JPS62250041A - Electrically conductive resin composition - Google Patents

Electrically conductive resin composition

Info

Publication number
JPS62250041A
JPS62250041A JP9120386A JP9120386A JPS62250041A JP S62250041 A JPS62250041 A JP S62250041A JP 9120386 A JP9120386 A JP 9120386A JP 9120386 A JP9120386 A JP 9120386A JP S62250041 A JPS62250041 A JP S62250041A
Authority
JP
Japan
Prior art keywords
conductive
oxide
metal compound
resin composition
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9120386A
Other languages
Japanese (ja)
Inventor
Masahiro Oshida
押田 正博
Tadashi Kuno
正 久野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP9120386A priority Critical patent/JPS62250041A/en
Publication of JPS62250041A publication Critical patent/JPS62250041A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)

Abstract

PURPOSE:To obtain a composition having excellent electrical conductivity, by controlling the agglomeration state of electrically conductive metallic compound particles in a resin composition in such a manner that the average particle diameters of the electrically conductive metallic compound before and after compounding to a resin satisfy a specific relationship. CONSTITUTION:(A) A thermoplastic resin such as polyethylene, polypropylene, nylon 6, polyethylene terephthalate, etc., is compounded with (B) 60-85(wt)% (based on the composition) electrically conductive metallic compound selected from tin oxide added with a small amount of antimony oxide, zinc oxide added with a small amount of aluminum oxide, copper iodide, copper sulfide and a metallic compound produced by coating the surface of titanium oxide, zinc oxide or silicon oxide particle with coating film of thin oxide added with a small amount of antimony oxide. The mixture is kneaded preferably with a low-speed kneader to obtain the objective resin composition wherein the metallic compound is dispersed in a properly agglomerated state so as to satisfy the formula 2<=(DB/DA)<=6 (DA is average particle diameter of the component B before compounding and DB is an average particle diameter of the component B after compounding).

Description

【発明の詳細な説明】 く技術分野〉 本発明は、導電性に優れた導電性樹脂組成物に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a conductive resin composition with excellent conductivity.

〈従来技術〉 熱可塑性樹脂例えばポリエチレン、ポリプロピレン、ポ
リアミド、ポリエステル等は繊維、フィルム、成形品と
して多くの用途に用いられている。
<Prior Art> Thermoplastic resins such as polyethylene, polypropylene, polyamide, polyester, etc. are used in many applications as fibers, films, and molded products.

しかしながら、かかる熱可塑性樹脂は一般に訓電性にと
ぼしいために帯電し易く、例えばポリエステルであるポ
リエチレンテレフタレート繊維よりなる衣服は、その帯
電性のために、着用時身体にまつわりついたり、更には
帯電のために空気中に浮遊する塵埃を吸着して汚れ易い
等多くの問題がある。
However, such thermoplastic resins generally have poor electrostatic properties and are therefore easily charged with electricity. For example, clothing made of polyethylene terephthalate fibers, which is polyester, may cling to the body when worn due to its electrostatic properties, and may even become electrostatically charged. Therefore, there are many problems such as the fact that it attracts dust floating in the air and easily gets dirty.

かかる問題を解決する方法として、予め樹脂に制電性化
合物を混合したり、導電性物質例えば導電性カーボンを
配合する方法等が提案されている。
As a method to solve this problem, methods have been proposed such as mixing an antistatic compound into the resin in advance or adding a conductive substance such as conductive carbon.

しかしながら、例えば導電性カーボンを配合した樹脂か
ら得られる導電性繊維、導電性フィルム。
However, for example, conductive fibers and conductive films obtained from resins containing conductive carbon.

導電性シート等は導電性カーボンが黒色であるため、着
色が著しく、審美性を要求される分野に用いることが出
来ず、その用途が極めて限定されるという欠点を有する
Since the conductive carbon of conductive sheets and the like is black, they are extremely colored and cannot be used in fields where aesthetics are required, and their uses are extremely limited.

