JP2009027032A - Manufacturing method of ferrite sintered magnet - Google Patents

Manufacturing method of ferrite sintered magnet Download PDF

Info

Publication number
JP2009027032A
JP2009027032A JP2007189871A JP2007189871A JP2009027032A JP 2009027032 A JP2009027032 A JP 2009027032A JP 2007189871 A JP2007189871 A JP 2007189871A JP 2007189871 A JP2007189871 A JP 2007189871A JP 2009027032 A JP2009027032 A JP 2009027032A
Authority
JP
Japan
Prior art keywords
ferrite
mass
sintered
manufacturing
sintered magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007189871A
Other languages
Japanese (ja)
Inventor
Takashi Takami
崇 高見
Hiroshi Iwasaki
洋 岩崎
Naoki Mochi
直樹 餅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2007189871A priority Critical patent/JP2009027032A/en
Publication of JP2009027032A publication Critical patent/JP2009027032A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new method for manufacturing a high-performance Ca-La-Co ferrite sintered magnet. <P>SOLUTION: In the manufacturing method of the ferrite sintered magnet, having an M type ferrite structure and having a composition represented by Ca<SB>1-x</SB>R<SB>x</SB>Fe<SB>2n-y</SB>Co<SB>y</SB>, 0.3≤1-x≤0.65, 0.2≤x≤0.65, 0.03≤y≤0.65, and 4≤n≤7, Na in an amount of 0.01-0.3 mass%, in an equivalent of sodium carbonate, is added to the total mass of mixture adjusted to the corresponding composition of the ferrite sintered magnet in a raw material mixing process. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、従来のCa−La−Co系フェライト焼結磁石よりも高い磁気特性を持つ新規で高性能なCa−La−Co系フェライト焼結磁石を製造する方法に関する。   The present invention relates to a method for producing a new and high-performance Ca-La-Co ferrite sintered magnet having higher magnetic properties than conventional Ca-La-Co ferrite sintered magnets.

マグネトプランバイト型(M型)構造のフェライト焼結磁石は、モータ、発電機等の回転機を含む種々の用途に使用されている。最近では、自動車用回転機では小型・軽量化を目的として、電気機器用回転機では高効率化を目的として、さらに高い磁気特性を有するフェライト焼結磁石が求められている。特に自動車用の回転機には、小型・軽量化の観点から、高い残留磁束密度(Br)を保持しながら薄型にしたときに発生する反磁界により減磁しない高い固有保磁力(HcJ)を有するフェライト焼結磁石が求められている。   Magneto-plumbite type (M-type) sintered ferrite magnets are used in various applications including rotating machines such as motors and generators. Recently, there has been a demand for sintered ferrite magnets having even higher magnetic properties for the purpose of reducing the size and weight of rotating machines for automobiles and for improving the efficiency of rotating machines for electrical equipment. In particular, a rotating machine for automobiles has a high intrinsic coercive force (HcJ) that does not demagnetize due to a demagnetizing field generated when it is made thin while maintaining a high residual magnetic flux density (Br) from the viewpoint of miniaturization and weight reduction. There is a need for sintered ferrite magnets.

特許文献1は、六方晶フェライトを主相とし、一般式:Ca1−x(Fe12−y19(Rは、Yを含む希土類元素及びBiから選択される少なくとも1種の元素であって、Laを必ず含み、MはCo及び/又はNiであり、x、y及びzはそれぞれ0.2≦x≦0.8、0.2≦y≦1.0、及び0.5≦z≦1.2の条件を満たす。)により表される組成を有するフェライト焼結磁石を開示している。段落[0018]及び実施例6には、特許文献1に記載のフェライト焼結磁石はSrフェライト(SrM)に比べて、約2%高い飽和磁化(4πIs)及び約10%高い異方性磁場(H)を有すると記載されている。このような高い値を有するフェライト焼結磁石は、SrMでは実現できない高いポテンシャルが得られることが予測される。つまり4.6kG(460mT)以上のBrが得られ、HcJの最大値が約10%増加する可能性がある。しかし特許文献1の実施例2に記載されているサンプルNo.2の磁気特性(O=20%焼成時)は、Br=4.4kG(440mT)及びHcJ=3.93kOe(313kA/m)であることが図2に示されており、この値は予想される値に比べて低く、改善の余地がある。 Patent Document 1 has hexagonal ferrite as a main phase, and has a general formula: Ca 1-x R x (Fe 12-y M y ) z O 19 (R is at least one selected from rare earth elements including Y and Bi). A seed element, which must contain La, M is Co and / or Ni, x, y and z are 0.2 ≦ x ≦ 0.8, 0.2 ≦ y ≦ 1.0, and A ferrite sintered magnet having a composition expressed by the following condition is satisfied. In paragraph [0018] and Example 6, the sintered ferrite magnet described in Patent Document 1 has about 2% higher saturation magnetization (4πIs) and about 10% higher anisotropic magnetic field (SrM) than Sr ferrite (SrM). H A ). It is predicted that a sintered ferrite magnet having such a high value will have a high potential that cannot be realized with SrM. That is, Br of 4.6 kG (460 mT) or more is obtained, and the maximum value of HcJ may increase by about 10%. However, the sample No. described in Example 2 of Patent Document 1 is used. 2 of the magnetic properties (when O 2 = 20% calcination) is is shown in Figure 2 it is Br = 4.4kG (440mT) and HcJ = 3.93kOe (313kA / m) , this value is expected There is room for improvement.

特許第3181559号Japanese Patent No. 3181559

従って、本発明の目的は、従来のCa−La−Co系フェライト焼結磁石に比べて高いBr及び/又は高いHcJを持つ新規で高性能なCa−La−Co系フェライト焼結磁石を製造する方法を提供することにある。   Accordingly, an object of the present invention is to produce a new and high-performance Ca-La-Co ferrite sintered magnet having a high Br and / or a high HcJ compared to a conventional Ca-La-Co ferrite sintered magnet. It is to provide a method.

上記目的に鑑み、鋭意研究の結果、創作された本発明の製造方法は、M型フェライト構造を有し、Ca、希土類元素の少なくとも1種であってLaを必須に含むR元素、Fe及びCoを必須元素とし、下記一般式:
Ca1−xFe2n−yCo(原子比率)
[(1−x)、x、y及びnはそれぞれCa、R元素及びCoの含有量及びモル比を表し、
0.3≦1−x≦0.65、
0.2≦x≦0.65、
0.03≦y≦0.65、及び
4≦n≦7
を満たす数値である。]により表わされる組成を有するフェライト焼結磁石を製造する方法であって、原料の混合工程、仮焼工程、粉砕工程、成形工程及び焼成工程を有し、原料の混合工程において前記フェライト焼結磁石の組成に対応する組成物に調整された混合物の総質量に対し、炭酸ナトリウムの換算値でNaを0.01〜0.3質量%添加することを特徴とする。
In view of the above-mentioned object, as a result of earnest research, the production method of the present invention created has an M-type ferrite structure, Ca, R, which is at least one rare earth element, and essentially contains La, Fe and Co Is an essential element, and the following general formula:
Ca 1-x R x Fe 2n -y Co y ( atomic ratio)
[(1-x), x, y and n represent the content and molar ratio of Ca, R element and Co, respectively.
0.3 ≦ 1-x ≦ 0.65,
0.2 ≦ x ≦ 0.65,
0.03 ≦ y ≦ 0.65, and 4 ≦ n ≦ 7
It is a numerical value satisfying. Is a method of manufacturing a ferrite sintered magnet having a composition represented by the following: a raw material mixing step, a calcination step, a pulverization step, a molding step, and a firing step. Na is added in an amount of 0.01 to 0.3% by mass in terms of sodium carbonate with respect to the total mass of the mixture adjusted to a composition corresponding to the composition.

