JPS62250272A - Hot water weight reduction polyester cloth and its production - Google Patents

Hot water weight reduction polyester cloth and its production

Info

Publication number
JPS62250272A
JPS62250272A JP61090867A JP9086786A JPS62250272A JP S62250272 A JPS62250272 A JP S62250272A JP 61090867 A JP61090867 A JP 61090867A JP 9086786 A JP9086786 A JP 9086786A JP S62250272 A JPS62250272 A JP S62250272A
Authority
JP
Japan
Prior art keywords
hot water
fabric
polyester
reduced
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61090867A
Other languages
Japanese (ja)
Inventor
平川 清司
正夫 河本
赤木 孝夫
前田 佳貫
新司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP61090867A priority Critical patent/JPS62250272A/en
Publication of JPS62250272A publication Critical patent/JPS62250272A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高温高湿下で吸湿性があり、不透明化さnft
ポリエステル系布帛及びその製造法に関するものである
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention provides an NFT that is hygroscopic and opaque under high temperature and high humidity conditions.
This invention relates to polyester fabrics and their manufacturing methods.

(従来の技術) 天然繊維はセルローズ系、之んばく質系共にいずれも細
胞組織の水その他の液体が存在していtものを排除して
高分子固形成分を残存させ友もので、その細胞組織が保
有している微細構造が、吸湿性能や天然繊維の持つ良好
な光沢質感を与え、かつプラスチック感のない不透明性
を与えるものと考えらnる。
(Prior art) Natural fibers, both cellulose-based and non-bacterial, contain water and other liquids from cell tissues, which are eliminated by leaving polymeric solid components, and the cell tissues are removed. It is thought that the microstructure possessed by the fibers gives it moisture absorption performance and the good glossy texture of natural fibers, as well as opacity without the plastic feel.

一方従来、ポリエステル系繊維は疎水性であるために、
繊維自体が吸水性、吸湿性に劣る欠点がある。吸水性を
改良する友めにポリアルキレングリコールを配合させた
ポリエステル繊維等の技術として荷分44−23134
、荷分47−11280゜荷分47−43772.等が
提案されている。しかしこれ等の技術においては、得ら
れt布帛の引裂強力が小さく、ま友外観元沢が艶ぼく、
独特のプラスチック的な平面光沢があり、染色物の耐光
堅ロウ度が悪く商品価値として不満足である。
On the other hand, conventionally, polyester fibers are hydrophobic, so
The disadvantage is that the fiber itself is poor in water absorption and moisture absorption. 44-23134 is a technology for polyester fibers that contain polyalkylene glycol to improve water absorption.
, load 47-11280° load 47-43772. etc. have been proposed. However, with these techniques, the tearing strength of the resulting T-fabric is low, and the Mayu appearance and Motozawa appearance are glossy.
It has a unique plastic-like flat luster, and the light fastness of the dyed product is poor, making it unsatisfactory in terms of commercial value.

まtポリエステル、ポリアミドから成る合成繊維はシル
ク、綿、麻等の天然繊維に比較して風合、光沢が単調で
あり、プラスチック的なために今次く感じ品位の低いも
のであった。また特に最近の衣料へのニーズの動向とし
てレジャー用のスポーツ等に用いられるテニスウェア、
そして医療分野に用いられる白衣等の需要が増加しつつ
あるが、好ましい不透明性を与えるには不充分である。
Synthetic fibers made of polyester and polyamide have a monotonous texture and luster compared to natural fibers such as silk, cotton, and hemp, and are plastic-like and have a low quality feel. In addition, recent trends in clothing needs include tennis wear used for leisure sports, etc.
Although there is an increasing demand for white coats and the like used in the medical field, they are insufficient to provide desirable opacity.

布帛物を不透明化加工する方法もあるが、布帛物を硬化
させてしまう風盆上の問題があり、さらに洗濯によって
、加工付与された不透明性がなくなると云う欠点がある
There is also a method of processing the fabric to make it opaque, but this has the problem of hardening the fabric due to the wind effect, and the additional disadvantage is that the opacity imparted by the process disappears when washed.

(発明が解決しようとする問題点) 本発明は上記の如き小手先の改良手段では本質的に細胞
組織から形成さnてき九天然繊維に肉薄することは不可
能であることに思い至り、根本的に発想を変えて挑戦し
tものである。
(Problems to be Solved by the Invention) The present invention is based on the realization that it is impossible to reduce the thickness of natural fibers to natural fibers, which are essentially formed from cell tissue, by using the above-mentioned small improvements. It is a challenge to change your way of thinking.

(問題点を解決する友めの手段) 即ち繊維中に存在する添加物を水塔性物質とし、この水
溶性物質を熱水で溶出せしめ、天然繊維における細胞の
脱水、脱液と類似のプロセスヲ、合成繊維、とりわけ溶
融紡糸繊維に応用したもので、特に水溶性物質として有
機の水溶性高分子と無機の水溶性金属塩の分散混合物を
繊維中に添加分散せしめ、熱水で溶出せしめ熱水減量す
ることによって初めて達成でき次ものである。
(Friendly means to solve the problem) In other words, the additive present in the fiber is made into a water column substance, this water-soluble substance is eluted with hot water, and a process similar to the dehydration of cells in natural fibers is carried out. It is applied to synthetic fibers, especially melt-spun fibers, in which a dispersion mixture of organic water-soluble polymers and inorganic water-soluble metal salts is added and dispersed as water-soluble substances into the fibers, and eluted with hot water to reduce hot water loss. This can only be achieved by doing so.

本発明においては、熱水減量されたポリエステル系布帛
は光沢や表面外観は天然繊維に似tものとなり、自然な
ソフト感を有する風合で、高温高湿下では吸湿性を有す
るものとなつtのであるが、その表面外観が布帛状で天
然繊維と類似した外観と言い得るための重要な特性とし
て繊維の不透明性が大きく基与していることが本発明で
見い出されt0即ち、溶融紡糸合成繊維とりわけポリエ
ステル系布帛等の天然繊維に類似した外観を判断する之
めの尺度として下記一般式で示される不透明度Aが有効
であることがわかった。特に看色されていない白生地や
淡色系において、この天然繊維外観の判断は鋭敏であり
よQ7に効に判定できる0不透明度Aが80%以上を有
すると極めて天然繊維の外観に近づくことが見い出され
念。ま九一方布用の手触り温冷感や、着用時のむれ感の
点から高温高湿下で適度な吸湿性を有すると、熱的性質
の面からも天然繊維調になることが見い出され、clr
Lは相対湿度90±54RH,温度30℃±3℃の環境
下で、吸湿率196以上、好ましくは2%以上の吸湿性
fc有するポリエステル系布帛とすることによって達成
されることがわかった。
In the present invention, the polyester fabric reduced in hot water has a gloss and surface appearance similar to that of natural fibers, has a natural soft feel, and is hygroscopic under high temperature and high humidity conditions. However, in the present invention, it has been discovered that the opacity of the fiber is an important characteristic that allows the surface appearance to be said to be fabric-like and similar to natural fiber. It has been found that the opacity A expressed by the following general formula is effective as a measure for determining the appearance similar to fibers, especially natural fibers such as polyester fabrics. Particularly in uncolored white fabrics and light-colored fabrics, the appearance of natural fibers must be carefully judged.If the 0 opacity A, which can be effectively judged in Q7, is 80% or more, the appearance will be very close to that of natural fibers. I hope it's discovered. On the other hand, it has been found that if a cloth has appropriate hygroscopicity under high temperature and high humidity conditions, it will have a natural fiber-like appearance in terms of thermal properties. ,clr
It has been found that L can be achieved by using a polyester fabric having a moisture absorption fc of 196 or more, preferably 2% or more in an environment of relative humidity 90±54RH and temperature 30°C±3°C.

