JPS62249365A - Sun light storage battery - Google Patents

Sun light storage battery

Info

Publication number
JPS62249365A
JPS62249365A JP61092710A JP9271086A JPS62249365A JP S62249365 A JPS62249365 A JP S62249365A JP 61092710 A JP61092710 A JP 61092710A JP 9271086 A JP9271086 A JP 9271086A JP S62249365 A JPS62249365 A JP S62249365A
Authority
JP
Japan
Prior art keywords
type semiconductor
layer
negative electrode
solid electrolyte
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61092710A
Other languages
Japanese (ja)
Other versions
JPH07118332B2 (en
Inventor
Tadashi Tonomura
正 外邨
Terutoshi Kanbara
神原 輝寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61092710A priority Critical patent/JPH07118332B2/en
Publication of JPS62249365A publication Critical patent/JPS62249365A/en
Publication of JPH07118332B2 publication Critical patent/JPH07118332B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To reduce the number of construction elements by using Cu2Te which is p-type semiconductor of sun light power generating part as a positive electrode in power storage part comprising a solid electrolyte secondary battery. CONSTITUTION:A power storage part (a) having an electromotive force of about 0.25V consists of a positive electrode comprising a Cu2Te layer 3 which is p-type semiconductor, a Cu<+> ion conductive solid electrolyte 4, and a negative electrode 5 mainly comprising metallic copper. A power generating part (b) having an electromotive force of 0.50-0.60V consists of p/n junction formed by the juction of a CdTe layer 2 which is n-type semiconductor and the Cu2Te layer 3 which is p-type semiconductor and aslo serves as a positive electrode. The CdTe layer 2 and the Cu negative electrode layer 5 are electrically connected. Thereby, the number of essential construction elements can be reduced from 5 to 4.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体のp/n接合の光起電力を使った太陽
電池より得られる電力を固体電解質二次電池を用いて蓄
電する太陽光蓄電池に関し、さらに詳しくは、前記p/
n接合を構成するp型半導体であるCu2TeがCu+
イオン導電性固体電解質を用いる前記固体電解質二次電
池の正極を兼ねる新規な太陽光蓄電池に関する。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a solar storage battery that uses a solid electrolyte secondary battery to store electric power obtained from a solar cell using photovoltaic power of a semiconductor p/n junction. , More specifically, the p/
Cu2Te, which is a p-type semiconductor constituting an n-junction, is Cu+
The present invention relates to a novel solar storage battery that also serves as the positive electrode of the solid electrolyte secondary battery using an ion-conductive solid electrolyte.

従来の技術 半導体のp/n接合の光起電力を使う太陽電池は、それ
自体蓄電機能がないため、太陽電池単独では光が照射さ
れている間しか電力を供給することが出来ない。
Conventional Solar Cells Using P/N Junction Photovoltaic Power of a Semiconductor Does Not Have a Power Storage Function, Therefore, Solar Cells Alone Can Only Supply Electric Power While Being Irradiated with Light.

又、光の照射がない場合でも電力を供給するために、従
来太陽電池は、ニッケル・カドミウム電池といった二次
電池と組み合わせた太陽光蓄電装置として最も用いられ
ている。このような目的に用いられる二次電池として、
在来の液体電解質を用いるニッケル・カドミウム電池等
に換えて、電池構成要素がすべて固体状であり原理的に
液もれがなく、薄形、小形化が容易な固体電解質二次電
池を用いることで、太陽電池と二次電池の一体化。
Furthermore, in order to supply power even when there is no light irradiation, conventional solar cells are most commonly used as solar power storage devices in combination with secondary batteries such as nickel-cadmium batteries. As a secondary battery used for such purposes,
Instead of conventional nickel-cadmium batteries that use liquid electrolytes, use solid electrolyte secondary batteries, which have all battery components in a solid state, have no leakage in principle, and can be easily made thin and compact. So, the integration of solar cells and secondary batteries.

パンケージの共有化等がはかれるなど数々の従来にはな
い利点が得られる。
A number of advantages not previously available can be obtained, such as the ability to share pan cages.