添加されるNa化合物として、例えば炭酸ナトリウム(NaCO)、炭酸水素ナトリウム(NaHCO)等の炭酸塩、NaOH等の水酸化物又はNaCl等の塩化物が好ましい。 As the added Na compound, for example, carbonates such as sodium carbonate (Na 2 CO 3 ) and sodium hydrogen carbonate (NaHCO 3 ), hydroxides such as NaOH, and chlorides such as NaCl are preferable.

本発明において、前記フェライト焼結磁石が、下記一般式:
Ca1−xFe2n−yCoα(原子比率)
[(1−x)、x、y、n及びαはそれぞれCa、R元素、Coの含有量、モル比及びOの含有量を表し、
0.3≦1−x≦0.65、
0.2≦x≦0.65、
0.03≦y≦0.65、及び
4≦n≦7
を満たす数値である。ただし、x=yでかつn=6のときの化学量論組成比を示した場合はα=19である。]により表わされる組成を有する場合に、高いBr及び/又は高いHcJを持つことができる。
In the present invention, the sintered ferrite magnet has the following general formula:
Ca 1-x R x Fe 2n -y Co y O α ( atomic ratio)
[(1-x), x, y, n and α represent Ca, R element, Co content, molar ratio and O content, respectively.
0.3 ≦ 1-x ≦ 0.65,
0.2 ≦ x ≦ 0.65,
0.03 ≦ y ≦ 0.65, and 4 ≦ n ≦ 7
It is a numerical value satisfying. However, when the stoichiometric composition ratio is shown when x = y and n = 6, α = 19. ], It can have high Br and / or high HcJ.

従来のCa−La−Co系フェライト焼結磁石に比べて高いBr及び/又は高いHcJを持つCa−La−Co系フェライト焼結磁石を製造することができる。   A Ca—La—Co ferrite sintered magnet having a high Br and / or a high HcJ as compared with a conventional Ca—La—Co ferrite sintered magnet can be produced.

<仮焼体の組成>
本発明に係るフェライト焼結磁石の原料である仮焼体は、六方晶構造を有するフェライトを主とし、Ca、希土類元素の少なくとも1種であってLaを必須に含むR元素、Fe及びCoを必須元素とする酸化物磁性材料であって、下記一般式:
Ca1−xFe2n−yCo(原子比率)
[(1−x)、x、y及びnはそれぞれCa、R元素、Coの含有量及びモル比を表し、
0.3≦1−x≦0.65、
0.2≦x≦0.65、
0.03≦y≦0.65、及び
4≦n≦7
を満たす数値である。]により表わされる基本組成を有するものが好ましい。
<Composition of calcined body>
The calcined body that is a raw material of the sintered ferrite magnet according to the present invention is mainly composed of ferrite having a hexagonal crystal structure, and contains R element, Fe, and Co, which are at least one of Ca and rare earth elements and essentially contain La. An oxide magnetic material as an essential element, which has the following general formula:
Ca 1-x R x Fe 2n -y Co y ( atomic ratio)
[(1-x), x, y and n represent the content and molar ratio of Ca, R element and Co, respectively.
0.3 ≦ 1-x ≦ 0.65,
0.2 ≦ x ≦ 0.65,
0.03 ≦ y ≦ 0.65, and 4 ≦ n ≦ 7
It is a numerical value satisfying. And those having a basic composition represented by

Ca含有量(1−x)は、0.3〜0.65であるのが好ましく、0.35〜0.55であるのがより好ましい。(1−x)が0.3未満ではM相が安定して生成せず、余剰のR元素によりオルソフェライトが生成するため磁気特性が低下する。(1−x)が0.6を超えるとCaFeO3−x等の好ましくない相が生成する。 The Ca content (1-x) is preferably 0.3 to 0.65, and more preferably 0.35 to 0.55. When (1-x) is less than 0.3, the M phase is not stably generated, and ortho-ferrite is generated by the excess R element, so that the magnetic characteristics are deteriorated. When (1-x) exceeds 0.6, an undesirable phase such as CaFeO 3-x is formed.

R元素とCoのモル比x/yの値は、1≦x/y≦3であるのが好ましく、1.2≦x/y≦2であるのがさらに好ましい。x/yが1未満ではCoを多く含む異相が発生し、角形比(Hk/HcJ)が悪化する。x/yが3を超えるとオルソフェライト等の異相が発生して磁気特性が大きく低下する。   The value of the molar ratio x / y between the R element and Co is preferably 1 ≦ x / y ≦ 3, and more preferably 1.2 ≦ x / y ≦ 2. When x / y is less than 1, a heterogeneous phase containing a large amount of Co is generated, and the squareness ratio (Hk / HcJ) is deteriorated. When x / y exceeds 3, a heterogeneous phase such as orthoferrite is generated and the magnetic properties are greatly deteriorated.

RはLa、Ce、Nd及びPr等の希土類元素の少なくとも1種であってLaを必須に含む。高い磁気特性を付与するために、R元素中のLaの比率は50原子%以上であるのが好ましく、70原子%以上であるのがより好ましく、La単独(ただし、不可避的不純物は許容される。)であるのが特に好ましい。R元素の中でLaがM相に最も固溶し易いため、Laの比率が大きいほど磁気特性の向上効果が大きい。R含有量(x)は、0.2〜0.65であるのが好ましく、0.3〜0.6であるのがより好ましく、0.35〜0.55であるのがさらに好ましい。xが0.2未満ではM相へのCoの置換量が不十分なため、M型フェライト構造が不安定になり、CaO・Fe、CaO・2Fe等の異相を生成して磁気特性が大きく低下する。xが0.65を超えると未反応のR元素の酸化物が増加し、さらにオルソフェライト等の好ましくない相が生じる。 R is at least one kind of rare earth elements such as La, Ce, Nd, and Pr, and contains La in an essential manner. In order to impart high magnetic properties, the ratio of La in the R element is preferably 50 atomic% or more, more preferably 70 atomic% or more, and La alone (however, inevitable impurities are allowed). Is particularly preferred. Since La is most easily dissolved in the M phase among the R elements, the effect of improving the magnetic properties is larger as the La ratio is larger. The R content (x) is preferably 0.2 to 0.65, more preferably 0.3 to 0.6, and still more preferably 0.35 to 0.55. If x is less than 0.2, the substitution amount of Co to the M phase is insufficient, so the M-type ferrite structure becomes unstable, and different phases such as CaO · Fe 2 O 3 and CaO · 2Fe 2 O 3 are generated. Magnetic properties are greatly reduced. When x exceeds 0.65, an unreacted oxide of R element increases, and an undesirable phase such as orthoferrite is generated.