かかる着色による欠点を解決する方法として、近時無色
又は淡色の導電性金属化合物を配合した無色又は淡色の
導電性樹脂組成物を用いて導電性繊維、導電性フィルム
等を得る方法が提案されている。
As a method to solve the disadvantages caused by coloring, a method has recently been proposed to obtain conductive fibers, conductive films, etc. using a colorless or light-colored conductive resin composition blended with a colorless or light-colored conductive metal compound. There is.

しかしながら、これらの提案方法によって得られる成形
物は、導電性カーボンブラックを使用したものに比して
導電性が劣り、導電性カーボンブラックを使用したもの
と同程度の導電性を得るには、2〜3倍の導電性金属化
合物を使用する必要があり、その成形性に問題が生じる
。即ち、金属化合物を使用してカーボンブラックを使用
したときと同程度の導電性を有する成形物、特に導電性
ll1lI、導電性フィルムを成形することはできなか
った。
However, the molded products obtained by these proposed methods have inferior conductivity compared to those using conductive carbon black, and in order to obtain the same level of conductivity as those using conductive carbon black, it is necessary to It is necessary to use ~3 times as much conductive metal compound, which causes problems in its formability. In other words, it has not been possible to form a molded product using a metal compound and having the same level of conductivity as when carbon black is used, particularly a conductive ll1lI or conductive film.

〈問題解決の手段〉 本発明者等は、金属化合物を使用して充分な導電性を有
する成形物を提供せんとして鋭意研究した結果、樹脂組
成物中の導電性金属化合物の分散状態が、樹脂組成物の
導電性能に大きく影響すること、そして樹脂組成物中の
導電性金属化合物粒子の凝集状態をある範囲にコントロ
ールすれば、樹脂組成物の導電性能が飛躍的に向上し、
これによって、成形性を保ちかつカーボン系並みの導電
性能が得られることを見い出し、本発明に到達したもの
である。
<Means for solving the problem> As a result of intensive research aimed at providing a molded product with sufficient conductivity using a metal compound, the present inventors found that the dispersion state of the conductive metal compound in the resin composition It has a great effect on the conductive performance of the composition, and if the aggregation state of the conductive metal compound particles in the resin composition is controlled within a certain range, the conductive performance of the resin composition can be dramatically improved.
The inventors have discovered that this allows them to maintain moldability and obtain electrical conductivity comparable to that of carbon-based materials, and have thus arrived at the present invention.

〈本発明の構成〉 即ち、本発明は熱可塑性樹脂に導電性金属化合物を配合
してなる導電性樹脂組成物であって、熱可塑性樹脂に配
合する前の導電性金属化合物の平均粒径DAと、熱可塑
性樹脂に配合した後の熱可塑性樹脂中に分散した状態で
の導電性金属化合物の平均粒径Deとが下記式を満足す
ることを特徴とする導電性樹脂組成物に係るものである
<Structure of the present invention> That is, the present invention is a conductive resin composition formed by blending a conductive metal compound with a thermoplastic resin, wherein the average particle diameter DA of the conductive metal compound before blending with the thermoplastic resin is and an average particle diameter De of the conductive metal compound in a state dispersed in the thermoplastic resin after being blended into the thermoplastic resin, which satisfies the following formula. be.

2.0≦(DB /DA )≦6.0 本発明でいう熱可塑性樹脂としては、ポリエチレン、ポ
リプロピレン、ポリスチレン、ポリブタジェン、ポリイ
ソプレン、ナイロン−6、ナイロン−6,6、ポリエチ
レンテレフタレート、ポリブチレンテレフタレート等を
主たる対象とするが、これ等の一部を共重合成分で置き
かえたものでもよく、また熱可塑性樹脂であれば目的に
応じ上記以外の樹脂を使用してもよく、更に必要に応じ
てそれ等の2種以上を混合したものであっても良い。
2.0≦(DB/DA)≦6.0 Examples of the thermoplastic resin in the present invention include polyethylene, polypropylene, polystyrene, polybutadiene, polyisoprene, nylon-6, nylon-6,6, polyethylene terephthalate, and polybutylene terephthalate. etc., but some of these may be replaced with copolymerized components, and as long as it is a thermoplastic resin, resins other than those listed above may be used depending on the purpose. A mixture of two or more of them may also be used.