本発明者らは共に、このような固体電解質二次電池のう
ち、Cu イオン導電性固体電解質を用いる二次電池と
太陽電池とを複合化した太陽光蓄電装置を提案した。太
陽電池の単セル数と、二次電池の単セル数を好適に組み
合せることで、蓄電効率の優れた装置とすることができ
るという利点をこの装置は有してはいる。
The present inventors together proposed a solar power storage device that combines a solar cell and a secondary battery using a Cu 2 ion conductive solid electrolyte among such solid electrolyte secondary batteries. This device has the advantage that by suitably combining the number of single cells of the solar cell and the number of single cells of the secondary battery, it is possible to obtain a device with excellent power storage efficiency.

発明が解決しようとする問題点 しかし、このような太陽光蓄電装置は、正極と負極と電
解質とにより構成される二次電池と、半導体のp/n接
合で構成される太陽電池との2つの独立した素子をあく
までも複合化したもので、各々独立した製造プロセスで
作られた各素子を同一パッケージ内に納めたものである
。構成要素あるいは材料としては少なくとも正極、負極
、固体電解質材料の3つの他に、p型半導体、n型半導
体の5つの要素が必要である。また、電圧の好適な組み
合せを得るためには、各々複数個の素子が必要となる。
Problems to be Solved by the Invention However, such solar power storage devices have two types: a secondary battery composed of a positive electrode, a negative electrode, and an electrolyte, and a solar cell composed of a p/n junction of semiconductors. It is essentially a composite of independent elements, with each element manufactured using an independent manufacturing process housed in the same package. As constituent elements or materials, at least five elements are required: a positive electrode, a negative electrode, a solid electrolyte material, and a p-type semiconductor and an n-type semiconductor. Further, in order to obtain a suitable combination of voltages, a plurality of elements are each required.

出来上がった装置に高信頼性を期待するとき、構成要素
はできるだけ少ない方が望ましいし、また、太陽電池と
二次電池とが連続したひとつの製造プロセスで構成され
ることが望ましい0 問題点を解決するだめの手段 本発明は、太陽電池を構成するp型半導体が、二次電池
の正極としても作用できるC u 2 T eを正極用
いることで、最小限必要な構成要素を5つから4つに減
らすことのできる太陽光蓄電池を提供するものである。
When expecting high reliability from the finished device, it is desirable to have as few components as possible, and it is also desirable that the solar cell and the secondary battery be constructed in one continuous manufacturing process.0 Problem solved The present invention reduces the minimum number of required components from five to four by using Cu 2 Te as a positive electrode for the p-type semiconductor that constitutes the solar cell, which can also function as the positive electrode of a secondary battery. This provides a solar storage battery that can reduce the amount of energy used.

まだ、太陽電池と二次電池とが連続したひとつの製造プ
ロセスで構成することが了能となる。
It is still possible to configure solar cells and secondary batteries in one continuous manufacturing process.

すなわち、本発明に従う太陽光蓄電池は、p型半導体で
あるCu2Teを正極とし、Cu イオン導電性固体電
解質と、金属銅を主体とする負極から成る起電力が約0
.25 Vの固体電解質二次電池である蓄電部aと、n
型半導体であるca’reと、前記正極としても作用す
るp型半導体であるCu2Teとの接合により形成され
るp/n接合から成る起電力がo、s o−o、e o
 vである発電部すよp構成される。CdTe層の上に
Cu2Te層が形成され、さらにその上に順次形成され
たCu+イオン導電性固体電解質層と、金属銅を主体と
する負極層(Cu 負極層と略す)の4層より成り、C
dTe層とCu負極層とを電気的に接続することで本発
明による太陽光蓄電池が形成される。Cu負極層は、光
がp/n接合部まで達することができるように、網目状
、格子状、あるいはくし状等に形成される。
That is, the solar storage battery according to the present invention has an electromotive force of about 0, which is composed of a positive electrode made of Cu2Te, which is a p-type semiconductor, a Cu ion conductive solid electrolyte, and a negative electrode mainly made of metallic copper.
.. Power storage units a and n are 25 V solid electrolyte secondary batteries.
The electromotive force formed by the p/n junction formed by the junction of ca're, which is a type semiconductor, and Cu2Te, which is a p-type semiconductor that also acts as the positive electrode, is o, so-o, e o.
The power generation section p is composed of v and p. It consists of four layers: a Cu2Te layer is formed on the CdTe layer, a Cu + ion conductive solid electrolyte layer is sequentially formed on top of the Cu2Te layer, and a negative electrode layer (abbreviated as Cu negative electrode layer) mainly made of metallic copper.
A solar storage battery according to the present invention is formed by electrically connecting the dTe layer and the Cu negative electrode layer. The Cu negative electrode layer is formed in a mesh, lattice, or comb shape so that light can reach the p/n junction.