即ち、不発明においては、熱水減量によって該ポリエス
テル繊維中から水溶性物質の内無機塩と水浴性高分子物
質が相互に微妙に作用しあって溶出すると、極めて微細
な連通孔と無機塩粒子の独立孔とが複雑に連通して上記
不透明度Aが80チ以上になり、吸湿率1%以上のポリ
エステル系布帛となることがわかつ友ものである。
That is, in the non-invention, when the inorganic salt of the water-soluble substance and the water-bathable polymer substance are eluted from the polyester fiber by delicate interaction with each other due to hot water loss, extremely fine communicating pores and inorganic salt particles are formed. It can be seen that the independent pores of the polyester fabric are connected in a complicated manner, resulting in an opacity A of 80 degrees or more and a moisture absorption rate of 1% or more.

このような微細孔は光の乱反射現象をもたらし、その結
果として合成線維特有のプラスチック的な光沢感を脱し
友外観光沢を持ち、本発明の狙いとする不透明感を呈す
る天然繊維外観会、光沢感を有するようになる。
Such micropores cause a phenomenon of diffused reflection of light, and as a result, the natural fiber appearance and glossiness, which removes the plastic-like gloss characteristic of synthetic fibers and has a transparent appearance, exhibiting the opacity that is the aim of the present invention. It comes to have.

該繊維からなる布帛の不透明度Aの値が80%未満の場
合、着用時とりわけ白地や淡色系の場合には、生地を通
して白衣の着用物や肌その細身体部位が透けて見えやす
く見苦しいものであったが、80qbを越えると見苦し
さが無くなり、天然繊維の布帛のような外観となり、8
2%以上になると一層不透明効果が著しく、透は防止効
果は十分なものとなる。
If the opacity A value of the fabric made of these fibers is less than 80%, when worn, especially if it is white or light-colored, the white coat, skin, and small body parts will be easily visible through the fabric, which is unsightly. However, when it exceeds 80 qb, it becomes less unsightly and looks like a natural fiber cloth.
When it is 2% or more, the opacity effect becomes even more remarkable, and the transparency prevention effect becomes sufficient.

以下、上記のような本発明の布帛の製造法について説明
する。
Hereinafter, a method for manufacturing the fabric of the present invention as described above will be explained.

本発明に云うポリエステルとは主成分がポリエチレンプ
レ7、タレートおよび/もしくはポリブチレンテレフタ
レートであり、必要により他成分が約15モルチ以下の
共重合されtポリエステル等でも良い。他成分としては
ジエチレングリコール、ネオペンチルグリコール、シク
ロヘキサンジメタツール、イソフタル酸、スルホイソフ
タル酸、ポリアルキレングリコール等の共重合成分が挙
げられ、更には添加物(例えば顔料、カーボン、シリカ
等)、難燃剤あるいは染色性改良剤を含んでいてもよい
The polyester referred to in the present invention is mainly composed of polyethylene pre-7, tallate and/or polybutylene terephthalate, and if necessary, other components may be copolymerized in an amount of about 15 molar or less, such as t-polyester. Other components include copolymerized components such as diethylene glycol, neopentyl glycol, cyclohexane dimetatool, isophthalic acid, sulfoisophthalic acid, and polyalkylene glycol, as well as additives (e.g., pigments, carbon, silica, etc.), and flame retardants. Alternatively, it may contain a dyeability improving agent.

不透明度Aが80%金越え、吸湿率が1%以上となる次
めの必須要件としては90℃以上の熱水で30%以上が
繊維中より溶出する繊維を含む必要があり、30%未満
の溶出しかし得ないものは効果が低く、従来のポリエス
テル系繊維と差がなくなる。30%以上であれば良好な
効果を示すが、好ましくは60%以上溶出する繊維の方
が良い。
The next essential requirement for opacity A to exceed 80% gold and moisture absorption rate to be 1% or more is that at least 30% of the fibers must be eluted from the fibers in hot water of 90°C or higher, and less than 30%. Those that can only be eluted are less effective and are no different from conventional polyester fibers. If it is 30% or more, a good effect is shown, but preferably fibers that elute 60% or more are better.

これを達成するためには該繊維中に少くとも水溶性高分
子はポリエステルに対して1重量−以上、水溶性無機塩
はポリエステルに対して0.5重量%以上含むことが製
法上必要な条件である。
In order to achieve this, the manufacturing process requires that the fibers contain at least 1% by weight of water-soluble polymer based on the polyester, and 0.5% by weight or more of the water-soluble inorganic salt based on the polyester. It is.

このより詳細な柔性は、水溶性で且つ粘度が室温下で1
5ポイズ以上を有し、室温下で溶液状のポリアルキレン
グリコール金ポリエステルに対し1重量%以上、4重i
%未満になるように含有せしめ、加えて該ポリアルキレ
/グリコールに下記の一般式〔II〕、〔III〕で示
される化奮物より選択された1種もしくは2種以上の水
溶性の金属塩類をポリエステルに対し0.5重*%〜3
][量係未満に含有せしめるように 分散させた混合物をポリエステルポリマーの重合完了後
紡糸直前の間で該ポリエステルポリマー溶融流体中へ添
加し、その後エレメント数15以上のスタチックミキサ
ーで層分割混練した後紡糸し、繊維化して得られ皮繊維
を用いて、少くとも該繊維t−3c1以上含有する布帛
を形成せしめ、該布帛を90℃以上の熱水で該含有水溶
性物質の30−以上を溶出せしめるものである。
This more detailed flexibility is water-soluble and has a viscosity of 1 at room temperature.
5 poise or more, 1% by weight or more based on the polyalkylene glycol gold polyester in solution at room temperature, 4-fold i
%, and in addition, one or more water-soluble metal salts selected from compounds represented by the following general formulas [II] and [III] are added to the polyalkylene/glycol. 0.5 weight*% to polyester
] [A mixture dispersed so as to contain less than 100% of the polyester polymer was added to the polyester polymer molten fluid after the completion of polymerization of the polyester polymer and immediately before spinning, and then kneaded in layers using a static mixer with 15 or more elements. Using the leather fibers obtained by post-spinning and fiberizing, a fabric containing at least t-3c1 of the fibers is formed, and the fabric is heated with hot water of 90° C. or higher to remove 30- or more of the water-soluble substances contained therein. This is what allows it to elute.