本発明でいう導電性金属化合物としては、まず金属酸化
物粒子、例えば酸化錫、酸化亜鉛、酸化銅、亜酸化銅、
酸化インジウム、酸化ジルコニラム、酸化タングステン
などの粒子があげられる。
As the conductive metal compound in the present invention, metal oxide particles such as tin oxide, zinc oxide, copper oxide, cuprous oxide,
Examples include particles of indium oxide, zirconylum oxide, and tungsten oxide.

金属酸化物の多くのものは絶縁体に近い半導体であって
本発明の目的に充分な導電性を示さないことが多い。し
かしながら、例えば、金属酸化物に適当な第2成分(不
純物)を少量(50%以下、特に25%以下)添加する
などの方法により、導電性を強化し、本発明の目的に充
分な導電性を有するものが得られる。このような導電性
強化剤としては、酸化錫に対して酸化アンチモンが、酸
化亜鉛に対してアルミニウム、カリウム、インジウム。
Many metal oxides are semiconductors that are close to insulators and often do not exhibit sufficient electrical conductivity for the purpose of the present invention. However, for example, by adding a small amount (50% or less, especially 25% or less) of an appropriate second component (impurity) to the metal oxide, the conductivity can be strengthened and sufficient conductivity can be obtained for the purpose of the present invention. A product having the following properties is obtained. Such conductivity enhancers include antimony oxide for tin oxide, and aluminum, potassium, and indium for zinc oxide.

ゲルマニウム、錫などの金属酸化物が使える。また他の
金属化合物の粒子としては沃化銅、硫化銅。
Metal oxides such as germanium and tin can be used. Other metal compound particles include copper iodide and copper sulfide.

硫化亜鉛、硫化カドミウムなどで導電性を有するものが
利用可能である。
Conductive materials such as zinc sulfide and cadmium sulfide can be used.

更に、酸化チタン、酸化亜鉛、酸化マグネシウム、1!
l化錫、酸化鉄、酸化ケイ素、酸化アルミニウムなどの
非導電性無機物粒子の表面に上記金属酸化物又は金属化
合物の導電性被膜を形成した粒子も用いられる。これら
金属化合物の平均粒径は、通常5μm以下、好ましくは
1μm以下である。
Furthermore, titanium oxide, zinc oxide, magnesium oxide, 1!
Particles in which a conductive film of the above metal oxide or metal compound is formed on the surface of non-conductive inorganic particles such as tin oxide, iron oxide, silicon oxide, or aluminum oxide may also be used. The average particle size of these metal compounds is usually 5 μm or less, preferably 1 μm or less.

熱可塑性樹脂と導電性金属化合物の混合比は特に限定さ
れないが、優れた導電性を得るためには、例えば導電性
金属化合物の混合率は60〜85%、特に65〜80%
の範囲であることが多い。
The mixing ratio of the thermoplastic resin and the conductive metal compound is not particularly limited, but in order to obtain excellent conductivity, the mixing ratio of the conductive metal compound is, for example, 60 to 85%, particularly 65 to 80%.
It is often in the range of

樹脂組成物の導電性をより高くするためには、熱可塑性
樹脂中の導電性粒子が適度に凝集していることが必要で
あり、その凝集状態は熱可塑性樹脂に配合する前の導電
性金属化合物の平均粒径DAと、熱可塑性樹脂に配合し
た後の熱可塑性樹脂中に分散した状態での導電性金属化
合物の平均粒径DBとが、下記式を満足することが必要
である。
In order to increase the conductivity of a resin composition, it is necessary that the conductive particles in the thermoplastic resin are appropriately aggregated, and the agglomerated state is similar to that of the conductive metal before being blended into the thermoplastic resin. It is necessary that the average particle diameter DA of the compound and the average particle diameter DB of the conductive metal compound in a state dispersed in the thermoplastic resin after blending with the thermoplastic resin satisfy the following formula.