Cu+イオン導電性固体電解質層としては、光の透過性
を考慮して、一般式、 RbCu4I、、−xCJ3+x(X= 0.25〜0
.75 )で表わされるOu+イオン導電性固体電解質
が好適に用いられる。
The Cu+ ion conductive solid electrolyte layer has the general formula RbCu4I, -xCJ3+x (X=0.25~0
.. 75) is preferably used.

第3図は、石英ガラス板上に5 X 10= Torr
の真空下で抵抗加熱法で形成した前述の一般式でx=o
、sであるRbCu411,5CG、5膜(膜厚3.5
μ)の光吸収スペクトルを示したものである。460n
m以下で吸収があシ太陽光の紫外部の光は通しにくいけ
れど実用上問題なく使用することができる。また、X=
0.26〜0.75の範囲では、RbCu a I 2
−xc l 3+、 の分解電圧は、約o、eovであ
シ、長期間に渡って発電部すより0.5〜0.6 Vの
電圧が蓄電部aの充電のために印加された場合でも、C
u イオン導電性固体電解質層の分解による蓄電部乙の
劣化が生じる恐れはきわめて少ない。
Figure 3 shows 5 x 10 = Torr on a quartz glass plate.
In the above general formula formed by resistance heating method under vacuum of
, s RbCu411,5CG, 5 films (thickness 3.5
The figure shows the optical absorption spectrum of μ). 460n
Although it is difficult for light in the ultraviolet region of sunlight to pass through, it can be used without any practical problems. Also, X=
In the range of 0.26 to 0.75, RbCu a I 2
The decomposition voltage of -xc l 3+, is approximately o, eov, and when a voltage of 0.5 to 0.6 V is applied to the power generation unit for a long period of time to charge the power storage unit a. But, C
There is very little risk that the power storage unit B will deteriorate due to decomposition of the ion conductive solid electrolyte layer.

次に、CdTe層とCu負極層との電気的接続は、必要
に応じ、順方向の電圧降下が0.1〜0.3層程度のダ
イオードを介して行うことができる。このようなダイオ
ードとしては通常のゲルマニウムダイオードが使用でき
る。接続はCdTe層からCu負極層に向って電子が流
れる方向が順方向となるようになされる。こうすること
で、光照射がない場合、蓄電部乙にたくわえられた電気
が、発電部すを通して漏れるのを有効に防止することが
できる。
Next, the CdTe layer and the Cu negative electrode layer can be electrically connected, if necessary, via a diode with a forward voltage drop of about 0.1 to 0.3 layers. An ordinary germanium diode can be used as such a diode. The connection is made such that the direction in which electrons flow from the CdTe layer to the Cu negative electrode layer is the forward direction. By doing so, it is possible to effectively prevent the electricity stored in the power storage unit B from leaking through the power generation unit B when there is no light irradiation.

