JPS62248574A - Manufacture of finned tube - Google Patents
Manufacture of finned tubeInfo
- Publication number
- JPS62248574A JPS62248574A JP9279286A JP9279286A JPS62248574A JP S62248574 A JPS62248574 A JP S62248574A JP 9279286 A JP9279286 A JP 9279286A JP 9279286 A JP9279286 A JP 9279286A JP S62248574 A JPS62248574 A JP S62248574A
- Authority
- JP
- Japan
- Prior art keywords
- welding
- heat transfer
- tube
- fin
- transfer tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 238000003466 welding Methods 0.000 claims abstract description 41
- 238000005480 shot peening Methods 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 claims description 16
- 229910001039 duplex stainless steel Inorganic materials 0.000 claims description 6
- 229910000831 Steel Inorganic materials 0.000 claims description 5
- 239000010959 steel Substances 0.000 claims description 5
- 239000002245 particle Substances 0.000 claims description 4
- 230000007797 corrosion Effects 0.000 abstract description 27
- 238000005260 corrosion Methods 0.000 abstract description 27
- 238000005336 cracking Methods 0.000 abstract description 12
- 229910001220 stainless steel Inorganic materials 0.000 abstract description 6
- 239000010935 stainless steel Substances 0.000 abstract description 6
- 238000000151 deposition Methods 0.000 abstract 2
- 238000004804 winding Methods 0.000 abstract 2
- 230000006835 compression Effects 0.000 abstract 1
- 238000007906 compression Methods 0.000 abstract 1
- 230000035882 stress Effects 0.000 description 26
- 238000000137 annealing Methods 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Butt Welding And Welding Of Specific Article (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、例えば、乾燥機、熱交換器等に用いられるフ
ィン付チューブの製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing finned tubes used in, for example, dryers, heat exchangers, and the like.
(従来の技術)
従来、この種のフィン付チューブを製造する場合には、
フィンと管とに良好な熱伝導が行なわれるようにとの観
点から、雪面にフィンの接触端を圧着したり、あるいは
、高周波誘導加熱等を用いて、フィンを管に圧接したり
していた。現在一般に広く行なわれている高周波誘導加
熱方式により製造されたフィン付チューブは例えば、第
8図と第9図に示すように、管1の外周部に螺旋状に巻
き掛けられて接合されたフィン2と該管1との接合部に
おいて、フィン材の溶融による不均一な突出部3が形成
され、隙間部4が生じる。そして、このような隙間部4
を有するフィン付チューブを、湿潤環境で取扱うことの
多い乾燥機、熱交換器において用いた場合には、上記隙
間部4が、隙間腐食の起点となるおそれが多いという問
題がある。(Prior art) Conventionally, when manufacturing this type of finned tube,
In order to ensure good heat conduction between the fins and the tube, the contact end of the fin is crimped to the snow surface, or the fin is pressed to the tube using high-frequency induction heating. Ta. A finned tube manufactured by the currently widely used high-frequency induction heating method is, for example, a fin with fins wound spirally around the outer circumference of a tube 1 and joined as shown in FIGS. 8 and 9. 2 and the tube 1, a non-uniform protrusion 3 is formed due to melting of the fin material, and a gap 4 is created. Then, such a gap 4
When a finned tube having a finned tube is used in a dryer or a heat exchanger that is often handled in a humid environment, there is a problem that the gap 4 is likely to become a starting point for crevice corrosion.
ところで、アーク溶接法にてフィン付チューブを製造す
ることは既知である。しかし、この方法は殆んど、技術
上、経済上の理由でフィン付デユープ製造法として現在
使用されていない。それは次の理由による。By the way, it is known to manufacture finned tubes by arc welding. However, this method is rarely used today for the production of finned duplexes for technical and economic reasons. This is due to the following reason.
アーク溶接法によってフィンや伝熱管を加熱するときそ
れらの素材は自硬性によって硬くなる。When fins and heat exchanger tubes are heated by arc welding, these materials become hard due to their self-hardening properties.
またコスト面から使用する溶接棒の母材への溶は込みを
少なくしたい。特に、素材にステンレス鋼を用いる場合
、その熱膨張係数が大きいので、溶接歪みおよび引張残
留応力が生じ易い。Also, from a cost perspective, it is desirable to reduce the penetration of welding rods into the base metal. In particular, when stainless steel is used as a material, its coefficient of thermal expansion is large, so welding distortion and tensile residual stress are likely to occur.