2.0≦(DB/DA)≦6.0 熱可塑性樹脂に導電性粒子を配合して導電性樹脂組成物
を製造する場合、樹脂中で粒子を連続させることが望ま
しく、樹脂組成物の導電性を高めるためには最も効率的
に連続するような分散状態をつくることが望ましい。粒
子の連続性を高めるためには、粒子はある程度均一に分
散することが必要であるが、逆にあまり分散しすぎると
連続性は低下するようになる。
2.0≦(DB/DA)≦6.0 When manufacturing a conductive resin composition by blending conductive particles into a thermoplastic resin, it is desirable to make the particles continuous in the resin, and the conductivity of the resin composition is In order to improve performance, it is desirable to create a dispersion state that is most efficient and continuous. In order to improve the continuity of the particles, it is necessary to disperse the particles uniformly to some extent, but conversely, if the particles are too dispersed, the continuity will decrease.

従って熱可塑性樹脂中での粒子の凝集性を前記したよう
に、樹脂に配合する前の粒子の平均粒径DAと、樹脂中
に配合された状態での粒子の平均粒径Deの比DB/D
Aで評価した場合、Os/DAが6を越えるような状態
(非常に凝集の強い状態)及び2未満のような状態(非
常によく分散した状態)では、樹脂組成分の導電性は不
良であり、分散状態は2≦(DB/DA )≦6にコン
トロールする必要がある。
Therefore, as mentioned above, the cohesiveness of particles in a thermoplastic resin is determined by the ratio DB/ D
When evaluated by A, the conductivity of the resin composition is poor in a state where Os/DA exceeds 6 (very strongly agglomerated state) and less than 2 (very well dispersed state). There is a need to control the dispersion state so that 2≦(DB/DA)≦6.

熱可塑性樹脂と導電性金属化合物を混練する方法は特に
限定しないが、上記範囲の分散状態を実現させるには、
低速混練のニーダ−が特に好ましい。一般にルーダ−混
練では分散が悪くなり、また高速混練のバンバリーミキ
サ−等では分散がよくなりすぎる傾向がある。
The method of kneading the thermoplastic resin and the conductive metal compound is not particularly limited, but in order to achieve a dispersion state within the above range,
A low-speed kneader is particularly preferred. In general, Ruder kneading results in poor dispersion, while high-speed kneading, such as a Banbury mixer, tends to result in too good dispersion.

本発明による導電性樹脂組成物を製造する際、熱可塑性
樹脂と導電性金属化合物の接着をよくするための親油化
剤の使用が好ましく、また混合を効果的に行うため、更
には得られる樹脂組成物の成形性を向上させる目的のた
めに、適当な粘度調節剤を用いてもよく、また必要に応
じて酸化防止剤を併用しても差しつかえない。
When producing the conductive resin composition according to the present invention, it is preferable to use a lipophilic agent to improve the adhesion between the thermoplastic resin and the conductive metal compound, and to achieve effective mixing, it is further possible to obtain For the purpose of improving the moldability of the resin composition, an appropriate viscosity modifier may be used, and an antioxidant may also be used in combination, if necessary.

〈実施例〉 以下実施例により本発明を具体的に説明する。<Example> The present invention will be specifically explained below using Examples.