本発明のかかる布帛物を構成する該ポリエステル繊維に
含有されるポリアルキレングリコールとは、アルキレン
ニーデル単位を主鎖中に主として含有するポリマーを意
味し、たとえばポリエチレンオキサイド、ポリプロピレ
ンオキサイド、エチレンオキサイドとポリプロピレンオ
キサイドの共重体を指す。゛本発明で用いられるポリア
ルキレングリコールは、水溶性で且つ粘度が室温下で1
5ポイズ以上を有し室温下で液状であることが必要であ
る。従ってポリアルキレングリコールの数平均分子量は
4000〜5000の範囲が好ましい。
The polyalkylene glycol contained in the polyester fiber constituting the fabric of the present invention means a polymer mainly containing alkylene needle units in the main chain, such as polyethylene oxide, polypropylene oxide, ethylene oxide and polypropylene. Refers to a copolymer of oxides.゛The polyalkylene glycol used in the present invention is water-soluble and has a viscosity of 1 at room temperature.
It needs to have a poise of 5 poise or more and be liquid at room temperature. Therefore, the number average molecular weight of the polyalkylene glycol is preferably in the range of 4,000 to 5,000.

粘度が15ポイズ以下になると該ポリアルキレングリコ
ールの紡糸時の高温耐熱性が悪く、ポリエステルの粘度
低下を誘発させ、紡糸時の理系性が悪くなり、毛羽及び
断糸が多くなり糸の製造工程性の点で不部会である。
When the viscosity is less than 15 poise, the polyalkylene glycol has poor high-temperature heat resistance during spinning, which induces a decrease in the viscosity of the polyester, resulting in poor mechanical properties during spinning, increased fuzz and yarn breakage, and poor yarn manufacturing process performance. It is unconventional in this respect.

該ポリアルキレングリコールがポリエステル中に含有さ
れる量はポリエステルに対し1重量%以上、4重量係未
満の範囲が好ましい。1重量%以下になると前記一般式
〔■〕〔■〕の金属塩化合物をポリエステルポリマー中
へ満足に均−良く含有させることが不可能となり、また
該含有量が4重量%以上を超えると染色物の耐光堅ロウ
度が悪くなり、また後述するアルカリ減量処理工徨によ
り糸の強度が著しく低下し布帛物の引裂強力が弱くなり
、商品としての価値がなくなり不都合である。
The amount of polyalkylene glycol contained in the polyester is preferably 1% by weight or more and less than 4% by weight based on the polyester. If the content is less than 1% by weight, it will be impossible to satisfactorily and uniformly incorporate the metal salt compound of the general formula [■] [■] into the polyester polymer, and if the content exceeds 4% by weight or more, dyeing will occur. The light fastness of the fabric deteriorates, and the strength of the yarn is significantly reduced due to the alkali weight reduction treatment described below, which weakens the tear strength of the fabric, which is disadvantageous as it loses its value as a product.

本発明の効果は該ポリアルキレングリコールに前記の一
般式CU〕、[II[]で示される化合物を併用しての
み達成さnるが、この場合に使用、さnる一般式[11
]で示される化合物の例としてはKa [Fe (C2
04)3 ]、Kz(Fe(C204)2)、K2 (
Cu(CzO4)2)、Kl (Zn(C204)2)
、Ka (AA(Cz04)3)等のオキザレート錯体
が挙げられる。ま友一般式(1113で示される化合物
としてはNaα、Ka等が挙げられる。
The effects of the present invention can only be achieved by using the above-mentioned general formulas CU] and [II[] in combination with the polyalkylene glycol.
] Examples of compounds represented by Ka [Fe (C2
04)3], Kz(Fe(C204)2), K2(
Cu(CzO4)2), Kl(Zn(C204)2)
, Ka (AA(Cz04)3) and other oxalate complexes. Examples of the compound represented by the Mayu general formula (1113) include Naα, Ka, etc.

これら化合物の含有量としてはポリエステルに対し0.
5重量%〜3重量%の範囲が好ましい。該無機塩が0.
5重Ik%未満であると溶出後の細孔が少なく吸湿性や
不透明度の向上に不足する。また含有量が3重量%を超
えると該化合物がポリエステル繊維中で凝集が起り、延
伸工程での毛羽の発生及び断糸等の原因となり好ましく
ない。
The content of these compounds is 0.0% relative to polyester.
A range of 5% to 3% by weight is preferred. The inorganic salt is 0.
If it is less than 5 Ik%, the number of pores after elution will be small, resulting in insufficient improvement in hygroscopicity and opacity. If the content exceeds 3% by weight, the compound will aggregate in the polyester fibers, causing fluff and yarn breakage during the drawing process, which is not preferable.

次にかかる化合物のポリエステルポリマー中へ含有させ
る場合の練込み方法について述べる。即ち本発明の該練
込方法の特徴は該化合物(一般式〔■〕もしくは一般式
(in) ) t−ポリエステルポリマーの重合完了後
、紡糸直前までに添加し、その後混練することである。
Next, a method for kneading such a compound into a polyester polymer will be described. That is, the characteristic of the kneading method of the present invention is that the compound (general formula [■] or general formula (in)) is added after completion of polymerization of the t-polyester polymer and immediately before spinning, and then kneaded.

従来の技術の練込方法によnば、重付工程で該化合物t
ll&加する。しかしこの技術の難点は、ポリエステル
の重合を阻害することが多く、マた、該化合物を均一に
ポリマー中へ分散させることが不可能の定め、紡糸時の
糸切れが起こり、ま几、紡糸原糸を更に延伸する場合に
毛羽が多発し、操業性が困難と゛なることである。
According to the conventional kneading method, the compound t is
ll&add. However, the disadvantage of this technique is that it often inhibits the polymerization of the polyester, and it is impossible to uniformly disperse the compound into the polymer, resulting in yarn breakage during spinning, When the yarn is further drawn, fuzz occurs frequently, making operability difficult.