以上の理由から、溶接電流を極力低く押えたアーク溶接
を行ない、溶接後には後熱処理として焼鈍を行なって上
記欠点を緩和し、歪みを除去する対策を一般としたが、
焼鈍できない場合もあった。For the above reasons, arc welding is carried out with the welding current kept as low as possible, and after welding, annealing is performed as a post-heat treatment to alleviate the above drawbacks and eliminate distortion.
In some cases, annealing was not possible.
また、後熱に行なう焼鈍はフィン付デユープの特殊な形
態からして、炉中焼鈍による全体同時処理ができない場
合があった。従って焼鈍は局部焼鈍に頼ることになるが
、この局部焼鈍法ではフィン付チューブの充分な品質管
理が望めないため、現在は素材に通電しない、前述の高
周波誘導加熱方式が普及している。Further, due to the special form of the finned duplex, the annealing carried out during post-heating may not be able to simultaneously perform the entire process by furnace annealing. Therefore, annealing relies on local annealing, but since sufficient quality control of the finned tube cannot be expected with this local annealing method, the above-mentioned high-frequency induction heating method, which does not apply electricity to the material, is currently in widespread use.
本発明が解決しようとするのは、フィン2と管1との間
に発生し易く、腐食の起点となり易い隙間部4及び、後
熱処理の焼鈍に代わる後処理の問題である。What the present invention seeks to solve is the problem of the gap 4 that tends to occur between the fin 2 and the tube 1 and that tends to become a starting point for corrosion, and the problem of a post-treatment that replaces annealing in the post-heat treatment.
本発明は上記事情に鑑みてなされたもので、その目的と
するところは、フィンと管との接合部に隙間が発生する
のを防止でき、耐隙間腐食性に優れ、かつ溶接により熱
応力が素材に発生した結果、素材中に生ずる応力腐食割
れ(SCC)を、焼鈍処理に代って防止するフィン付チ
ューブの製造方法を提供することにある。The present invention has been made in view of the above circumstances, and its objectives are to prevent the formation of gaps at the joint between the fin and the tube, to have excellent crevice corrosion resistance, and to reduce thermal stress due to welding. An object of the present invention is to provide a method for manufacturing a finned tube that prevents stress corrosion cracking (SCC) that occurs in a material instead of an annealing treatment.
上記目的を達成するために、本発明は、伝熱管に、伝熱
効率を高めるためのフィンを、該フィンの両側縁部に連
続アーク溶接を行なうことにより取付けた後、ショット
ピーニングを施すものである。In order to achieve the above object, the present invention involves attaching fins to a heat transfer tube to increase heat transfer efficiency by continuous arc welding to both side edges of the fins, and then subjecting the tubes to shot peening. .
本発明のフィン付チューブの製造方法にあっては、フィ
ンを、伝熱管に両側隅肉溶接の形で連続的にアーク溶接
されることによって、接合部にほぼ断面三角形状の連続
した肉盛部が形成され、隙間の発生がなくなり、耐隙間
腐食性を高める。特に、中高温域で、かつ湿潤雰囲気に
ざらされる環境における耐隙間腐食性が高められる。In the method for manufacturing a finned tube of the present invention, the fins are continuously arc welded to the heat exchanger tube in the form of fillet welding on both sides, so that a continuous built-up part with a substantially triangular cross section is formed at the joint. is formed, eliminating the occurrence of crevices and improving crevice corrosion resistance. In particular, the crevice corrosion resistance is improved in a medium to high temperature range and in an environment exposed to a humid atmosphere.
また、一般に、例えばステンレス鋼の応力腐食割れ(S
CC)は、上記隙間腐食による欠損部が応力集中点とな
るため、該隙間腐食を起点とする場合が少なくない。従
って、本発明は、上記耐隙rrA腐食性の向上と併せて
、このタイプの応力腐食割れを抑制する。In general, stress corrosion cracking (S) of stainless steel, for example,
CC) is often caused by the crevice corrosion as the starting point, since the defective portion caused by the crevice corrosion becomes a stress concentration point. Therefore, the present invention suppresses this type of stress corrosion cracking in addition to improving the above-mentioned gap rrA corrosion resistance.