なお、導電性金属化合物の樹脂への配合前の平均粒径(
DA )は、粉体をエチレングリコール中に分散させ、
堀場遠心式自動粒度分布測定装置(CAPA−500)
で測定した。樹脂中の導電性金属化合物の平均粒径(D
e )は、樹脂を溶解することのできる溶媒100mに
加え、溶解可能な湿度で1時間マグネティックスタラ−
で撹拌し、熱可塑性樹脂を完全に溶解させて導電性金属
化合物を分散させ、室温にて3時間静置後、上澄み液を
同じ<CAPA−500で測定した。
In addition, the average particle diameter of the conductive metal compound before blending into the resin (
DA) disperses the powder in ethylene glycol,
Horiba centrifugal automatic particle size distribution analyzer (CAPA-500)
It was measured with Average particle size of conductive metal compound in resin (D
e) Add 100ml of a solvent that can dissolve the resin and add a magnetic stirrer for 1 hour at a humidity that allows the resin to dissolve.
The mixture was stirred to completely dissolve the thermoplastic resin and disperse the conductive metal compound, and after standing at room temperature for 3 hours, the supernatant liquid was measured using the same <CAPA-500.

実施例1 酸化チタン微粒子表面に導電性酸化第二錫をコーティン
グした平均粒径(DA )  0.50μ、比抵抗10
Ω・CIAの導電性粉体250重量部、メルトインデッ
クスフ5のポリエチレン80重量部、可塑剤として流動
パラフィン20重量部及び親油化剤としてステアリン酸
3重量部をニーダ−に仕込み、175℃で30分間混練
した。得られた導電性樹脂の比抵抗は2.8X 102
Ω・cmであった。この樹脂中の導電性粉体の平均粒径
(Ds )は1.7μであった。
Example 1 Titanium oxide fine particles coated with conductive tin oxide, average particle diameter (DA) 0.50μ, specific resistance 10
A kneader was charged with 250 parts by weight of conductive powder of Ω・CIA, 80 parts by weight of polyethylene of Melt Index 5, 20 parts by weight of liquid paraffin as a plasticizer, and 3 parts by weight of stearic acid as a lipophilic agent, and heated at 175°C. The mixture was kneaded for 30 minutes. The specific resistance of the obtained conductive resin is 2.8X 102
It was Ωcm. The average particle size (Ds) of the conductive powder in this resin was 1.7μ.

(DB /DA = 3.4) 溶融紡糸により、この導電性樹脂を芯とし、ポリエチレ
ンテレフタレートを鞘とする芯鞘型複合繊維(芯鞘比−
1/6)を作り、4倍延伸して100デニール、単糸数
12の導電性マルチフィラメントを得た。この導電性複
合繊維を1 cmの長さに切り取り、両端に導電性塗料
を塗布して両端間の電気抵抗を測定したところ2 X 
10’Ωであった。
(DB /DA = 3.4) By melt spinning, a core-sheath type composite fiber (core-sheath ratio -
1/6) and stretched 4 times to obtain a conductive multifilament of 100 denier and 12 single filaments. This conductive composite fiber was cut into a length of 1 cm, conductive paint was applied to both ends, and the electrical resistance between both ends was measured.
It was 10'Ω.

比較例1 実施例1に記載した組成の各種剤をバンバリーミキサ−
に仕込み、175℃で10分間混練した。得られた導電
性樹脂の比抵抗は3.1×103Ω・cmであった。こ
の樹脂中の導電性粉体の平均粒径(DB)は0.83μ
であった。(DB/DA=1.7) 溶融紡糸により、この導電性樹脂を芯とし、ポリエチレ
ンテレフタレートを鞘とする芯鞘型複合111ft(芯
鞘比= 176 )を作り、4倍延伸して100デニー
ル、単糸数12の導電性マルチフィラメントを得た。こ
の導電性複合繊維を1oMの長さに切り取り、両端に導
電性塗料を塗布して両端間の電気抵抗を測定したところ
1X109Ωであった。
Comparative Example 1 Various agents having the compositions described in Example 1 were mixed in a Banbury mixer.
and kneaded for 10 minutes at 175°C. The specific resistance of the obtained conductive resin was 3.1×10 3 Ω·cm. The average particle diameter (DB) of the conductive powder in this resin is 0.83μ
Met. (DB/DA=1.7) A core-sheath type composite 111ft (core-sheath ratio = 176) with this conductive resin as a core and polyethylene terephthalate as a sheath was made by melt spinning, and stretched 4 times to 100 denier. A conductive multifilament having 12 single threads was obtained. This conductive composite fiber was cut into a length of 10M, a conductive paint was applied to both ends, and the electrical resistance between both ends was measured and found to be 1×10 9 Ω.