原料の混合工程において調整された混合物の総質量に対し、炭酸ナトリウムの換算値で添加されるNaは、0.01〜0.3質量%であるのが好ましく、0.03〜0.2質量%とするのがさらに好ましい。添加量が0.01質量%未満では添加による磁気特性の向上効果が得られず、添加量が0.3質量%を超えると逆に磁気特性が低下する。   The Na added in terms of sodium carbonate is preferably 0.01 to 0.3% by mass, and 0.03 to 0.2% by mass with respect to the total mass of the mixture adjusted in the raw material mixing step. % Is more preferable. If the addition amount is less than 0.01% by mass, the effect of improving the magnetic properties due to the addition cannot be obtained, and if the addition amount exceeds 0.3% by mass, the magnetic properties are reduced.

Co含有量(y)は、0.03〜0.65であるのが好ましく、0.1〜0.55であるのがより好ましく、0.2〜0.4であるのが特に好ましい。yが0.03未満ではCoの添加による磁気特性の向上効果が得られない。また仮焼体に未反応のα−Feが残存するので、湿式成形時において成形型のキャビティからのスラリー漏れが顕著に発生する。yが0.65を超えるとCoを多く含む異相が生成して磁気特性が大きく低下する。 The Co content (y) is preferably 0.03 to 0.65, more preferably 0.1 to 0.55, and particularly preferably 0.2 to 0.4. If y is less than 0.03, the effect of improving magnetic properties by adding Co cannot be obtained. Moreover, since unreacted α-Fe 2 O 3 remains in the calcined body, slurry leakage from the cavity of the mold is significantly generated during wet molding. If y exceeds 0.65, a heterogeneous phase containing a large amount of Co is generated and the magnetic properties are greatly deteriorated.

モル比nは、(Ca+R)と(Fe+Co)のモル比を反映する値で、2n=(Fe+Co)/(Ca+R)で表される。モル比nは4〜7であるのが好ましく、4〜6であるのがより好ましく、4.9〜5.6であるのが特に好ましい。nが4未満では非磁性部分の比率が多くなるとともに、仮焼体粒子の形態が過度に扁平になりHcJが大きく低下する。nが7を超えると仮焼体に未反応のα−Feが残存し、湿式成形時の成形型のキャビティからスラリー漏れが顕著になる。 The molar ratio n is a value that reflects the molar ratio of (Ca + R) to (Fe + Co) and is represented by 2n = (Fe + Co) / (Ca + R). The molar ratio n is preferably 4 to 7, more preferably 4 to 6, and particularly preferably 4.9 to 5.6. When n is less than 4, the ratio of the non-magnetic portion increases, and the form of the calcined particles becomes excessively flat, and HcJ is greatly reduced. When n exceeds 7, unreacted α-Fe 2 O 3 remains in the calcined body, and slurry leakage becomes prominent from the mold cavity during wet molding.

原料の混合工程において、 Brを低下させない範囲でSiOやBを少量添加することは許容される。磁気特性を高めるために、Bの換算値で0.05〜0.2質量%のB又はSiOの換算値で0.05〜0.2質量%のSiを添加するのが好ましい。仮焼体におけるB又はSi含有量が0.05質量%未満では磁気特性の向上効果が得られず、0.2質量%超では逆に磁気特性が低下する。 In the raw material mixing step, it is acceptable to add a small amount of SiO 2 or B 2 O 3 within a range in which Br is not lowered. In order to enhance the magnetic properties, it is preferable to add 0.05 to 0.2% by mass of B in terms of B 2 O 3 or 0.05 to 0.2% by mass of Si in terms of SiO 2. . If the B or Si content in the calcined body is less than 0.05% by mass, the effect of improving the magnetic properties cannot be obtained, and if it exceeds 0.2% by mass, the magnetic properties decrease.

<フェライト焼結磁石の組成>
本発明に係るフェライト焼結磁石は、M型フェライト構造を有し、Ca、希土類元素の少なくとも1種であってLaを必須に含むR元素、Fe及びCoを必須元素とし、下記一般式:
Ca1−xFe2n−yCo(原子比率)
[(1−x)、x、y及びnはそれぞれCa、R元素、Coの含有量及びモル比を表し、
0.3≦1−x≦0.65、
0.2≦x≦0.65、
0.03≦y≦0.65、及び
4≦n≦7
を満たす数値である。]により表わされる基本組成を有する。
<Composition of sintered ferrite magnet>
The sintered ferrite magnet according to the present invention has an M-type ferrite structure, Ca is an R element that is at least one of rare earth elements and contains La as an essential element, Fe and Co as essential elements, and has the following general formula:
Ca 1-x R x Fe 2n -y Co y ( atomic ratio)
[(1-x), x, y and n represent the content and molar ratio of Ca, R element and Co, respectively.
0.3 ≦ 1-x ≦ 0.65,
0.2 ≦ x ≦ 0.65,
0.03 ≦ y ≦ 0.65, and 4 ≦ n ≦ 7
It is a numerical value satisfying. ] Has a basic composition represented by

Ca含有量(1−x)は、0.3〜0.65であり、0.4〜0.55であるのが好ましい。(1−x)が0.3未満ではM相が不安定になり、余剰のR元素によりオルソフェライトが生成して磁気特性が低下する。(1−x)が0.65を超えるとM相を生成しなくなり、CaFeO3−x等の好ましくない相が生成する。 Ca content (1-x) is 0.3-0.65, and it is preferable that it is 0.4-0.55. If (1-x) is less than 0.3, the M phase becomes unstable, and ortho-ferrite is generated by excess R element, resulting in a decrease in magnetic properties. When (1-x) exceeds 0.65, the M phase is not generated, and an unfavorable phase such as CaFeO 3-x is generated.

R元素はLa、Ce、Nd及びPr等の希土類元素の少なくとも1種であってLaを必須に含む。高い磁気特性を付与するために、R中のLaの比率は50原子%以上であるのが好ましく、70原子%以上であるのがさらに好ましく、La単独(ただし、不可避的不純物は許容される。)が特に好ましい。R元素の含有量(x)は、0.2〜0.65であり、0.3〜0.55であるのが好ましく、0.35〜0.5であるのがより好ましい。xが0.2未満では、M相へのCoの置換量が不十分になり、M型フェライト構造が不安定になる。xが0.65を超えると未反応のR元素の酸化物が増加し、オルソフェライト等の好ましくない相が生じる。   The R element is at least one kind of rare earth elements such as La, Ce, Nd, and Pr, and contains La essentially. In order to impart high magnetic properties, the ratio of La in R is preferably 50 atomic% or more, more preferably 70 atomic% or more, and La alone (however, inevitable impurities are allowed). Is particularly preferred. The content (x) of the R element is 0.2 to 0.65, preferably 0.3 to 0.55, and more preferably 0.35 to 0.5. When x is less than 0.2, the substitution amount of Co to the M phase becomes insufficient, and the M-type ferrite structure becomes unstable. When x exceeds 0.65, the unreacted oxide of R element increases, and an undesirable phase such as orthoferrite is generated.