さらに溶接の後処理にショットピーニングを施すことに
よって、引張残留応力を緩和し、また積極的に圧縮応力
へ移行せしめて、防食効果を向上させることができる。Further, by performing shot peening as a post-welding treatment, the tensile residual stress can be relaxed and actively transferred to compressive stress, thereby improving the anticorrosion effect.
以下、第1図ないし第7図に基づいて本発明の一実施例
を説明する。Hereinafter, one embodiment of the present invention will be described based on FIGS. 1 to 7.
図中11は、熱媒体を用い伝熱面を介して与熱するため
の二相ステンレス鋼製の伝熱管である。In the figure, reference numeral 11 denotes a heat transfer tube made of duplex stainless steel for applying heat via a heat transfer surface using a heat medium.
そして、この伝熱管11を、第4図に示すように、回転
させながら、かつ右方に所定速度で送ると共に、該伝熱
管11の外周面に二相ステンレス鋼製の帯状のフィン1
2を巻き掛けながら、上記伝熱管11と、フィン12の
両側縁部12a、12aとの接合部を、上記伝熱管11
の送り装置の固定部に固定された一対のアーク溶接11
3にて連続溶接する。これにより、伝熱管11の外周面
に螺旋状のフィン12が溶着され、しかもその断面三角
形状の溶着部14.14には、第2図に示すように、隙
間が生じることがなく、従って、耐隙間腐食性が大幅に
向上する。Then, as shown in FIG. 4, the heat exchanger tube 11 is rotated and sent rightward at a predetermined speed, and a band-shaped fin 1 made of duplex stainless steel is attached to the outer peripheral surface of the heat exchanger tube 11.
2, connect the joints between the heat exchanger tube 11 and both side edges 12a, 12a of the fins 12 with the heat exchanger tube 11.
A pair of arc welds 11 fixed to the fixed part of the feeder of
Continuous welding is performed in step 3. As a result, the spiral fins 12 are welded to the outer circumferential surface of the heat exchanger tube 11, and there is no gap in the welded portion 14.14, which has a triangular cross section, as shown in FIG. Significantly improves crevice corrosion resistance.
さらに、上記フィン12を溶着した伝熱管11の外周に
、鋼製の粒子を投射でる、いわゆるショットピーニング
を施す。これにより、伝熱管11のr8@部近傍に残留
していた引張応力が圧縮応力に移行され、応力腐食割れ
防止が図れる。Further, the outer periphery of the heat exchanger tube 11 to which the fins 12 are welded is subjected to so-called shot peening, in which steel particles are projected. As a result, the tensile stress remaining in the vicinity of the r8@ portion of the heat exchanger tube 11 is transferred to compressive stress, and stress corrosion cracking can be prevented.
また、フィン付チューブに二相ステンレス鋼(市販名:
例えばオーステナイトとフェライトの2相組織を有する
ステンレス鋼)を採用することにより、腐食の様々な様
相すなわち、(1)全面腐食(2)応力腐食割れ、(3
)孔食、および(4)隙間腐食の全てに対抗できる伝熱
管を製造できる。In addition, the finned tube is made of duplex stainless steel (commercial name:
For example, by adopting stainless steel with a two-phase structure of austenite and ferrite, various aspects of corrosion can be realized, namely (1) general corrosion, (2) stress corrosion cracking, (3)
) Pitting corrosion and (4) crevice corrosion can be produced.