このような短所を回避し操業性の良い本発明の添加方法
について更に具体的に説明すると、ポリエステルの重合
完了後ペレット化する工程を経ず連続的に溶融ポリマー
を紡糸ノズルヘフイードし吐出させるような連続プロセ
スが都合が良い。即ち紡糸直前までの段階でポリエステ
ル溶融ポリマー流中へ該化合物を定量フィードし、その
後スタチックミキサで混練し定径紡糸ノズル孔より吐出
させるとよい。ポリエステルボリマーペレツIt−用い
押出機により紡糸する場合には、溶融押出しされ次ポリ
エステルポリマー溶融ライン中へ本発明で用いられる該
化合物を所定量フィードし、その後スタチックミキサー
で混練後紡糸ノズルより吐出させるとよい。
To explain in more detail the addition method of the present invention which avoids these disadvantages and has good operability, it is a continuous method in which the molten polymer is continuously fed into a spinning nozzle and discharged without going through the step of pelletizing after the completion of polyester polymerization. The process is convenient. That is, it is preferable to feed the compound in a fixed amount into the molten polyester polymer stream immediately before spinning, and then knead it with a static mixer and discharge it from a constant diameter spinning nozzle hole. When spinning polyester polymer pellets using an extruder, a predetermined amount of the compound used in the present invention is melt-extruded and then fed into a polyester polymer melting line, then kneaded with a static mixer and then discharged from a spinning nozzle. It's good to let them do it.

スタチックミキサーを用いて混練する場合に大切なこと
は、ある一定エレメント数以上のスタチツクミキサーを
用いて混練する必要があることである。現在、実用化さ
れている静止型混合器は数種類あるが、例えばケーニツ
タ(Kenics)社の1800左右にねじった羽根ヲ
90°ずらして配別したnエレメント通過させると2n
層分割するタイプのスタチックミキサーを用いた場合は
、エレメント数が最低15工レメント以上のものを用い
る必要がある。この場合にエレメント数が15未満であ
ると紡糸時の糸切れが発生し紡糸の工程性が悪くなり、
好ましくない。従って215層分割以上実施するのが好
ましい。ケーニツタ社以外の静止型混合器を用いる場合
も215層分割以上に相当するエレメント数に設定し次
混合器を使用する必要があることは言うまでもない。東
し社製ハイ・ミ# f −(Hi−Mixer)やチャ
ールス・アンド・ロス(Charless & Ros
s)社製のa スI S Gミキサーなどは、nエレメ
ント通過する時の層分割数は4n層分割であるのでエレ
メント数は8工レメント以上、更に好′ましくは11工
レメント以上が必要である。
What is important when kneading using a static mixer is that it is necessary to knead using a static mixer with a certain number of elements or more. There are several types of static mixers currently in use, such as the Kenics 1800, which has 2n elements with twisted blades shifted 90 degrees to the left and right.
When using a static mixer that divides into layers, it is necessary to use one with at least 15 elements. In this case, if the number of elements is less than 15, yarn breakage will occur during spinning and the spinning process will be poor.
Undesirable. Therefore, it is preferable to carry out division into 215 layers or more. It goes without saying that even when using a static mixer made by a company other than Konituta, it is necessary to set the number of elements to correspond to 215 layer divisions or more and use a secondary mixer. Toshisha's Hi-Mixer and Charles & Ros
For the AIS G mixer made by S), the number of layer divisions when passing through n elements is 4n layers, so the number of elements must be 8 or more, more preferably 11 or more. It is.

本発明で用いらnる紡糸方法は通常の紡糸でもまtいわ
ゆる高速紡糸でも可能である。凍を仮撚加工、巻縮加工
等糸加工は適宜使用することもできる。
The spinning method used in the present invention can be conventional spinning or so-called high-speed spinning. Yarn processing such as false twisting and crimping may be used as appropriate.

本発明で云う布帛物とは該熱水減量さnる微多孔質型繊
維を緯糸あるいは経糸のいずれかに使用するか、または
経糸及び緯糸に使用するか、さらにはまた熱水減量され
る繊維を混紡、混綿さn九糸条を用い友織物、編物また
は不織物等を意味する0 布帛の熱水減量は、その効果の点から90℃以上の温度
で行なうことが必要である。この熱水減量処理は、熱論
その九めの処理工程で処理されてもよいが、例えば生機
の精練、糊抜き工程が90℃以上で行なわれるのであれ
ばこの工程で代用することができる。またこの熱水減量
は、煮沸に至らない前の90℃以上の熱水での減量処理
と、煮沸水中でのボイル熱水減量での処理との2段階で
処理を行なうことができる。この場合のボイル熱水処理
は110’ ℃以上140℃未満が好ましい。
The fabric referred to in the present invention is a fiber in which the hot water reduced microporous fiber is used for either the weft or the warp, or it is used in the warp and weft, or it is also a fiber that is subjected to hot water loss. This refers to woven fabrics, knitted fabrics, non-woven fabrics, etc. using blended yarns, blended cotton yarns, etc. From the viewpoint of effectiveness, hot water reduction of fabrics must be carried out at a temperature of 90° C. or higher. This hot water weight loss treatment may be carried out in the ninth treatment step of Thermal Theory, but if, for example, the greige scouring and desizing steps are carried out at 90° C. or higher, this step can be used instead. Further, this hot water weight loss can be carried out in two stages: a weight loss process using hot water at 90° C. or higher before boiling, and a boiling hot water weight loss process in boiling water. In this case, the temperature of the boiling hot water treatment is preferably 110'C or higher and lower than 140C.

この熱水処理により、布帛を構成するポリエステル繊維
中から含有無機塩と水溶性高分子物質が相互に微妙に作
用しあった微細な孔が穿けられるが、この微細孔は、嘔
らに熱アルカリ水溶液での減量処理によって拡大できる
。この処理はその目的のtめには5%以上の減量率とす
ることが必要である。ただこの処理は繊維の強度低下上
もたらすため用途に応じてアルカリ減量率を制限する必
要がある。即ち減量率が40%を越えると糸の強力低下
著しくなり布帛の引裂強力が弱くなるためアルカリ減′
fk率を七扛以下に抑える必要がある。
This hot water treatment creates fine pores in the polyester fibers that make up the fabric, where the inorganic salts and water-soluble polymer substances subtly interact with each other. It can be expanded by reducing the amount with an aqueous solution. This treatment needs to achieve a weight loss rate of 5% or more in order to achieve its purpose. However, since this treatment reduces the strength of the fiber, it is necessary to limit the alkali weight loss rate depending on the application. In other words, when the weight loss rate exceeds 40%, the strength of the yarn decreases significantly, and the tear strength of the fabric becomes weaker, so the alkali loss is reduced.
It is necessary to keep the fk rate below seven times.

この熱アルカリ水溶液での減量処理によって、微細孔が
拡大できるが、細孔が側面方向から観て0.1〜1μの
巾t[L、より一層不透明度Ai増大烙せA=82%以
上となると、布帛の外観効果は著しく良好になる。
The fine pores can be enlarged by this weight loss treatment with a hot alkaline aqueous solution, but when the pores have a width t[L of 0.1 to 1μ when viewed from the side, the opacity Ai increases and the heat A=82% or more. Then, the appearance effect of the fabric becomes significantly better.