Co含有量(y)は、0.03〜0.65であり、0.1〜0.55であるのが好ましく、0.2〜0.4であるのがより好ましい。yが0.03未満ではCoの添加による磁気特性の向上効果が得られない。yが0.65を超えるとCoを多く含む異相が生成して磁気特性が大きく低下する。   Co content (y) is 0.03-0.65, it is preferable that it is 0.1-0.55, and it is more preferable that it is 0.2-0.4. If y is less than 0.03, the effect of improving magnetic properties by adding Co cannot be obtained. If y exceeds 0.65, a heterogeneous phase containing a large amount of Co is generated and the magnetic properties are greatly deteriorated.

モル比nは前述の仮焼体におけるモル比nと同じ意味であり、4〜7であり、4〜6であるのが好ましく、4.5〜5.5であるのがより好ましい。nが4未満では非磁性部分の比率が多くなり、磁気特性が低下する。nが7を超えると、未反応のα−Feが増加して磁気特性が大きく低下する。 The molar ratio n has the same meaning as the molar ratio n in the calcined body described above, is 4 to 7, preferably 4 to 6, and more preferably 4.5 to 5.5. When n is less than 4, the ratio of the nonmagnetic portion increases and the magnetic properties are deteriorated. When n exceeds 7, unreacted α-Fe 2 O 3 increases and the magnetic properties are greatly deteriorated.

R元素とCoのモル比x/yの値は、1≦x/y≦3であるのが好ましく、1.2≦x/y≦2であるのがさらに好ましい。これらの値を満たすことにより、磁気特性が向上する。   The value of the molar ratio x / y between the R element and Co is preferably 1 ≦ x / y ≦ 3, and more preferably 1.2 ≦ x / y ≦ 2. Satisfying these values improves the magnetic properties.

(R元素の含有量)>(Co含有量)であるとき、すなわち、x>yであるとき、磁気特性の向上効果が大きい。   When (R element content)> (Co content), that is, when x> y, the effect of improving magnetic properties is large.

本発明に係るフェライト焼結磁石は、基本組成物の総質量に対して0.1〜3質量%のCr又はAlを粉砕工程で添加し、その後成形及び焼成することにより、さらに高いHcJを持つことができる。Cr又はAlの添加量が0.1質量%未満ではHcJの向上効果が得られず、3質量%を超えるとBrが大きく低下する。 The ferrite sintered magnet according to the present invention is obtained by adding 0.1 to 3% by mass of Cr 2 O 3 or Al 2 O 3 in the pulverization step with respect to the total mass of the basic composition, and thereafter molding and firing. Can have even higher HcJ. If the amount of Cr 2 O 3 or Al 2 O 3 added is less than 0.1% by mass, the effect of improving HcJ cannot be obtained, and if it exceeds 3% by mass, Br is greatly reduced.

本発明に係る仮焼体及びフェライト焼結磁石は、下記一般式:
Ca1−xFe2n−yCoα(原子比率)
[(1−x)、x、y、n及びαはそれぞれCa、R元素、Coの含有量、モル比及びOの含有量を表し、
0.3≦1−x≦0.65、
0.2≦x≦0.65、
0.03≦y≦0.65、及び
4≦n≦7
を満たす数値である。ただし、x=yでかつn=6のときの化学量論組成比を示した場合はα=19である。]により表わされる組成を有することが高い磁気特性を有するために好ましい。
The calcined body and ferrite sintered magnet according to the present invention have the following general formula:
Ca 1-x R x Fe 2n -y Co y O α ( atomic ratio)
[(1-x), x, y, n and α represent Ca, R element, Co content, molar ratio and O content, respectively.
0.3 ≦ 1-x ≦ 0.65,
0.2 ≦ x ≦ 0.65,
0.03 ≦ y ≦ 0.65, and 4 ≦ n ≦ 7
It is a numerical value satisfying. However, when the stoichiometric composition ratio is shown when x = y and n = 6, α = 19. In order to have high magnetic properties, it is preferable to have a composition represented by

即ち、R元素の含有量xとCo含有量yとの関係がx=yでかつモル比n=6の時に酸素(O)のモル数αは19となる。Fe及びCoの価数、n値、R元素の種類、仮焼又は焼成雰囲気によって酸素のモル数は異なる。還元性雰囲気で焼成した場合の酸素の欠損(ベイカンシー)、M型フェライト中におけるFeの価数の変化、Coの価数の変化等により金属元素に対する酸素の比率は変化する。従って、実際の酸素のモル数αは19からずれる場合がある。   That is, when the relationship between the content x of the R element and the Co content y is x = y and the molar ratio n = 6, the mole number α of oxygen (O) is 19. The number of moles of oxygen varies depending on the valence of Fe and Co, the n value, the type of R element, the calcination or firing atmosphere. The ratio of oxygen to the metal element changes due to oxygen deficiency (vacancy) when firing in a reducing atmosphere, changes in the valence of Fe in the M-type ferrite, changes in the valence of Co, and the like. Therefore, the actual mole number α of oxygen may deviate from 19.

<製造方法>
本発明の製造方法について以下に詳しく説明する。
<Manufacturing method>
The production method of the present invention will be described in detail below.

[仮焼体の製造]
仮焼体は固相反応法により製造する。粉砕に供するのは仮焼体の他、成形体又は焼結体の不良品や加工屑材等のリサイクル材を併用してもよい。仮焼体は異なる組成及び異なる製造条件のものでもよく、例えば、仮焼条件や組成の異なる2種以上の仮焼体をそれぞれ粗粉砕しブレンドして用いてもよい。例えばn=4及びn=7の組成を有する仮焼体を混合して、粉砕に供することができる。
[Production of calcined body]
The calcined body is produced by a solid phase reaction method. In addition to the calcined body, the pulverized product may be used in combination with a defective product of a molded product or a sintered product or a recycled material such as a processing waste material. The calcined bodies may have different compositions and different production conditions. For example, two or more types of calcined bodies having different calcining conditions and compositions may be coarsely pulverized and blended. For example, calcined bodies having compositions of n = 4 and n = 7 can be mixed and used for pulverization.

固相反応法では、酸化物の粉末、仮焼により酸化物となる化合物(Ca化合物、R元素の化合物、Na化合物、鉄化合物、Co化合物)の粉末を原料として使用する。これらの原料粉末を所定の比率で混合し、得られた混合物を仮焼(フェライト化)することにより仮焼体(通常顆粒状又はクリンカー)を製造する。   In the solid-phase reaction method, powder of an oxide and a powder of a compound (Ca compound, R element compound, Na compound, iron compound, Co compound) that becomes an oxide by calcination are used as raw materials. These raw material powders are mixed at a predetermined ratio, and the obtained mixture is calcined (ferritized) to produce a calcined body (usually granular or clinker).