上記効果を具体的に示したのが、第6図と第7図の残留
応力特性図である。この図においては、供試材として、
伝熱管11に鋼管: 50AX4 t(2相ステンレス
!I)を、かつフィン12に鋼帯:PL4xl 2w
(2相ステンレス鋼)をそれぞれ用い、溶接条件として
、
溶接方法 GMAW (ミグ溶接)溶接ワイ
ヤ 二相ステンレス鋼ワイヤ(1,2m)
溶接電流 100〜150アンペア溶接電圧
15〜25ボルト溶接速度 3
0〜100cm/minシールドガス 組成 02を含
む^r
流量 10 J /sin以上
の条件下で溶接を行なった。なお、フィン付チューブの
各部の寸法は、第1図において、伝熱管11の径D=6
0.5m+、厚さt+=4m、フィン12の幅W=12
alI、厚さt2=4am、ピッチP=27amである
。また、テスト用のフィン付チューブは2種類製作し、
そのうち1種は、溶接した状態のままで、かつ他の1種
は下記の条件でショットピーニングを施した。そして、
各フィン付チJ−ブについて、分割法にて第5図に示す
ように、溶接ビード端からの距離1〜7mにおける残留
応力を測定した(第6図と第7図において、・印はショ
ットピーニング施工後、○印は溶接施工後の値を示して
いる)。The residual stress characteristic diagrams shown in FIGS. 6 and 7 specifically show the above effect. In this figure, the sample material is
Steel pipe for heat transfer tube 11: 50AX4t (two-phase stainless steel! I), and steel strip for fin 12: PL4xl 2w
Welding method GMAW (MIG welding) welding wire Duplex stainless steel wire (1,2 m) Welding current 100-150 amperes Welding voltage 15-25 volts Welding speed 3
Welding was performed under the conditions of 0 to 100 cm/min shielding gas composition 02 containing flow rate 10 J/sin or more. The dimensions of each part of the finned tube are shown in FIG. 1 when the diameter D of the heat exchanger tube 11 is 6.
0.5m+, thickness t+=4m, width W of fin 12=12
alI, thickness t2=4 am, and pitch P=27 am. In addition, we made two types of finned tubes for testing.
One of them was kept in the welded state, and the other one was shot peened under the following conditions. and,
For each finned tube J-beam, the residual stress was measured at a distance of 1 to 7 m from the weld bead end using the splitting method as shown in Figure 5 (in Figures 6 and 7, the marks are shots). After peening construction, the ○ mark indicates the value after welding construction).
ショットピーニング条件
ショツト材質 鋼製
ショツト粒径 26ommI以内投射
速度 30〜10001/SeC第6図と第7図か
らも明らかなように、溶接のみの場合には(○印参照)
、溶接部近傍に、管軸方向には引張応力(最大20.8
N#f/ms) 、管周方向には圧縮応力が残留してい
るのに対して、ショットピーニング施工後は(・印参照
)、残留応力が10〜2ON#f/ms+程度圧縮側に
移行し、管軸、管周方向ともに圧縮応力が存在すること
が判明した。Shot peening conditions Shot material: Steel shot Particle size: Within 26 mmI Projection speed: 30 to 10001/SeC As is clear from Figures 6 and 7, in the case of welding only (see ○ mark)
, tensile stress (maximum 20.8
N#f/ms), while compressive stress remains in the circumferential direction of the tube, after shot peening (see the * mark), the residual stress shifts to the compressive side by approximately 10 to 2 ON#f/ms+. However, it was found that compressive stress existed in both the tube axis and tube circumferential directions.
次に、上記2種のフィン付チューブ、すなわちショット
ピーニング未施工及びショットピーニング施工のフィン
付チューブについて、応力腐食割れ(SCC)テストを
実施した。このテストは、35%−HoCfz (沸
騰)の条件下で行なわれ、試験開始後、1日2回の定時
観察にて割れ寿命を測定した。この結果、ショットピー
ニングを施したフィン付チューブにおいては、試験時間
が全て1000時聞を越えたのに対して、ショットピー
ニングを施さなかった場合には、約350時間程度で破
断するものが現れ、ショットピーニングの応力腐食割れ
に対する有効性が実証された。Next, a stress corrosion cracking (SCC) test was conducted on the above two types of finned tubes, that is, the finned tubes that had not been subjected to shot peening and those that had been subjected to shot peening. This test was conducted under the condition of 35%-HoCfz (boiling), and the cracking life was measured by regular observation twice a day after the start of the test. As a result, the test time for all finned tubes subjected to shot peening exceeded 1000 hours, while some of the tubes that were not shot peened broke in about 350 hours. The effectiveness of shot peening against stress corrosion cracking has been demonstrated.