比較例2 実施例1に記載した組成の各棟側を二輪ルーダ−にて1
75℃で混練した。得られた導電性樹脂の比抵抗は7.
IX 103Ω・cmであった。この樹脂中の導電性粉
体の平均粒径(DB)は3.3μであった。(Ds /
DA = 6.6) 溶融紡糸により、この導電性樹脂を芯とし、ポリエチレ
ンテレフタレートを鞘とする芯鞘型複合繊維(芯鞘比=
 1/6 )を作り、4倍延伸して100デニール、単
糸数12の導電性マルチフィラメントを得た。この導電
性複合繊維を1 cmの長さに切り取り、両端に導電性
塗料を塗布して両端間の電気抵抗を測定したところ7 
X 109Ωであった。
Comparative Example 2 Each ridge side of the composition described in Example 1 was coated with a two-wheeled router.
The mixture was kneaded at 75°C. The specific resistance of the obtained conductive resin was 7.
IX was 103Ω·cm. The average particle diameter (DB) of the conductive powder in this resin was 3.3μ. (Ds /
DA = 6.6) By melt spinning, a core-sheath type composite fiber (core-sheath ratio =
1/6) and stretched 4 times to obtain a conductive multifilament of 100 denier and 12 single filaments. This conductive composite fiber was cut into a length of 1 cm, conductive paint was applied to both ends, and the electrical resistance between both ends was measured.
It was 109Ω.

Claims (4)

【特許請求の範囲】[Claims] (1)熱可塑性樹脂に導電性金属化合物を配合してなる
導電性樹脂組成物であって、熱可塑性樹脂に配合する前
の導電性金属化合物の平均粒径D_Aと、熱可塑性樹脂
に配合した後の熱可塑性樹脂中に分散した状態での導電
性金属化合物の平均粒径D_Bとが下記式を満足するこ
とを特徴とする導電性樹脂組成物。
(1) A conductive resin composition formed by blending a conductive metal compound into a thermoplastic resin, wherein the average particle diameter D_A of the conductive metal compound before blending into the thermoplastic resin and the average particle diameter D_A of the conductive metal compound before blending into the thermoplastic resin. A conductive resin composition characterized in that the average particle diameter D_B of the conductive metal compound in a state dispersed in the subsequent thermoplastic resin satisfies the following formula.
2.0≦(D_B/D_A)≦6.0 (2)導電性金属化合物が、少量の酸化アンチモンを添
加した酸化錫、少量の酸化アルミニウムを添加した酸化
亜鉛、沃化銅、硫化銅及び酸化チタン、酸化亜鉛又は酸
化ケイ素粒子の表面に少量の酸化アンチモンを添加した
酸化錫の被膜を形成した金属化合物より選ばれた少なく
とも一種の金属化合物である特許請求の範囲第1項記載
の導電性樹脂組成物。
2.0≦(D_B/D_A)≦6.0 (2) The conductive metal compound is tin oxide with a small amount of antimony oxide added, zinc oxide with a small amount of aluminum oxide added, copper iodide, copper sulfide, and oxide. The conductive resin according to claim 1, which is at least one metal compound selected from metal compounds that form a film of tin oxide with a small amount of antimony oxide added to the surface of titanium, zinc oxide, or silicon oxide particles. Composition.
(3)熱可塑性樹脂が、ポリエチレン、ポリプロピレン
、ナイロン6及びポリエチレンテレフタレートより選ば
れた少なくとも一種の熱可塑性樹脂である特許請求の範
囲第1項又は第2項記載の導電性樹脂組成物。
(3) The conductive resin composition according to claim 1 or 2, wherein the thermoplastic resin is at least one thermoplastic resin selected from polyethylene, polypropylene, nylon 6, and polyethylene terephthalate.
(4)樹脂組成物中の導電性金属化合物の配合量が、6
0〜85重量%である特許請求の範囲第(1)項〜第(
3)項のいずれか1項記載の導電性樹脂組成物。
(4) The amount of the conductive metal compound in the resin composition is 6
0 to 85% by weight of claims (1) to (
The conductive resin composition according to any one of item 3).
JP9120386A 1986-04-22 1986-04-22 Electrically conductive resin composition Pending JPS62250041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9120386A JPS62250041A (en) 1986-04-22 1986-04-22 Electrically conductive resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9120386A JPS62250041A (en) 1986-04-22 1986-04-22 Electrically conductive resin composition