以下に本発明の詳細な説明し、本発明をさらに具体的に
説明する。もつとも本発明は、以下の実施例の範囲に限
定さ扛るものではない。なお実施例中のdr/fはデニ
ー)L//フィラメント数を表わす。極限粘度〔η〕は
1.フェノール、テトラクロロエタンf、50:500
重量比で協会した溶媒中30℃で測定しt値である。
The present invention will be described in detail below, and the present invention will be explained more specifically. However, the present invention is not limited to the scope of the following examples. Note that dr/f in the examples represents the number of Denny) L//filaments. The intrinsic viscosity [η] is 1. Phenol, tetrachloroethane f, 50:500
The t value is measured at 30° C. in a solvent with a weight ratio.

実施例1〜4及び比較例1〜6 TiO2f 0.4 %含有した[77)0.65のポ
リエチレンテレフタレート(以下PETと略す)の溶融
ポリマー流へ次の添加剤、A(水溶性高分子)及びの混
合物を第1表に示される所定量供給し、エレメント数が
42のスタチックミキサーで混練し、0.20■φx3
6H(ホール)の紡糸ノズルより1100m15+の紡
糸速度で紡糸する。次いでこnらの未延伸先金75℃の
熱ローラ及び120℃の熱プレートに接触させて延伸し
て102dr/36f  (Dそれぞれのマルチフィラ
メント’を得念。その〔η〕は0.62であった。そし
て比較例5として実施例1で用いた同じPETを除却剤
なしで実施例1と同じ紡糸条件にて紡糸を行い、延伸し
て103 dr/36fのマルチフィラメントを得に0
こnらのマルチフィラメントt−経糸及び緯糸として使
いタックに製織した。それらの生機密度は経糸82本/
吋、緯糸95本/吋であった0こnらの生機タフタ全ア
クチノールR−100(a練剤) 1 t/lの水溶液
にて80℃20分もしくは煮沸20分処理して熱水減量
を行つ念。またこnをピンテンターに゛C180℃C1
80℃ヒートセラトラ130℃30分の追加熱水減量を
行った。また1部はアルカリ減量を行−って、そnぞれ
のタフタについて不透明度、吸湿性、吸水性、引裂強力
、及び染色物の耐光堅牢度等の評価を行った。
Examples 1 to 4 and Comparative Examples 1 to 6 The following additive A (water-soluble polymer) was added to a molten polymer stream of [77) 0.65 polyethylene terephthalate (hereinafter abbreviated as PET) containing 0.4% TiO2f. A mixture of
The fibers are spun using a 6H (hole) spinning nozzle at a spinning speed of 1100 m15+. Next, these undrawn tips were brought into contact with a heated roller at 75°C and a heated plate at 120°C and stretched to 102dr/36f (each of the multifilaments in D) was drawn. Its [η] was 0.62. As Comparative Example 5, the same PET used in Example 1 was spun under the same spinning conditions as Example 1 without a scavenger, and stretched to obtain a multifilament of 103 dr/36 f.
These multifilaments were used as T-warp and weft yarns and woven into tucks. Their raw material density is 82 warps/
These greige taffetas with 95 wefts/inch were treated with a 1 t/l aqueous solution at 80°C for 20 minutes or boiling for 20 minutes to reduce hot water weight. I'm thinking of going. Also, use this as a pin tenter ゛C180℃C1
Additional hot water loss was carried out by heating at 80°C at 130°C for 30 minutes. In addition, one part was subjected to alkali weight loss, and each taffeta was evaluated for opacity, hygroscopicity, water absorption, tear strength, and light fastness of the dyed product.

LB、LW値の測定 日立製作所要の自記分光光度計を用いて測定し次0 吸湿性評価 相対温度93チ、気温31℃の雰囲気下での吸湿率(わ 吸水性評価 JIS−L−1096に準じた滴下法 染色物耐光堅ロウ度評価 中間セラ1f行った後のタフタについて矢の染色条件に
て染色及び還元洗浄を行い、その染色物についてJIS
−L−0841に準じて耐光堅ロウ度の評価を行った。
Measurement of LB and LW values Measured using a self-recording spectrophotometer manufactured by Hitachi. Light fastness evaluation of light fastness of dyed products using the same drop method.The taffeta after the intermediate cera 1f was dyed and reduced washed under the dyeing conditions indicated by the arrow, and the dyed products were tested according to JIS standards.
-L-0841 was used to evaluate light fastness and waxiness.

く染色条件〉 染色 Dianix Blue BG−FS     3%o
wfニッカサンソルトΦ7000 0.5f/を硫酸ア
ンモニウム      1 f/を酢CKit (48
%)         1 cc/を還元洗浄。
Staining conditions> Staining Dianix Blue BG-FS 3% o
wf Nikka Sunsalt Φ7000 0.5f/ ammonium sulfate 1 f/ vinegar CKit (48
%) 1 cc/reductive cleaning.

ハイドロサルファイド    1 t/を水酸化ナトリ
ウム      1 t/lアミラヂン       
  11/l実施例1と比較例3で示されるように、添
加剤Bを用いない比較例3の場合は良好な減量が進まず
不透明度80には到達しない。しか?実施例3で示され
るように添加剤Bを併用すると、実施例1と共に、不透
明度が80以上に向上し、吸湿、吸水性もよく、シかも
アルカリ減量によっても引裂強力が低下しない優れた布
帛となるものである。
Hydrosulfide 1 t/l Sodium hydroxide 1 t/l Amyradin
11/l As shown in Example 1 and Comparative Example 3, in Comparative Example 3 in which Additive B was not used, good weight loss did not occur and the opacity did not reach 80. deer? As shown in Example 3, when Additive B is used in combination with Example 1, the opacity improves to 80 or more, the moisture absorption and water absorption are good, and the fabric has excellent tear strength that does not decrease even when the weight is reduced by alkali. This is the result.

比較例1は添加剤Aが本発明での規定量を越え九場合で
、熱水減量によって不透明度は出るが、引裂強力が低下
してしまい商品価値はない0ま九比較例2は添加剤Aが
本発明での規定量に達しない場合の例で、この場合紡糸
性が不良で、繊維の製造が困難となる。比較例4は添加
剤Bが規定量を越え次場合で、この場合も紡糸性が不良
で、繊維の製造が困難となる。
Comparative Example 1 is a case in which the amount of Additive A exceeds the specified amount in the present invention, and although opacity is achieved by reducing the amount in hot water, the tear strength is reduced and there is no commercial value.Comparative Example 2 is an additive. This is an example where A does not reach the specified amount in the present invention, in which case the spinnability is poor and it is difficult to manufacture the fiber. Comparative Example 4 is a case in which the amount of additive B exceeds the specified amount, and in this case too, the spinnability is poor and fiber production becomes difficult.

実施例4と比較例6とは、添加剤AとBとが規定量を満
足するが、アルカリ熱水減量での減量率が高い場合には
引裂強力が著しく低下し、商品価値がなくなることを示
している。比較例5は添加剤A%Blともに用いない場
合の基準を示す。
In Example 4 and Comparative Example 6, additives A and B satisfy the specified amounts, but if the weight loss rate in alkaline hot water weight loss is high, the tear strength will decrease significantly and the commercial value will be lost. It shows. Comparative Example 5 shows the standard when neither additive A%Bl is used.