なお、上記溶接条件(溶接電流100〜150アンペア
、 wJm電圧15〜25ボルト、溶接速度30〜10
0cm/l1in )以外では、技術的、あるいは経済
的な観点から、極めて不利である。また、上記ショット
ピーニングにおいて、ショツト粒径が2.0mmより大
きいと、ショットピーニング施工面が荒くなり、不均一
になる。さらに、ショットピーニングの投射速度が10
0 i/secを越えると、施]ニ面に凹部が生じ、か
つ30 n+/secより遅いと歪がとれない。In addition, the above welding conditions (welding current 100-150 amperes, wJm voltage 15-25 volts, welding speed 30-10
Anything other than 0 cm/l1in ) is extremely disadvantageous from a technical or economic point of view. Further, in the above shot peening, if the shot particle size is larger than 2.0 mm, the shot peening surface becomes rough and non-uniform. Furthermore, the projection speed of shot peening is 10
If it exceeds 0 i/sec, a concave portion will appear on the second surface, and if it is slower than 30 n+/sec, the distortion cannot be removed.
以上説明したように、本発明ににれば、伝熱管に、伝熱
効率を高めるためのフィンを、該フィンの両側縁部に連
続アーク溶接を行なうことにより取付けるものであるか
ら、フィンと管との接合部に隙間が発生するのを防止で
き、耐隙間腐食性を向上させることができ、かつ該隙間
腐食に起因する応力腐食割れを防ぐことができると共に
、フィンを溶接した伝熱管にショットピーニングを施す
ことによって、溶接部近傍に圧縮応力を残留させること
ができ、従来引張応力が存在していたために、発生して
いた応力腐食割れについて確実に抑制することができる
。As explained above, according to the present invention, the fins for increasing the heat transfer efficiency are attached to the heat transfer tube by continuous arc welding on both side edges of the fins, so that the fins and the tube are connected. It is possible to prevent gaps from forming at the joints of the pipes, improve crevice corrosion resistance, prevent stress corrosion cracking caused by crevice corrosion, and prevent shot peening of heat exchanger tubes with welded fins. By applying this, compressive stress can be left in the vicinity of the weld, and stress corrosion cracking that has conventionally occurred due to the presence of tensile stress can be reliably suppressed.
第1図ないし第7図は本発明の一実施例を示すもので、
第1図はフィン付チューブの正面図、第2図は溶接部の
断面図、第3図は溶接方法を示す側面図、第4図は溶接
方法を示す正面図、第5図は残留応力測定点を示す断面
図、第6図は管軸方向の残留応力の特性図、第7図は管
周方向の残留応力の特性図、第8図と第9図は従来のフ
ィン付チューブを示すもので、第8図は正面図、第9図
は断面図である。
11・・・伝熱管、12・・・フィン、12a・・・側
縁部、13・・・アーク溶接機。1 to 7 show an embodiment of the present invention,
Figure 1 is a front view of the finned tube, Figure 2 is a cross-sectional view of the welded part, Figure 3 is a side view showing the welding method, Figure 4 is a front view showing the welding method, and Figure 5 is residual stress measurement. A cross-sectional view showing points, Figure 6 is a characteristic diagram of residual stress in the tube axis direction, Figure 7 is a characteristic diagram of residual stress in the circumferential direction of the tube, and Figures 8 and 9 show a conventional finned tube. FIG. 8 is a front view, and FIG. 9 is a sectional view. DESCRIPTION OF SYMBOLS 11... Heat exchanger tube, 12... Fin, 12a... Side edge part, 13... Arc welding machine.
Claims (1)
率を高めるためのフィンを、該フィンの両側縁部に連続
アーク溶接を行なうことにより取付けた後、ショットピ
ーニングを施すことを特徴とするフィン付チューブの製
造方法。 2)上記ショットピーニングは、鋼製ショットにより、
その粒径は20mm以内および投射速度30〜100m
/secによつて行なうことを特徴とする特許請求の範
囲第1項記載のフィン付チューブの製造方法。 3)伝熱管とフィンとに二相ステンレス鋼を用い、それ
らを取付ける連続アーク溶接を、次の溶接仕様: 溶接方法ミグ溶接 溶接電流100〜150アンペア 溶接電圧15〜25ボルト 溶接速度30〜100cm/min 溶接ワイヤ二相ステンレス鋼ワイヤ を有する溶接条件によって接合することを特徴とする特
許請求の範囲第1項記載のフィン付チューブの製造方法
。[Claims] 1) After attaching fins to increase heat transfer efficiency to a tube that uses a heat medium to impart heat through a heat transfer surface by performing continuous arc welding on both side edges of the fins. , a method for manufacturing a finned tube characterized by subjecting it to shot peening. 2) The above shot peening is performed using steel shot.