仮焼は大気中(実質的に酸素分圧が0.05〜0.2atm程度に相当する。)で行うのが実用的であるが、酸素過剰雰囲気中(例えば酸素分圧が0.2atm超1atm以下)、特に酸素100%雰囲気中で行ってもよい。仮焼温度は1373〜1623Kが好ましく、1423〜1573Kがさらに好ましい。仮焼の時間は1秒間〜10時間が好ましく、0.1〜3時間がさらに好ましい。仮焼体は実質的にM相からなるものが好ましい。   The calcination is practically performed in the atmosphere (substantially equivalent to an oxygen partial pressure of about 0.05 to 0.2 atm), but in an oxygen-excessive atmosphere (for example, the oxygen partial pressure exceeds 0.2 atm). 1 atm or less), particularly in an oxygen 100% atmosphere. The calcining temperature is preferably 1373 to 1623K, and more preferably 1423 to 1573K. The calcination time is preferably 1 second to 10 hours, more preferably 0.1 to 3 hours. The calcined body is preferably substantially composed of an M phase.

Ca化合物としては、Caの炭酸塩、酸化物、塩化物等を使用する。   As the Ca compound, a carbonate, oxide, chloride or the like of Ca is used.

R元素の化合物としては、La等の酸化物、La(OH)の水酸化物、La(CO・8HO等の炭酸塩等を使用する。特に混合希土類(La、Nd、Pr、Ce等)の酸化物、水酸化物、炭酸塩等は安価なためコストを低減できる。 As the R element compound, oxides such as La 2 O 3 , hydroxides of La (OH) 3 , carbonates such as La 2 (CO 3 ) 3 · 8H 2 O, and the like are used. In particular, mixed rare earth (La, Nd, Pr, Ce, etc.) oxides, hydroxides, carbonates, and the like are inexpensive and can reduce costs.

鉄化合物としては、酸化鉄、水酸化鉄、塩化鉄、ミルスケール等を使用する。   As the iron compound, iron oxide, iron hydroxide, iron chloride, mill scale or the like is used.

Co化合物としては、CoO、Co等の酸化物、CoOOH、Co(OH)、Co・mO(mは正の数である。)等の水酸化物、CoCO等の炭酸塩、及びmCoCO・mCo(OH)2・mO等の塩基性炭酸塩(m、m、mは正の数である。)を使用する。 Examples of the Co compound include oxides such as CoO and Co 3 O 4 , and hydroxides such as CoOOH, Co (OH) 2 , and Co 3 O 4 .m 1 H 2 O (m 1 is a positive number). , carbonates such as CoCO 3 and m 2 CoCO 3 · m 3 Co (OH) 2 · m 4 H 2 O and the like of a basic carbonate, (m 2, m 3, m 4 are positive numbers.) Is used.

[粉砕]
仮焼体の粉砕は、必要に応じてジョークラッシャ、ハンマーミル等で粗砕後、振動ミル、ローラーミル等で乾式粗粉砕を行う。後工程の湿式又は乾式微粉砕の負荷低減のため、粗粉砕粉の平均粒径は2〜5μmとするのが好ましい。平均粒径は空気透過法(測定装置:Fischer Sub−Sieve Sizer、以後、F.S.S.S.と略す。)により嵩密度65%基準で測定できる。次に、湿式微粉砕又は乾式微粉砕を行う。
[Crushing]
For pulverization of the calcined body, if necessary, after coarse crushing with a jaw crusher, hammer mill or the like, dry coarse crushing is performed with a vibration mill, roller mill or the like. The average particle size of the coarsely pulverized powder is preferably 2 to 5 μm in order to reduce the load of wet or dry fine pulverization in the subsequent process. The average particle diameter can be measured on the basis of a bulk density of 65% by an air permeation method (measuring device: Fischer Sub-Sieve Sizer, hereinafter abbreviated as FSSS). Next, wet pulverization or dry pulverization is performed.

湿式微粉砕により得られたスラリーを湿式成形用原料とする場合は、乾式粗粉砕粉に水を加えてアトライタ、ボールミル等の湿式微粉砕機で微粉砕を行う。湿式微粉砕により得られたスラリーの脱水特性等の工業生産性及び高い磁気特性を得る観点から、前記スラリー中に分散した仮焼体の微粉砕粉の平均粒径は0.4〜1.3μm(F.S.S.S.により嵩密度65%基準で測定。)とするのが好ましい。平均粒径で0.4μm未満まで微粉砕すると、焼成時の異常な結晶粒成長によるHcJ等の低下、湿式成形時の脱水特性の著しい悪化を招く。平均粒径が1.3μmを超えるとフェライト焼結体中の粗大結晶粒の比率が増大し、HcJが大きく低下する。微粉砕粉の平均粒径は、0.7〜1.3μmがより好ましく、0.8〜1.3μmがさらに好ましく、0.8〜1.2μmが特に好ましい。   When the slurry obtained by wet pulverization is used as a raw material for wet molding, water is added to the dry coarsely pulverized powder and pulverized by a wet pulverizer such as an attritor or a ball mill. From the viewpoint of obtaining industrial productivity such as dehydration characteristics of slurry obtained by wet pulverization and high magnetic characteristics, the average particle size of the pulverized powder of the calcined body dispersed in the slurry is 0.4 to 1.3 μm. (Measured based on a bulk density of 65% according to FSSS). When the average particle size is finely pulverized to less than 0.4 μm, HcJ and the like are reduced due to abnormal crystal grain growth during firing, and dehydration characteristics during wet molding are markedly deteriorated. When the average particle size exceeds 1.3 μm, the ratio of coarse crystal grains in the ferrite sintered body increases, and HcJ greatly decreases. The average particle size of the finely pulverized powder is more preferably 0.7 to 1.3 μm, further preferably 0.8 to 1.3 μm, and particularly preferably 0.8 to 1.2 μm.

湿式微粉砕時に、投入した乾式粗粉砕粉(仮焼体)の総質量に対し、SiOを0.1〜1.5質量%添加するのが好ましく、0.2〜1質量%添加するのがより好ましい。SiOの添加により、高いHcJを安定して得ることができるが、SiOの添加量が0.1質量%未満では添加効果が得られず、1.5質量%を超えると粒成長の抑制効果が過大となり、また非磁性相の比率が増加してBrが低下する。 It is preferable to add 0.1 to 1.5% by mass of SiO 2 and 0.2 to 1% by mass with respect to the total mass of the dry coarsely pulverized powder (calcined body) introduced during wet pulverization. Is more preferable. By adding SiO 2 , high HcJ can be stably obtained, but if the addition amount of SiO 2 is less than 0.1% by mass, the effect of addition cannot be obtained, and if it exceeds 1.5% by mass, grain growth is suppressed. The effect becomes excessive, the ratio of the nonmagnetic phase increases, and Br decreases.