以上、第1表で示される如く、本発明で規定する化合物
でポリアルキレングリコールと一般式(it)で示され
る化合物を所定の含有量範囲内で得几ポリエステル繊維
布帛を所定の熱水減量を付与したもの、あるいは追加の
アルカリ熱水減量が所定の範囲内であれば紡糸性や耐光
堅牢度あるいは引裂強力等問題点なく、シかも吸湿率1
チ以上、不透明度80ts以上を示し天然繊維の外観、
光沢と触感を有するものが得られるものである。
As shown in Table 1, polyalkylene glycol and the compound represented by the general formula (it) can be obtained by using the compound defined in the present invention within a predetermined content range, and the polyester fiber fabric can be heated to a predetermined hot water weight loss. If the weight loss of the applied or additional alkaline hot water is within the specified range, there will be no problems with spinnability, light fastness, tear strength, etc., and the moisture absorption rate may be 1.
Appearance of natural fibers with an opacity of 80ts or more,
A product with gloss and texture can be obtained.

実施例5〜6及び比較例7 実施例1で用い次同じPETの溶融ポリマー流へ実施例
1の場合と同じ添加剤A及びBの化合物t−1Aが3.
9重量%そしてBが2.8重量%等の含有量(PETに
対し)になるように供給し、第2表に示される如くエレ
メント数を変化しtスタチックミキサーで混練し、0.
20mmφx36H(ホール)の紡糸ノズルより110
0m/分 の紡糸速度で紡糸し、その紡糸工程性(糸切
れの発生度合)について見t。
Examples 5-6 and Comparative Example 7 Compound t-1A of the same additives A and B as in Example 1 was added to the same PET molten polymer stream as in Example 1.
9% by weight and 2.8% by weight of B (relative to PET), and kneaded with a static mixer while varying the number of elements as shown in Table 2.
110 from a spinning nozzle of 20mmφx36H (hole)
The yarn was spun at a spinning speed of 0 m/min, and the spinning process performance (degree of yarn breakage) was examined.

第  2  表 第2表で示される如くエレメント数が13と少なくなる
と糸切れが多発し、紡糸工程性が悪くなることが示され
る。
Table 2 As shown in Table 2, when the number of elements is as small as 13, yarn breakage occurs frequently and the spinning process becomes poor.

実施例7〜8及び比較例8 PETの溶融ポリマー流へKs (A4(Cz04)a
) 2.5重量%(PETに対し)と第3表に示される
如く室温下での溶液粘度を変化したボリプaピレンオキ
サイド(PO)とポリエチレンオキサイド(EO)の共
重合体(共重合比25/75)を3,5重量%(PET
に対し)になるように供給し、エレメント数が42のス
タチックミキサーで混練し、0.20瓢φX36H(ホ
ール)の紡糸ノズルより1100m15)の紡糸速度で
紡糸し、毛羽及び断糸等の紡糸工程性について見比。
Examples 7 to 8 and Comparative Example 8 Ks (A4 (Cz04)a
) 2.5% by weight (based on PET) and a copolymer of pyrene oxide (PO) and polyethylene oxide (EO) (copolymerization ratio 25 /75) and 3.5% by weight (PET
), kneaded with a static mixer with 42 elements, and spun at a spinning speed of 1100 m15) from a spinning nozzle with a diameter of 0.20 mm x 36 H (hole). Compare process efficiency.

第  3  表 第3表でも示される如(、PO−EO共重合体の溶液粘
度が低いと紡糸工程性が悪いが、16ポイズになると紡
糸工程性が良好になる。
As shown in Table 3 (Table 3), when the solution viscosity of the PO-EO copolymer is low, the spinning processability is poor, but when the solution viscosity is 16 poise, the spinning processability is good.

実施例9〜10及び比較例9〜10 実施例1で用いた同じPETの溶融ポリマー流へNaα
及び実施例1で用いた同じPO−EO共重合体を所定量
(第4表)供給しエレメント数が42リスクチツクミキ
サーで混練し0.20瓢φX36H(ホール)の紡糸ノ
ズルより1100fn/分の紡糸速度で紡糸する。次い
でこnらの未延伸糸を実施例1の場合と同じ条件にて延
伸を行いl O2dr/36fのそれぞれのマルチフィ
ラメント’を得t0これらのマルチフイラメン[−経糸
及び緯糸として使いタフタに製織した。それらの生機密
度は経糸82本/吋、緯糸95本/吋であった。これら
の生機タックを95℃の熱水にて精練糊抜きの後、18
0℃の中間セラトラ行った。それらのタフタについて不
透明度、吸湿性等の評価を行つ次。
Examples 9-10 and Comparative Examples 9-10 Naα to the same PET molten polymer stream used in Example 1
Then, the same PO-EO copolymer used in Example 1 was supplied in a predetermined amount (Table 4) and kneaded in a risk mixer with 42 elements, and then spun at 1100 fn/min from a spinning nozzle with a diameter of 0.20 mm and a diameter of 36 H (hole). Spin at spinning speed. Next, these undrawn yarns were drawn under the same conditions as in Example 1 to obtain each multifilament of 1 O2 dr/36f. did. Their gray density was 82 warps/inch and 95 wefts/inch. After scouring and desizing these gray tacks in hot water at 95°C,
Intermediate ceratra was carried out at 0°C. Next, we will evaluate the opacity, moisture absorption, etc. of these taffetas.

第  4  表 第4表で示される如く本発明で規定する化合物で一般式
[nl]で示される化合物を規定含有量範囲内で得たポ
リエステル繊維からなる布帛物を本発明規定の熱水減量
全行うと吸湿率1%以上及び不透明度SOS以上金示す
ポリエステル布帛が得られることかわかる。
Table 4 As shown in Table 4, a fabric made of polyester fiber obtained from the compound defined by the present invention and represented by the general formula [nl] within the specified content range was subjected to the total hot water loss specified by the present invention. It can be seen that when carried out, a polyester fabric having a moisture absorption rate of 1% or more and an opacity of SOS or more can be obtained.

実施例11及び比較例11〜12 実施例1の場合に用いた同じタフタの生機及び比較例3
の場合に用いた同じタフタの生機等について第5表に示
される熱水の温度にて時間90分間の熱水処理を行つ九
。それらのタックについて引裂強力不透明度の評価を行
った。
Example 11 and Comparative Examples 11-12 The same taffeta gray fabric used in Example 1 and Comparative Example 3
The same taffeta greige used in the above case was subjected to hot water treatment for 90 minutes at the hot water temperature shown in Table 5. These tacks were evaluated for tear strength and opacity.