作用 光が照射している場合、発電部すで生じた電圧0.50
〜o、eoVの電子は、外部負荷へ送られそこで利用消
費されるとともに、その一部はCdTa層とCu負極の
電気接続部を通ってCu負極に至り、ここで正極層であ
るCu2Te層より遊離して+ Cu イオン導電性固体電解質層を通ってきたCu+イ
オンと結合してCuとしてCu負極層に蓄えられる。光
が照射していない場合は、このようにして蓄電部已に蓄
えられた電気はCu2Te層を正極とし、Cu負極層を
負極とする蓄電部aより外部負荷へ供給することができ
る。
When the working light is irradiating, the voltage generated in the power generation section is 0.50
The electrons at ~o, eoV are sent to an external load where they are used and consumed, and some of them pass through the electrical connection between the CdTa layer and the Cu negative electrode to reach the Cu negative electrode, where they are transferred from the Cu2Te layer which is the positive electrode layer. The liberated +Cu+ ions combine with the Cu+ ions that have passed through the conductive solid electrolyte layer and are stored as Cu in the Cu negative electrode layer. When no light is irradiated, the electricity thus stored on the side of the power storage unit can be supplied to an external load from the power storage unit a, which has the Cu2Te layer as the positive electrode and the Cu negative electrode layer as the negative electrode.

以下、実施例により説明する。Examples will be explained below.

実施例 第1図は本発明の実施例の1つである太陽光蓄電池の構
造を示す断面略図である。
Embodiment FIG. 1 is a schematic cross-sectional view showing the structure of a solar storage battery that is one of the embodiments of the present invention.

厚さ0.2mmのモリブデン(MO)箔1の上に真空蒸
着法で厚さ25μ、大きさsxE5m+n角のCdTa
層2を形成し、さらにその上に順次真空蒸着法で、厚さ
0.2μのCu2Te層3.厚さ3.5μのRbGu4
I tsC15,5より成るCu イオン導電性固体電
解質層4゜厚さ0.3μの金属銅膜より成るCu負極層
5がくし状に形成される。6は片面に導電性の酸化イン
ジウム、スズの薄膜6a′s?よび6bを有するガラス
板であり、Cu負極層5と導電性薄膜62LおよびCu
 2 T e層3の一部と導電性薄膜6bとが各々電気
的に接続するように配置されている。6CはCu2Te
層3と導電性薄膜6bとを電気的に接続するためのpt
ペーストより成る導電性塗料によりCu2Ta層3の上
に形成した電気接続用端子である。
CdTa with a thickness of 25μ and a size sxE5m+n square is deposited on a molybdenum (MO) foil 1 with a thickness of 0.2mm by vacuum evaporation method.
Layer 2 is formed, and then a Cu2Te layer 3 with a thickness of 0.2 μm is sequentially deposited on top of the layer 2 by vacuum evaporation. RbGu4 with a thickness of 3.5μ
A Cu ion conductive solid electrolyte layer 4 made of I tsC15.5 and a Cu negative electrode layer 5 made of a metal copper film having a thickness of 0.3 μm are formed in a comb shape. 6 is a thin film of conductive indium oxide and tin on one side 6a's? and 6b, and includes a Cu negative electrode layer 5, a conductive thin film 62L, and a Cu negative electrode layer 5.
A part of the 2Te layer 3 and the conductive thin film 6b are arranged so as to be electrically connected to each other. 6C is Cu2Te
PT for electrically connecting layer 3 and conductive thin film 6b
This is an electrical connection terminal formed on the Cu2Ta layer 3 using a conductive paint made of paste.

ガラス板6とモリブデン箔1とはエポキシ樹脂系接着剤
子により接着されている。8はゲルマニウムダイオード
であυ、図中、ダイオードの回路記号で示したように、
CdTa層2から電子がCu負極層5へ流れ込むように
接続されている。eP9は■極端子、10はθ極端子で
ある。
The glass plate 6 and the molybdenum foil 1 are bonded together using an epoxy resin adhesive. 8 is a germanium diode υ, as shown by the diode circuit symbol in the figure,
The CdTa layer 2 is connected so that electrons flow into the Cu negative electrode layer 5. eP9 is a ■ pole terminal, and 10 is a θ pole terminal.