湿式微粉砕時に、仮焼体の総質量に対し、CaCOを0.1〜2質量%添加するのが好ましく、0.2〜1.5質量%添加するのがより好ましい。CaCOを添加することにより、焼成時のM型フェライト粒子の粒成長が促進されてBrが向上する。CaCOの添加量が0.1質量%未満では添加効果が得られず、2質量%を超えると焼成時の粒成長が過度に進行してHcJが大きく低下する。換言すれば、好ましくは本発明によるフェライト焼結磁石のモル比nが4〜6、より好ましくは4.5〜5.5となるように、上記添加量の特定範囲内で、CaCOの添加量を適宜調整するのがよい。 It is preferable to add 0.1 to 2% by mass of CaCO 3 with respect to the total mass of the calcined body during wet pulverization, and it is more preferable to add 0.2 to 1.5% by mass. By adding CaCO 3 , grain growth of M-type ferrite particles during firing is promoted and Br is improved. When the addition amount of CaCO 3 is less than 0.1% by mass, the effect of addition cannot be obtained, and when it exceeds 2% by mass, grain growth during firing proceeds excessively and HcJ is greatly reduced. In other words, the addition of CaCO 3 is preferably performed within a specific range of the addition amount so that the molar ratio n of the sintered ferrite magnet according to the present invention is 4 to 6, more preferably 4.5 to 5.5. The amount should be adjusted appropriately.

湿式微粉砕時に、仮焼体100質量部に対し0.05〜30質量部の酸化鉄を添加することにより、磁気特性を劣化させないで本発明によるフェライト焼結磁石のモル比nを調整することができる。0.05質量部未満では添加効果が得られず、30質量部を超えて添加すると湿式成形時の成形型からのスラリー漏れが顕著になる。   Adjusting the molar ratio n of the sintered ferrite magnet according to the present invention without degrading the magnetic properties by adding 0.05 to 30 parts by mass of iron oxide to 100 parts by mass of the calcined body during wet pulverization Can do. If the amount is less than 0.05 parts by mass, the effect of addition cannot be obtained. If the amount exceeds 30 parts by mass, slurry leakage from the mold during wet molding becomes significant.

湿式微粉砕後、得られたスラリーは必要に応じて濃縮し、成形を行う。濃縮は遠心分離、フィルタープレス等により行う。   After the wet pulverization, the obtained slurry is concentrated and molded as necessary. Concentration is performed by centrifugation, filter press or the like.

上記スラリーを加熱乾燥後、アトマイザー等で解砕したものを、乾式成形用原料として用いることができる。   A slurry obtained by heating and drying and then pulverizing with an atomizer or the like can be used as a raw material for dry molding.

仮焼体粗粉を振動ミル等により乾式微粉砕し、平均粒径が0.7〜1.3μm(F.S.S.S.により嵩密度65%基準で測定。)の微粉砕粉とし、これを乾式成形用原料としてもよい。   The calcined body coarse powder is finely pulverized by a dry mill using a vibration mill or the like to obtain a finely pulverized powder having an average particle size of 0.7 to 1.3 μm (measured based on a bulk density of 65% by FSSS). This may be used as a raw material for dry molding.

上記スラリーを湿式磁場中圧縮成形して得られた成形体をクラッシャー等により砕いた後、平均粒径が100〜700μm程度にふるいにより分級して得られた磁場配向顆粒を、乾式磁場中成形用原料としてもよい。   A compact obtained by compressing and molding the slurry in a wet magnetic field is crushed by a crusher or the like, and then classified by sieving to an average particle size of about 100 to 700 μm. It is good also as a raw material.

[成形]
成形は、乾式又は湿式で行う。磁場を印加せずに加圧成形し、焼成した場合は等方性のフェライト焼結磁石が得られる。磁場を印加して加圧成形し、焼成した場合は高いBr及び高いHcJを有する異方性フェライト焼結磁石が得られる。成形体及び焼成体の配向度、Brを高めるために、乾式磁場中成形よりも湿式磁場中成形が好ましい。
[Molding]
Molding is performed dry or wet. An isotropic sintered ferrite magnet can be obtained when pressure-molding and firing without applying a magnetic field. An anisotropic ferrite sintered magnet having high Br and high HcJ can be obtained when it is pressure-molded by applying a magnetic field and fired. In order to increase the degree of orientation and Br of the molded body and the fired body, molding in a wet magnetic field is preferable to molding in a dry magnetic field.

湿式又は乾式の磁場中圧縮成形を行う場合、加圧力は4.9〜49MPa程度、印加磁場強度は398〜1194kA/m程度が好ましい。成形圧力が4.9MPa未満では脆弱な成形体となり、49MPa超では成形体の配向度が大きく低下する。印加磁場強度が、398kA/m未満では異方性の付与が困難であり、1194kA/m超では異方性(配向度)の付与効果はほぼ飽和する。   When performing compression molding in a wet or dry magnetic field, the applied pressure is preferably about 4.9 to 49 MPa, and the applied magnetic field strength is preferably about 398 to 1194 kA / m. When the molding pressure is less than 4.9 MPa, the molded product becomes brittle, and when it exceeds 49 MPa, the degree of orientation of the molded product is greatly reduced. When the applied magnetic field strength is less than 398 kA / m, it is difficult to impart anisotropy, and when it exceeds 1194 kA / m, the effect of imparting anisotropy (orientation degree) is almost saturated.

異方性フェライト焼結磁石用成形体を得るために、成形型のキャビティにおいて印加される配向磁場の方向と成形圧力の加圧方向とが事実上一致する縦磁場圧縮成形を採用するのが実用的である。加圧力及び印加磁場強度の好ましい範囲は上記と同様である。   In order to obtain a molded body for an anisotropic ferrite sintered magnet, it is practical to use a longitudinal magnetic field compression molding in which the direction of the orientation magnetic field applied in the mold cavity and the pressing direction of the molding pressure are virtually the same. Is. A preferable range of the applied pressure and the applied magnetic field strength is the same as described above.

縦磁場圧縮成形体よりも高い配向度を有する異方性フェライト焼結磁石用の成形体を得るために、成形型のキャビティにおいて印加される配向磁場の方向と成形圧力の加圧方向とが事実上直交する横磁場圧縮成形を採用することが好ましい。加圧力及び印加磁場強度の好ましい範囲は上記と同様である。   In order to obtain a molded body for an anisotropic ferrite sintered magnet having a higher degree of orientation than a longitudinal magnetic field compacted body, the direction of the orientation magnetic field applied in the cavity of the mold and the pressing direction of the molding pressure are the facts It is preferable to employ transverse magnetic field compression molding that is orthogonal to the top. A preferable range of the applied pressure and the applied magnetic field strength is the same as described above.

[焼成]
成形体は、大気中での自然乾燥又は加熱乾燥(373〜773K)により水分及び分散剤等を除去した後、焼成してフェライト焼結磁石が得られる。焼成は大気中(実質的に酸素分圧が0.05〜0.2atm程度)で行うのが実用的である。酸素過剰雰囲気中(例えば酸素分圧が0.2atm超1atm以下)、特に酸素100%雰囲気中で焼成してもよい。焼成は1423〜1573K、好ましくは1433〜1543Kの温度で、0.5〜5時間、好ましくは1〜3時間行う。本発明に係るフェライト焼結磁石の密度は5.05〜5.10g/cmであるのが好ましい。
[Baking]
The molded body is freed from moisture, a dispersant, and the like by natural drying or heat drying (373-773 K) in the air, and then fired to obtain a sintered ferrite magnet. It is practical to perform the firing in the atmosphere (substantially the oxygen partial pressure is about 0.05 to 0.2 atm). Baking may be performed in an oxygen-excess atmosphere (for example, the oxygen partial pressure is more than 0.2 atm and 1 atm or less), particularly in an oxygen 100% atmosphere. Firing is performed at a temperature of 1423 to 1573 K, preferably 1433 to 1543 K, for 0.5 to 5 hours, preferably 1 to 3 hours. The density of the sintered ferrite magnet according to the present invention is preferably 5.05 to 5.10 g / cm 3 .