第  5  表 第5表で示される如く、本発明で規定する化合物を併用
しない生機の場合には135℃での熱水減量を行なって
も不透明性は現出せず、ま念規定する化合物を併用し比
生機の場合でも熱水処理の温度が低いとこれまた不透明
度が不満足で、本発明で規定する化合物の併用と熱水処
理温度とが相互に満足されていることが必要なことが示
される。
Table 5 As shown in Table 5, in the case of gray fabric that is not used in combination with the compounds specified in the present invention, opacity does not appear even after hot water reduction at 135°C; However, even in the case of Hygiene, the opacity is also unsatisfactory when the hot water treatment temperature is low, indicating that it is necessary that the combination of the compounds specified in the present invention and the hot water treatment temperature are mutually satisfactory. It will be done.

実施例12及び比較例13 実施例7の場合に用いた同じタックの生機について第6
表に示される熱水の温度にて時間90分間の熱水処理を
行つtoそnらのタフタについて引裂強力及び不透明度
等の評価を行つ次。
Example 12 and Comparative Example 13 For the same tack gray fabric used in Example 7, the sixth
The tear strength, opacity, etc. of the taffeta of Toson et al., which was subjected to hot water treatment for 90 minutes at the hot water temperature shown in the table, were evaluated.

第  6  表 第6表で示される如く本発明で規定する化合物で一般式
[m)で示される化合物を含有するポリエステル繊維か
らなる布帛物について本発明規定の高温熱水処理を行う
と充分な引裂強力を満足し、不透明度80%以上を有す
る布帛物となることが□  わかり、また同じ生機を用
いt場合でも熱水処理温度が低いと不透明度の高いもの
が得られないことがわかる。
Table 6 As shown in Table 6, when a fabric made of polyester fiber containing a compound defined by the present invention and represented by the general formula [m] is subjected to the high-temperature hot water treatment defined by the present invention, sufficient tearing is achieved. It can be seen that a fabric with satisfactory strength and opacity of 80% or more can be obtained, and it can also be seen that even if the same gray fabric is used, a high opacity cannot be obtained if the hot water treatment temperature is low.

比較例14 実施例1の場合に用い友同じPO−EO共重体及びfc
a[Aj(C204)a]をそれぞれ92.5部、70
部と、ジメチルテレフタレート2500部、エチレング
リコール2400部、酢酸亜鉛0.5部を反応容器に仕
込み180℃に加熱、攪拌を続は副生ずるメタノールを
除去しながら2時間エステル交換反応しt後にトリメチ
ルホスエート0.6部及び酸化アンチ七ン1部を仕込み
、除々に昇温減圧して280℃0.2〜0.5mHg 
2時間反応させ次。得られたポリマーを反応器下部に設
置した0、20wmφ×36Hの紡糸ノズルより110
0m/分の紡糸速度で紡糸原糸を巻取った。得られ友ポ
リマーの〔η〕は0.48であった。得られ次繊維中に
はKs (At(C204)3 ]  の凝果物が光学
顕微鏡下で多く観察されKa (At(C20a)3)
が繊維中に均一に分散さnていなかつ穴。次いでこの未
延伸糸を75℃の熱ローラ及び120℃の熱プレートに
接触させて延伸を行った。糸切れ及び毛羽が多発し延伸
工程性が著しく悪かった。このように本発明の規定方法
以外の練込法では好ましくないことがわかる。
Comparative Example 14 Same PO-EO copolymer and fc used in Example 1
92.5 parts and 70 parts of a[Aj(C204)a], respectively
1 part, 2,500 parts of dimethyl terephthalate, 2,400 parts of ethylene glycol, and 0.5 part of zinc acetate were placed in a reaction vessel, heated to 180°C, stirred, and transesterified for 2 hours while removing by-produced methanol. Add 0.6 part of ate and 1 part of antiseptane oxide, and gradually raise the temperature and reduce the pressure to 280℃0.2-0.5mHg.
Let it react for 2 hours. The obtained polymer was passed through a spinning nozzle of 0.20 wmφ x 36H installed at the bottom of the reactor.
The spun yarn was wound at a spinning speed of 0 m/min. [η] of the obtained friend polymer was 0.48. Many aggregates of Ks (At(C204)3) were observed under an optical microscope in the resulting fibers, indicating that Ka (At(C20a)3)
The holes are uniformly distributed throughout the fiber. Next, this undrawn yarn was brought into contact with a heated roller at 75°C and a heated plate at 120°C to perform drawing. Yarn breakage and fuzz occurred frequently, and the drawing process was extremely poor. Thus, it can be seen that kneading methods other than those specified in the present invention are not preferable.

Claims (1)