The particle size is within 20mm and the projection speed is 30-100m.
2. The method for manufacturing a finned tube according to claim 1, wherein the manufacturing method is carried out at a speed of 1/sec. 3) Use duplex stainless steel for the heat exchanger tubes and fins, and use continuous arc welding to attach them with the following welding specifications: Welding method MIG welding Welding current 100-150 amperes Welding voltage 15-25 volts Welding speed 30-100 cm/ 2. The method for manufacturing a finned tube according to claim 1, wherein the welding is performed under welding conditions having a min welding wire and a duplex stainless steel wire.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9279286A JPH0696191B2 (en) | 1986-04-22 | 1986-04-22 | Method of manufacturing finned tube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9279286A JPH0696191B2 (en) | 1986-04-22 | 1986-04-22 | Method of manufacturing finned tube |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62248574A true JPS62248574A (en) | 1987-10-29 |
JPH0696191B2 JPH0696191B2 (en) | 1994-11-30 |
Family
ID=14064269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9279286A Expired - Lifetime JPH0696191B2 (en) | 1986-04-22 | 1986-04-22 | Method of manufacturing finned tube |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0696191B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015224754A (en) * | 2014-05-29 | 2015-12-14 | 愛三工業株式会社 | Fixing method of valve body and valve shaft |
JP2023105787A (en) * | 2022-01-19 | 2023-07-31 | 三菱重工パワー環境ソリューション株式会社 | Heat transfer pipe, heat exchanger, flue gas treatment device, and method for manufacturing heat transfer pipe |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2868882A4 (en) | 2012-05-31 | 2016-05-18 | Ud Trucks Corp | Method for improving durability of exhaust-gas pipe, and exhaust-gas purification device |
-
1986
- 1986-04-22 JP JP9279286A patent/JPH0696191B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015224754A (en) * | 2014-05-29 | 2015-12-14 | 愛三工業株式会社 | Fixing method of valve body and valve shaft |
JP2023105787A (en) * | 2022-01-19 | 2023-07-31 | 三菱重工パワー環境ソリューション株式会社 | Heat transfer pipe, heat exchanger, flue gas treatment device, and method for manufacturing heat transfer pipe |
Also Published As
Publication number | Publication date |
---|---|
JPH0696191B2 (en) | 1994-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009123330A1 (en) | Welded steel pipe welded with a high energy density beam, and a manufacturing method therefor | |
AU727311B2 (en) | A method of friction welding tubular members | |
JP3170720B2 (en) | Dissimilar material welding method | |
JPS62248574A (en) | Manufacture of finned tube | |
JP2692542B2 (en) | Pipe welding method | |
JP3746949B2 (en) | Elbow pipe manufacturing method | |
KR20150085125A (en) | Method for applying protective covering to pipes and tubes | |
JP2009241079A (en) | Method of manufacturing electric resistance welded steel pipe excellent in quality of seamed part | |
JP2525960B2 (en) | Method for manufacturing titanium anticorrosion velours | |
JPS6219953B2 (en) | ||
JP3611434B2 (en) | Plate bending welded steel pipe and manufacturing method thereof | |
JP3684475B2 (en) | Welded structure of ferritic heat resistant steel pipe | |
JP2017061748A (en) | Ferritic stainless steel for tube | |
JPS60177969A (en) | Method of jioning ti-al double tube and ti tube plate | |
JPH08152290A (en) | Method for welding different metals and welded structure thereof | |
JP2005262277A (en) | Heat exchange pipe and method for manufacturing the same | |
JPS6229673B2 (en) | ||
JPH054198B2 (en) | ||
JPH01230718A (en) | Manufacture of high ni austenitic steel pipe having uniform characteristic in circumferential direction | |
JPS59178186A (en) | Production of electric welded pipe | |
JPS6221422A (en) | Manufacture of thin electric welded tube | |
JPS6393424A (en) | Manufacture of thin electric welded pipe | |
JPH11201682A (en) | Butt welded heat exchanging pipes with internal projection | |
CN111098089A (en) | Welding method of high-strength stable aluminized pipe | |
JPS60223676A (en) | Production of welded pipe |