以下、本発明を実施例により詳細に説明するが、本発明は下記の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to the following Example.

(実施例1、比較例1、比較例2)
<NaCOの添加量と磁気特性との関係>
CaCO粉末(純度98.8%、不純物としてMgOを含む。)、La(OH)粉末(純度99.9%)、α−Fe粉末(工業用)及びCo粉末(純度99%)を、Ca0.5La0.5Fe10.3Co0.319の組成になるように配合した。この配合物100質量部に対し、0.1質量部のHBO粉末及び0〜0.4質量部のNaCO粉末を添加して湿式混合した。得られた混合物を乾燥後、1473Kで1時間、大気中で仮焼した。
(Example 1, Comparative Example 1, Comparative Example 2)
<Relationship between Na 2 CO 3 Addition and Magnetic Properties>
CaCO 3 powder (purity 98.8%, including MgO as an impurity), La (OH) 3 powder (purity 99.9%), α-Fe 2 O 3 powder (industrial) and Co 3 O 4 powder ( 99% purity) was blended so as to have a composition of Ca 0.5 La 0.5 Fe 10.3 Co 0.3 O 19 . To 100 parts by mass of this blend, 0.1 part by mass of H 3 BO 3 powder and 0 to 0.4 part by mass of Na 2 CO 3 powder were added and wet mixed. The obtained mixture was dried and calcined in the air at 1473K for 1 hour.

この仮焼体を粗砕後、振動ミルで乾式粗粉砕し、平均粒径5μm(F.S.S.S.による)の粗粉を得た。45質量%の粗粉及び55質量%の水をボールミルに投入して、100質量部の粗粉に対し0.325質量部のSiO粉末(純度92.1%、残部はほぼ水)及び0.5質量部のCaCO粉末を焼結助剤として添加し湿式微粉砕を行い、平均粒径0.9μm(F.S.S.S.による)のフェライト微粒子を含むスラリーを得た。 The calcined body was coarsely crushed and then dry coarsely pulverized with a vibration mill to obtain coarse powder having an average particle size of 5 μm (according to FSSS). 45% by mass of coarse powder and 55% by mass of water were charged into a ball mill, and 0.325 parts by mass of SiO 2 powder (purity 92.1%, the balance being almost water) and 0 with respect to 100 parts by mass of coarse powder. .5 parts by mass of CaCO 3 powder was added as a sintering aid and wet pulverization was performed to obtain a slurry containing ferrite fine particles having an average particle size of 0.9 μm (according to FSSS).

微粉砕後のスラリーにより、成形圧力39.2MPaで、平行磁場中で圧縮成形(印加磁場強度796kA/m)を行い、成形体を得た。得られた成形体を大気中、1493Kの温度で1時間焼成して異方性フェライト焼結磁石を得た。磁気特性を、B−Hトレーサーにより、室温(293K)で測定した結果を表1に示す。   The compacted slurry was subjected to compression molding (applied magnetic field strength of 796 kA / m) in a parallel magnetic field at a molding pressure of 39.2 MPa to obtain a compact. The obtained compact was fired in the atmosphere at a temperature of 1493K for 1 hour to obtain an anisotropic ferrite sintered magnet. Table 1 shows the results of measuring the magnetic properties at room temperature (293K) using a BH tracer.

(従来例1)
特許文献1のサンプルNo.2のトレース実験を行った。Ca1−xLaFe2n−yCo19(x=0.500、y=0.43、n=5.1)の組成を有する配合物に、0.4質量%のSiOを添加した混合物を作製し、1473Kで3時間、大気中で仮焼した。この仮焼体を粗砕及び粗粉砕した後、粗粉に対して0.6質量%のSiO及び1.0質量%のCaCOを添加し、水を媒体としてボールミルで湿式微粉砕を行い、平均粒径0.9μmの微粉を分散したスラリーを得た(特許文献1のサンプルNo.2の微粉砕平均粒径が不明なので、実施例1の微粉砕粉の平均粒径0.9μmに合わせた。)。このスラリーにより、以降は実施例1と同様にして異方性フェライト焼結磁石を作製し、磁気特性を測定した。結果を表1に示す。
(Conventional example 1)
Sample No. 1 of Patent Document 1 is used. Two trace experiments were performed. In a formulation having a composition of Ca 1-x La x Fe 2n-y Co y O 19 (x = 0.500, y = 0.43, n = 5.1), 0.4% by mass of SiO 2 is added. The added mixture was prepared and calcined in air at 1473K for 3 hours. After roughly pulverizing and roughly pulverizing the calcined body, 0.6% by mass of SiO 2 and 1.0% by mass of CaCO 3 are added to the coarse powder, and wet pulverization is performed with a ball mill using water as a medium. Thus, a slurry in which fine powder having an average particle size of 0.9 μm was dispersed was obtained (since the average fine particle size of sample No. 2 in Patent Document 1 is unknown, the average particle size of finely pulverized powder of Example 1 was 0.9 μm. Combined.) From this slurry, anisotropic ferrite sintered magnets were produced in the same manner as in Example 1 and the magnetic properties were measured. The results are shown in Table 1.

Figure 2009027032
Figure 2009027032

表1より、NaCOが未添加の比較例1に比べて、NaCOを0.01〜0.3質量%、仮焼前の混合物に添加して得られた実施例1の異方性フェライト焼結磁石の場合、Br又はBrとHcJが向上することがわかる。しかし、NaCOを0.4質量%添加した比較例2の場合は逆にBrが低下することがわかる。
また従来例1の異方性フェライト焼結磁石は、実施例1の場合に比べてBrが低いことがわかる。
From Table 1, compared with Comparative Example 1 in which Na 2 CO 3 was not added, 0.01 to 0.3% by mass of Na 2 CO 3 was obtained in Example 1 obtained by adding to the mixture before calcination. In the case of an anisotropic ferrite sintered magnet, it can be seen that Br or Br and HcJ are improved. However, in the case of Comparative Example 2 in which Na 2 CO 3 was added in an amount of 0.4% by mass, it was found that Br decreased.
It can also be seen that the anisotropic ferrite sintered magnet of Conventional Example 1 has a lower Br than that of Example 1.