第2図はこのような太陽光蓄電池を30分間太陽光にで
らした後、暗所で■極端子9とe極端子10を通して2
0’Cで60μ人の一定電流で30分間放電した際の■
極端子eとθ極端子間の電圧変化を示したものである。
Figure 2 shows that after exposing such a solar storage battery to sunlight for 30 minutes, it is connected to
■ When discharged for 30 minutes with a constant current of 60μ at 0'C
It shows the voltage change between the pole terminal e and the θ pole terminal.

図中、1oサイクル目。In the figure, the 10th cycle.

100サイクル目とあるのは、30分間太陽光による充
電を行なった後、60μ人で30分間放電する充、放電
サイクルを10サイクル、100サイクルくシ返した際
の放電時の端子間電圧の変化を示したものである。1o
Oサイクル後でもほとんど初期の特性と変りない放電特
性を与える。
The 100th cycle refers to the change in voltage between the terminals during discharge when the charging and discharging cycles are repeated for 10 and 100 cycles after being charged by sunlight for 30 minutes and then discharged for 30 minutes by a 60μ person. This is what is shown. 1o
Even after the O cycle, the discharge characteristics are almost the same as the initial characteristics.

発明の効果 以上本発明に従えば、太陽光発電部のp型半導体である
Cu2Teを、固体電解質二次電池より成る蓄電部の正
極としても作用させることで、構成要素の数を従来の6
つから4つに減じた太陽光蓄電池を提供できる。
Effects of the Invention According to the present invention, by making Cu2Te, which is a p-type semiconductor in the solar power generation section, also act as the positive electrode of the power storage section consisting of a solid electrolyte secondary battery, the number of components can be reduced to 6 compared to the conventional one.
It is possible to provide solar storage batteries reduced from one to four.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の1つである太陽光蓄電池の断
面構造を示す略図、第2図は実施例の太陽光蓄電池の放
電特性を示す図、第3図は本発明の太陽光蓄電池に用い
られるGu  イオノ導電性固体電解質薄膜の光吸収ス
ペクトルを示す図である。 1・・・・・・モリブデン箔、2・・・・・・CdTe
層、3・・・・・・Cu2Te層、4・・・・・・Cu
 イオン導電性固体電解質層、6・・・・・・Cu負極
層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名/−
−−モ1ノプデン箔 2−−− CtTe層 3−−− Cu−z 7aJ 第2図 Ofo      20     30ガQ叱時間(分
FIG. 1 is a schematic diagram showing the cross-sectional structure of a solar storage battery that is one of the embodiments of the present invention, FIG. 2 is a diagram showing the discharge characteristics of the solar storage battery of the embodiment, and FIG. FIG. 2 is a diagram showing a light absorption spectrum of a Gu ionoconductive solid electrolyte thin film used in a storage battery. 1... Molybdenum foil, 2... CdTe
Layer, 3...Cu2Te layer, 4...Cu
Ionic conductive solid electrolyte layer, 6...Cu negative electrode layer. Name of agent: Patent attorney Toshio Nakao and 1 other person/-
--Monoden foil 2---- CtTe layer 3--- Cu-z 7aJ Figure 2 Ofo 20 30g

Claims (3)