Publications (1)

Publication Number Publication Date
JPS62250041A true JPS62250041A (en) 1987-10-30

Family

ID=14019870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9120386A Pending JPS62250041A (en) 1986-04-22 1986-04-22 Electrically conductive resin composition

Country Status (1)

Country Link
JP (1) JPS62250041A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63215745A (en) * 1987-03-04 1988-09-08 Toshiba Silicone Co Ltd Pressure-sensitive electroconductive elastomer composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58201828A (en) * 1982-05-18 1983-11-24 Unitika Ltd Electrically condutive polymer composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58201828A (en) * 1982-05-18 1983-11-24 Unitika Ltd Electrically condutive polymer composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63215745A (en) * 1987-03-04 1988-09-08 Toshiba Silicone Co Ltd Pressure-sensitive electroconductive elastomer composition
JPH0588857B2 (en) * 1987-03-04 1993-12-24 Toshiba Silicone

Similar Documents

Publication Publication Date Title
CN110669259A (en) Efficient flame-retardant smoke-suppression environment-friendly bifunctional auxiliary agent and PVC-U material prepared from same
WO2021109368A1 (en) Composite antistatic agent and preparation method therefor, antistatic polyoxymethylene and preparation method therefor
EP0167997B1 (en) Conductive polyamide moulding compositions
JPS62250041A (en) Electrically conductive resin composition
JP2847829B2 (en) Expanded graphite dispersed composite resin molding
JP4290927B2 (en) Bundling agent, glass fiber, flaky glass and thermoplastic resin composition
CN1201167A (en) Dry-electrostatic duplication toner and developer
JP2004204187A (en) Partial discharge resistant insulating coating material and insulated wire
JP2854221B2 (en) Conductive composite fiber
JP2003342476A (en) Conductive resin material
JP2005194650A (en) Conductive conjugate fiber
CN111499964A (en) ETFE coloring master batch and application thereof
JPH01111015A (en) Electrically conductive composite fiber
JP4314453B2 (en) Conductive resin material
JPS6385113A (en) Electrically conductive conjugate fiber
JPS6366267A (en) Transparent electrically conductive coating agent for plasticized flexible polyvinyl chloride
JPH0652838B2 (en) Resin composition for electromagnetic wave shielding
JPH05287611A (en) Conductive conjugated fiber
CN116120807A (en) Functional powder coating and preparation method thereof
JPH0516469B2 (en)
JP3046501B2 (en) Conductive composite fiber
JPS6178872A (en) Conductive resin composition
JPS63189461A (en) Electrically conductive resin composition
JP3046509B2 (en) Conductive composite fiber
JPH06235122A (en) Electroconductive conjugate fiber