Claims (2)

M型フェライト構造を有し、Ca、希土類元素の少なくとも1種であってLaを必須に含むR元素、Fe及びCoを必須元素とし、下記一般式:
Ca1−xFe2n−yCo(原子比率)
[(1−x)、x、y及びnはそれぞれCa、R元素、Coの含有量及びモル比を表し、
0.3≦1−x≦0.65、
0.2≦x≦0.65、
0.03≦y≦0.65、及び
4≦n≦7
を満たす数値である。]により表わされる組成を有するフェライト焼結磁石を製造する方法であって、原料の混合工程、仮焼工程、粉砕工程、成形工程及び焼成工程を有し、原料の混合工程において前記フェライト焼結磁石の組成に対応する組成物に調整された混合物の総質量に対し、炭酸ナトリウムの換算値でNaを0.01〜0.3質量%添加することを特徴とするフェライト焼結磁石の製造方法。
It has an M-type ferrite structure, is an R element that is at least one of Ca and rare earth elements and contains La as essential elements, Fe and Co as essential elements, and has the following general formula:
Ca 1-x R x Fe 2n -y Co y ( atomic ratio)
[(1-x), x, y and n represent the content and molar ratio of Ca, R element and Co, respectively.
0.3 ≦ 1-x ≦ 0.65,
0.2 ≦ x ≦ 0.65,
0.03 ≦ y ≦ 0.65, and 4 ≦ n ≦ 7
It is a numerical value satisfying. Is a method of manufacturing a ferrite sintered magnet having a composition represented by the following: a raw material mixing step, a calcination step, a pulverization step, a molding step, and a firing step. The manufacturing method of the ferrite sintered magnet characterized by adding 0.01-0.3 mass% of Na by the conversion value of sodium carbonate with respect to the total mass of the mixture adjusted to the composition corresponding to this composition.
請求項1に記載のフェライト焼結磁石の製造方法において、前記フェライト焼結磁石が、下記一般式:
Ca1−xFe2n−yCoα(原子比率)
[(1−x)、x、y、n及びαはそれぞれCa、R元素、Coの含有量、モル比及びOの含有量を表し、
0.3≦1−x≦0.65、
0.2≦x≦0.65、
0.03≦y≦0.65、及び
4≦n≦7
を満たす数値である。ただし、x=yでかつn=6のときの化学量論組成比を示した場合はα=19である。]により表わされる組成を有することを特徴とするフェライト焼結磁石の製造方法。
The method for producing a sintered ferrite magnet according to claim 1, wherein the sintered ferrite magnet has the following general formula:
Ca 1-x R x Fe 2n -y Co y O α ( atomic ratio)
[(1-x), x, y, n and α represent Ca, R element, Co content, molar ratio and O content, respectively.
0.3 ≦ 1-x ≦ 0.65,
0.2 ≦ x ≦ 0.65,
0.03 ≦ y ≦ 0.65, and 4 ≦ n ≦ 7
It is a numerical value satisfying. However, when the stoichiometric composition ratio is shown when x = y and n = 6, α = 19. ] The manufacturing method of the sintered ferrite magnet characterized by the above-mentioned.
JP2007189871A 2007-07-20 2007-07-20 Manufacturing method of ferrite sintered magnet Pending JP2009027032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007189871A JP2009027032A (en) 2007-07-20 2007-07-20 Manufacturing method of ferrite sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007189871A JP2009027032A (en) 2007-07-20 2007-07-20 Manufacturing method of ferrite sintered magnet

Publications (1)

Publication Number Publication Date
JP2009027032A true JP2009027032A (en) 2009-02-05

Family

ID=40398546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007189871A Pending JP2009027032A (en) 2007-07-20 2007-07-20 Manufacturing method of ferrite sintered magnet

Country Status (1)

Country Link
JP (1) JP2009027032A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050433A1 (en) * 2012-09-28 2014-04-03 日立金属株式会社 Ferrite sintered magnet and method for producing same
CN105842388A (en) * 2015-01-12 2016-08-10 内蒙古包钢钢联股份有限公司 Method for measuring sodium carbonate in sintering synergist through acid-base titration
CN116120049A (en) * 2023-02-17 2023-05-16 矿冶科技集团有限公司 Preparation method of calcium lanthanum cobalt ferrite magnet, calcium lanthanum cobalt ferrite magnet and application

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050433A1 (en) * 2012-09-28 2014-04-03 日立金属株式会社 Ferrite sintered magnet and method for producing same
CN104662621A (en) * 2012-09-28 2015-05-27 日立金属株式会社 Ferrite sintered magnet and method for producing same
US9536646B2 (en) 2012-09-28 2017-01-03 Hitachi Metals, Ltd. Sintered ferrite magnet and its production method
CN104662621B (en) * 2012-09-28 2017-03-08 日立金属株式会社 Ferrite sintered magnet and its manufacture method
KR101836965B1 (en) * 2012-09-28 2018-03-09 히타치 긴조쿠 가부시키가이샤 Ferrite sintered magnet and method for producing same
CN105842388A (en) * 2015-01-12 2016-08-10 内蒙古包钢钢联股份有限公司 Method for measuring sodium carbonate in sintering synergist through acid-base titration
CN116120049A (en) * 2023-02-17 2023-05-16 矿冶科技集团有限公司 Preparation method of calcium lanthanum cobalt ferrite magnet, calcium lanthanum cobalt ferrite magnet and application
CN116120049B (en) * 2023-02-17 2024-01-19 矿冶科技集团有限公司 Preparation method of calcium lanthanum cobalt ferrite magnet, calcium lanthanum cobalt ferrite magnet and application

Similar Documents

Publication Publication Date Title
JP4367649B2 (en) Ferrite sintered magnet
JP4078566B2 (en) Oxide magnetic material and manufacturing method thereof, ferrite sintered magnet and manufacturing method thereof
JP5358998B2 (en) Manufacturing method of sintered ferrite magnet
EP3364426B1 (en) Ferrite magnetic material and ferrite sintered magnet
WO2007105398A1 (en) Rotating machine, bonded magnet, magnet roll, and process for producing ferrite sintered magnet
WO1999034376A1 (en) Ferrite magnet and process for producing the same
CN103548101B (en) Magneto-plumbite type ferrite magnetic material and segment permanent magnet body therefrom
JP2020129579A (en) Ferrite sintered magnet
JP7111150B2 (en) Calcined ferrite body, sintered ferrite magnet and method for producing the same
CN112562950A (en) Ferrite sintered magnet
JP2009027032A (en) Manufacturing method of ferrite sintered magnet
JP2007123511A (en) Ferrite sintered magnet
JP3835729B2 (en) Ferrite sintered magnet and manufacturing method thereof
JP3506174B2 (en) Method for producing ferrite magnet and powder thereof
KR20070017466A (en) Ferrite sintered magnet
JP2002141212A (en) Rotating machine
KR102407046B1 (en) Ferrite magnetic material and ferrite sintered magnet
JP2006203260A (en) Ferrite magnet
JP2001068320A (en) Ferrite magnet
JPH11307331A (en) Ferrite magnet
KR20220040998A (en) Ferrite calcined body, manufacturing method of ferrite sintered magnet
JP2003124014A (en) Ferrite magnet and its manufacturing method
JP2003133120A (en) Bonded magnet and its manufacturing method
JP2003133119A (en) Ferrite magnet and manufacturing method thereof