【特許請求の範囲】[Claims] (1)(a)p型半導体Cu_2Teを正極とし、Cu
^+イオン導電性固体電解質と、金属銅を主体とする負
極とにより構成される蓄電部と、(b)n型半導体Cd
Teと、前記蓄電部(a)の正極であるp型半導体Cu
_2Teとの接合により形成されるp/n接合より成る
発電部とにより構成され、前記n型半導体CdTeと前
記金属銅を主体とする負極とが電気的に接続されている
ことを特徴とする太陽光蓄電池。
(1) (a) P-type semiconductor Cu_2Te is used as the positive electrode, Cu
^+ A power storage unit composed of an ion-conductive solid electrolyte and a negative electrode mainly made of metallic copper, and (b) an n-type semiconductor Cd.
Te and the p-type semiconductor Cu which is the positive electrode of the power storage unit (a).
and a power generation section consisting of a p/n junction formed by joining with _2Te, and the solar cell is characterized in that the n-type semiconductor CdTe and the negative electrode mainly made of metal copper are electrically connected. Photoacid battery.
(2)n型半導体CdTeと金属銅を主体とする負極と
がn型半導体CdTeから金属銅を主体とする負極へ向
かって電子が流れる方向を順方向として、ダイオードを
介して電気的に接続されていることを特徴とする特許請
求第1項記載の太陽光蓄電池。
(2) The n-type semiconductor CdTe and the negative electrode mainly made of metal copper are electrically connected via a diode with the direction in which electrons flow from the n-type semiconductor CdTe toward the negative electrode mainly made of metal copper as the forward direction. The solar storage battery according to claim 1, characterized in that:
(3)Cu^+イオン導電性固体電解質が一般式、Rb
Cu_4I_2_−_xCl_3_+_x(x=0.2
5〜0.75)で表わされる化合物であることを特徴と
する特許請求の範囲第1項又は第2項記載の太陽光蓄電
池。
(3) Cu^+ ion conductive solid electrolyte has the general formula, Rb
Cu_4I_2_-_xCl_3_+_x(x=0.2
5-0.75), the solar storage battery according to claim 1 or 2.
JP61092710A 1986-04-22 1986-04-22 Solar battery Expired - Lifetime JPH07118332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61092710A JPH07118332B2 (en) 1986-04-22 1986-04-22 Solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61092710A JPH07118332B2 (en) 1986-04-22 1986-04-22 Solar battery

Publications (2)

Publication Number Publication Date
JPS62249365A true JPS62249365A (en) 1987-10-30
JPH07118332B2 JPH07118332B2 (en) 1995-12-18

Family

ID=14062020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61092710A Expired - Lifetime JPH07118332B2 (en) 1986-04-22 1986-04-22 Solar battery

Country Status (1)

Country Link
JP (1) JPH07118332B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5354996A (en) * 1976-10-29 1978-05-18 Agency Of Ind Science & Technol Productin of solar battery
JPS5766868U (en) * 1980-10-08 1982-04-21

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5354996A (en) * 1976-10-29 1978-05-18 Agency Of Ind Science & Technol Productin of solar battery
JPS5766868U (en) * 1980-10-08 1982-04-21

Also Published As

Publication number Publication date
JPH07118332B2 (en) 1995-12-18

Similar Documents

Publication Publication Date Title
Um et al. Monolithically integrated, photo-rechargeable portable power sources based on miniaturized Si solar cells and printed solid-state lithium-ion batteries
US4740431A (en) Integrated solar cell and battery
JP4437890B2 (en) Solar cell composite thin film solid lithium ion secondary battery
US7649140B2 (en) Photovoltaic module with full utilization of surface area
CA1073995A (en) Solar energy conversion
JPH0460355B2 (en)
KR20200068019A (en) Composite battery cell
US10205208B2 (en) Method of storing electron hole pairs
EP0108492A2 (en) Composite photocell
JPS62249365A (en) Sun light storage battery
CN108963026B (en) Power generation and energy storage integrated battery and manufacturing method thereof
JPS62249366A (en) Sun light storage battery
JPH08330616A (en) Photoelectric converter
CN111092597A (en) Energy storage type solar cell and energy storage type photovoltaic module
CN211266857U (en) Energy storage type solar cell and energy storage type photovoltaic module
DE19926318A1 (en) Electrical energy storage device for autonomous current supply for electrical device uses storage battery in combination with solar cell device for topping-up battery charge
JPS61104567A (en) Power source apparatus using solar cell
JP2506829B2 (en) Photovoltaic secondary battery
JP2713419B2 (en) Photo secondary battery
JP2615465B2 (en) Photovoltaic secondary battery
JPS6188468A (en) Battery
JPH0677513A (en) Photoelectricity source capable of displaying output
JPS6191883A (en) Hybrid cell
JPH0244778A (en) Optical power source
JPH0534789B2 (en)