coercive force IHc was 31000e.

【図面の簡単な説明】[Brief explanation of the drawing]

図1及び図2は、いずれも走査型電子顕微鏡写真であり
、図1は出発原料である乾式法により得られた不定形の
Baフェライト粒子粉末であり、図2は実施例igこよ
り得られた六角板状を呈したBaフェライト粒子粉末で
ある。
Figures 1 and 2 are both scanning electron micrographs, Figure 1 is the starting material of amorphous Ba ferrite particles obtained by the dry method, and Figure 2 is the powder of Ba ferrite particles obtained from Example ig. This is Ba ferrite particle powder exhibiting a hexagonal plate shape.

Claims (1)

【特許請求の範囲】 1 出発原料である不定形のBa、Sr又はPbフェラ
イト粒子に対し、Ba或はSrの塩化物若しくは弗化物
又はPbの臭化物、沃化物若しくは酸化物から選ばれた
一種又は二種以上の融剤を全重量で5〜90wt%混在
させたのち、該融剤の融点以上の温度で加熱焼成するこ
とにより、前記出発原料の粒子形状を六角板状粒子とす
ることを特徴とする六角板状を呈したマグネトブランバ
イト型Ba、Sr又はPbフェライト粒子粉末の製造法
。 2 融剤がB a C12である特許請求の範囲第1項
記載の六角板状を呈したマグネトブランバイト型Baフ
ェライト粒子粉末の製造法。 3 出発原料である不定形のBaフェライト粒子に対し
BaCl2を全重量で10〜70wt%混在させる特許
請求の範囲第2項記載の六角板状を呈したマグネトブラ
ンバイト型Baフェライト粒子粉末の製造法。 4 融剤が5rC12である特許請求の範囲第1項記載
の六角板状を呈したマグネトブランバイト型Srフェラ
イト粒子粉末の製造法。 5 出発原料である不定形のSrフェライト粒子に対し
5rCj2を全重量で10〜70wt%混在させる特許
請求の範囲第4項記載の六角板状を呈したマグネトブラ
ンバイト型Srフェライト粒子粉末の製造法。
[Scope of Claims] 1. For the amorphous Ba, Sr or Pb ferrite particles which are the starting materials, one selected from Ba or Sr chloride or fluoride or Pb bromide, iodide or oxide or The particle shape of the starting raw material is made into hexagonal plate-like particles by mixing 5 to 90 wt% of two or more types of fluxes and then heating and firing at a temperature equal to or higher than the melting point of the fluxes. A method for producing magnetoblanbite-type Ba, Sr or Pb ferrite particles having a hexagonal plate shape. 2. The method for producing magnetobrambite-type Ba ferrite particles having a hexagonal plate shape according to claim 1, wherein the flux is B a C12. 3. A method for producing magnetobrambite-type Ba ferrite particles having a hexagonal plate shape according to claim 2, in which 10 to 70 wt% of BaCl2 is mixed in the amorphous Ba ferrite particles as a starting material. . 4. A method for producing magnetobrambite-type Sr ferrite particles having a hexagonal plate shape according to claim 1, wherein the flux is 5rC12. 5. A method for producing magnetobrambite-type Sr ferrite particles having a hexagonal plate shape according to claim 4, in which 10 to 70 wt% of 5rCj2 is mixed in the amorphous Sr ferrite particles as a starting material. .
JP54052773A 1979-04-28 1979-04-28 Manufacturing method of hexagonal plate-shaped magnetoplumbite type ferrite particle powder Expired JPS5841647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54052773A JPS5841647B2 (en) 1979-04-28 1979-04-28 Manufacturing method of hexagonal plate-shaped magnetoplumbite type ferrite particle powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54052773A JPS5841647B2 (en) 1979-04-28 1979-04-28 Manufacturing method of hexagonal plate-shaped magnetoplumbite type ferrite particle powder

Publications (2)

Publication Number Publication Date
JPS55145304A JPS55145304A (en) 1980-11-12
JPS5841647B2 true JPS5841647B2 (en) 1983-09-13

Family

ID=12924176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54052773A Expired JPS5841647B2 (en) 1979-04-28 1979-04-28 Manufacturing method of hexagonal plate-shaped magnetoplumbite type ferrite particle powder

Country Status (1)

Country Link
JP (1) JPS5841647B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4778734A (en) * 1987-02-03 1988-10-18 Ube Industries, Ltd. Barium ferrite magnetic powder and magnetic recording medium containing the same
KR102394256B1 (en) * 2014-10-01 2022-05-04 도다 고교 가부시끼가이샤 Ferrite particle powder for bonded magnets, resin composition for bonded magnets, and molded article using same
JP7262234B2 (en) * 2019-01-31 2023-04-21 Dowaエレクトロニクス株式会社 Magnetoplumbite-type hexagonal ferrite magnetic powder and method for producing the same

Also Published As

Publication number Publication date
JPS55145304A (en) 1980-11-12

Similar Documents

Publication Publication Date Title
JP4367649B2 (en) Ferrite sintered magnet
CN101316803B (en) Oxide based magnetic material, process for producing the same, sintered ferrite magnet and process for producing the same
TWI433433B (en) A bonded magnet and magnetic roll
EP2418660B1 (en) Ferrite powder for bonded magnet, method for producing same and bonded magnet using same
JP4540076B2 (en) Bond magnet, compound, magnet roll, ferrite powder used therefor, and method for producing the same
JP2922864B2 (en) Ferrite magnet and manufacturing method thereof
JPS5841646B2 (en) Manufacturing method of hexagonal plate-shaped magnetoplumbite type ferrite particle powder
KR20080037521A (en) Hexagonal z type ferrite sintered material and method of fabricating the same
CN115312283B (en) High-compaction-density injection magnetic powder and preparation method thereof
EP3202717B1 (en) Ferrite particle powder for bonded magnets, resin composition for bonded magnets, and molded article using same
JP7405648B2 (en) Ferrite powder for bonded magnets and its manufacturing method
JPS5841647B2 (en) Manufacturing method of hexagonal plate-shaped magnetoplumbite type ferrite particle powder
JPS5820890B2 (en) Manufacturing method of ferrite particles
JP2020057751A (en) Ferrite powder for bonded magnet and method for producing same
JP3990291B2 (en) Manufacturing method of ferrite type magnet
JP2001052912A (en) Ferrite magnet material, sintered magnet and bonded magnet
JPS60245704A (en) Manufacture of ferromagnetic cubic needle-like crystal ferrite powder
JP2009027032A (en) Manufacturing method of ferrite sintered magnet
KR102407046B1 (en) Ferrite magnetic material and ferrite sintered magnet
JP2999968B2 (en) Oxide permanent magnet and method of manufacturing the same
KR20070017466A (en) Ferrite sintered magnet
JPS6015574B2 (en) Method for manufacturing magnetoplumbite-type composite ferrite particle powder exhibiting hexagonal plate shape
KR102532582B1 (en) Ferrite powder for bonded magnets and method for producing the same
JP2001274010A (en) Polar anisotropic cylindrical ferrite magnet and magnetic field granular material
JPH10265260A (en) Production of calcined ferrite powder and production of ferite magnet using the powder