【特許請求の範囲】 1)90℃以上の熱水で30%以上が繊維中より溶出す
る添加物を3重量%以上20重量%未満あらかじめ混入
されたポリエステル系繊維を少くとも30%以上含有す
る布帛であつて、熱水減量された該布帛の吸湿率が相対
湿度90%±5%、温度30℃±3℃の環境下にあつて
1%以上であり、該布帛の不透明度Aが下記一般式〔
I 〕で示される数値で80%以上の不透明性を有するこ
とを特徴とする熱水減量ポリエステル系布帛。 A=(L^*_B)/(L^*_W)×100 〔 I
〕L^*_B:黒素地に布帛を重ねた時のL^*値L^
*_W:白素地に布帛を重ねた時のL^*値黒素地:黒
色プラスチック板 L^*値:12白素地:標準白板 
L^*値:100 2)熱水減量された布帛でその溶出微細孔が熱アルカリ
水溶液で拡大され、細孔が側面方向から観て0.1〜1
μの巾を有し布帛の不透明度Aが82%以上となつてい
ることを特徴とする特許請求の範囲第1項記載の熱水減
量ポリエステル系布帛。 3)水溶性で且つ粘度が室温下で15ポイズ以上の液状
のポリアルキレングリコールに、下記の一般式〔II〕、
〔III〕で示される化合物より選択された1種もしくは
2種以上の水溶性の金属塩類を分散せしめた混合物を、
ポリエステル系ポリマーの重合完了後紡糸直前の間で、
該ポリエステルポリマー溶融流体中へ、該ポリアルキレ
ングリコールがポリエステルに対して1〜4重量%にな
るように、かつ該水溶性金属塩がポリエステルに対して
0.5〜3重量%になるように添加し、その後エレメン
ト数15以上のスタチックミキサーで層分割混練した後
、紡糸、繊維化して得られた糸条およびもしくは繊維を
用いて、少くとも該繊維を30%以上含有する布帛を形
成せしめ、該布帛を90℃以上の熱水で該含有水溶性物
質の30%以上を溶出せしめる事を特徴とする熱水減量
ポリエステル系布帛の製造法。 〔Mtn〔D(C_2O_4)_m〕 〔II〕ACl 
〔III〕 式〔II〕中のMt:Na、K等の I 族アルカリ土類金
属 式〔II〕中のD:最低1種のFe、Zn、Ni、Cu、
Al、Ti等よりの錯体形成性 の原子 式中n=1〜4、m=2〜4 式〔III〕中のA:Na、K等の I 族アルカリ土類金属
〕 4)熱水減量されたポリエステル系布帛を110℃以上
140℃未満の熱水で追加減量し、2段階に熱水減量を
行うことを特徴とする特許請求の範囲第3項記載の熱水
減量ポリエステル系布帛の製造法。 5)熱水減量されたポリエステル系布帛を熱アルカリ水
溶液で追加減量を行い、アルカリ減量率を5%以上行う
ことを特徴とする特許請求の範囲第3項記載の熱水減量
ポリエステル系布帛の製造法。
[Scope of Claims] 1) Contains at least 30% of polyester fibers, which are premixed with additives of 3% by weight or more but less than 20% by weight, of which 30% or more is eluted from the fibers in hot water of 90°C or higher. A fabric whose moisture absorption rate is 1% or more in an environment of relative humidity 90% ± 5% and temperature 30°C ± 3°C, and the opacity A of the fabric is as follows: General formula [
A hot water-reduced polyester fabric characterized by having an opacity of 80% or more as measured by the numerical value I]. A=(L^*_B)/(L^*_W)×100 [I
] L^*_B: L^* value L^ when fabric is layered on black base
*_W: L^* value when fabric is layered on white base Black base: Black plastic board L^* Value: 12 White base: Standard white board
L^* value: 100 2) The elution micropores of the fabric reduced in hot water are enlarged with a hot alkaline aqueous solution, and the pores become 0.1 to 1 when viewed from the side.
The hot water-reduced polyester fabric according to claim 1, which has a width of μ and an opacity A of 82% or more. 3) Add the following general formula [II] to a liquid polyalkylene glycol that is water-soluble and has a viscosity of 15 poise or more at room temperature.
A mixture in which one or more water-soluble metal salts selected from the compounds represented by [III] are dispersed,
After completing the polymerization of the polyester polymer and immediately before spinning,
Adding the polyalkylene glycol to the polyester polymer melt fluid in an amount of 1 to 4% by weight based on the polyester, and adding the water-soluble metal salt in an amount of 0.5 to 3% by weight based on the polyester. Then, after layer-divided kneading with a static mixer having 15 or more elements, the yarn and/or fibers obtained by spinning and fiberization are used to form a fabric containing at least 30% of the fibers, A method for producing a hot water-reduced polyester fabric, which comprises eluting 30% or more of the water-soluble substances contained in the fabric with hot water at 90° C. or higher. [Mtn[D(C_2O_4)_m] [II] ACl
[III] Mt in formula [II]: Group I alkaline earth metal such as Na, K, etc. D in formula [II]: At least one of Fe, Zn, Ni, Cu,
Complex-forming atomic formula from Al, Ti, etc. n = 1 to 4, m = 2 to 4 A in formula [III]: Group I alkaline earth metal such as Na, K, etc.] 4) Reduced by hot water A method for producing a hot water-reduced polyester fabric according to claim 3, wherein the polyester fabric is additionally reduced in weight with hot water at a temperature of 110°C or higher and lower than 140°C, and the hot water weight loss is carried out in two steps. . 5) Production of the hot water reduced polyester fabric according to claim 3, wherein the polyester fabric that has been reduced in hot water is subjected to additional weight loss with a hot alkaline aqueous solution to achieve an alkali weight loss rate of 5% or more. Law.
JP61090867A 1986-04-18 1986-04-18 Hot water weight reduction polyester cloth and its production Pending JPS62250272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61090867A JPS62250272A (en) 1986-04-18 1986-04-18 Hot water weight reduction polyester cloth and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61090867A JPS62250272A (en) 1986-04-18 1986-04-18 Hot water weight reduction polyester cloth and its production

Publications (1)

Publication Number Publication Date
JPS62250272A true JPS62250272A (en) 1987-10-31

Family

ID=14010480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61090867A Pending JPS62250272A (en) 1986-04-18 1986-04-18 Hot water weight reduction polyester cloth and its production

Country Status (1)

Country Link
JP (1) JPS62250272A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000096449A (en) * 1998-09-17 2000-04-04 Teijin Ltd Water vapor-permeable waterproof fabric and its production
WO2018079567A1 (en) * 2016-10-27 2018-05-03 東レ株式会社 Nanovoid polyester fiber

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5493121A (en) * 1977-12-12 1979-07-24 Akzo Nv Hydrophilic polyester fiber and production thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5493121A (en) * 1977-12-12 1979-07-24 Akzo Nv Hydrophilic polyester fiber and production thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000096449A (en) * 1998-09-17 2000-04-04 Teijin Ltd Water vapor-permeable waterproof fabric and its production
WO2018079567A1 (en) * 2016-10-27 2018-05-03 東レ株式会社 Nanovoid polyester fiber

Similar Documents

Publication Publication Date Title
US3616183A (en) Polyester sheath-core conjugate filaments
MXPA02005064A (en) Polyethylene glycol modified polyester fibers and method for making the same.
DE69837169T2 (en) Polyester fiber and fabrics made therefrom
KR0141846B1 (en) Regenerated cellulose fibers and dyestuffs which can be dyed with disperse dyes
EP3351668A1 (en) Cloth having excellent colorfastness and cool touch
JP2007303020A (en) Colored fiber structure and method for producing the same
JP2019094593A (en) Core-in-sheath type composite fiber
KR19990036010A (en) Polyester Fibers and Mixed Fabric Dyestuffs
JPS62250272A (en) Hot water weight reduction polyester cloth and its production
JP2004277931A (en) Polylactic acid fiber and fibrous structure using the same
JP3104891B2 (en) Hollow composite fiber and method for producing the same
JPH0441738A (en) Dyed fabric comprising polyester fiber and polyamide fiber cord and its preparation
JP2022135009A (en) Combined filament yarn and fiber structure
KR100467652B1 (en) Method of producing elasticitic fiber which has a excellent hygroscopicity
JPH04146267A (en) Silk-like antistatic polyester and production thereof
KR20040078802A (en) A sea-island type composite fiber with excellent color strength, and its suede like fabrics
JP2865846B2 (en) Antistatic polyester fiber
KR100984690B1 (en) Easily dyeable composite textile and dyeing products using the same
JP3097967B2 (en) Titanium oxide-containing fiber having good light resistance and method for producing the same
JP2815410B2 (en) Original high elastic nonwoven fabric
KR101992443B1 (en) Split pattern superfine fiber dyeable with acid dyes
JPH11181626A (en) Antistatic polyester fiber and lining fabric using the same
JPS5842287B2 (en) Method for producing modified polyester fiber
JP2001164436A (en) Polyester combined filament yarn and woven and knitted fabric using the same
JPH01272862A (en) Cation dyeable polyester fiber excellent in feeling and production thereof