JPS6219953B2 - - Google Patents

Info

Publication number
JPS6219953B2
JPS6219953B2 JP12588583A JP12588583A JPS6219953B2 JP S6219953 B2 JPS6219953 B2 JP S6219953B2 JP 12588583 A JP12588583 A JP 12588583A JP 12588583 A JP12588583 A JP 12588583A JP S6219953 B2 JPS6219953 B2 JP S6219953B2
Authority
JP
Japan
Prior art keywords
layer
austenitic
welded
martensitic
weld
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12588583A
Other languages
Japanese (ja)
Other versions
JPS6018293A (en
Inventor
Kazuaki Fujii
Hisayoshi Okabayashi
Ryoichi Kume
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP12588583A priority Critical patent/JPS6018293A/en
Publication of JPS6018293A publication Critical patent/JPS6018293A/en
Publication of JPS6219953B2 publication Critical patent/JPS6219953B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding

Description

【発明の詳細な説明】 本発明は原子力設備、ボイラ設備、あるいは船
舶などに使用されるオーステナイト系ステンレス
鋼鋼管などを相互に突合わせて片側溶接する際に
適用され、とくに溶接継手熱影響部に発生する応
力腐食割れを有効に防止し得るオーステナイト系
ステンレス鋼の多層盛溶接方法に関するものであ
る。
[Detailed description of the invention] The present invention is applied when austenitic stainless steel pipes used in nuclear power equipment, boiler equipment, ships, etc. are butted against each other and welded on one side. The present invention relates to a multilayer welding method for austenitic stainless steel that can effectively prevent stress corrosion cracking.

第1図および第2図に示すように管a,aを突
合わせて片側溶接すると、一般に溶接部cの管外
面側の収縮量が管内面側のそれより大きいため、
管a,aは第1図に仮想線で示すように変形し、
溶接線j近傍および溶接部両側の熱影響部(また
は鋭敏化域)k,kに引張応力を発生し、オース
テナイト系ステンレス鋼の場合、この引張応力が
大きいと熱影響部k,k内面に応力腐食割れを発
生する。従つて、オーステナイト系ステンレス鋼
では溶接継手部の残留応力を軽減することが極め
て重要であり、従来、この残留応力を軽減する方
法として熱的、あるいは機械的に処理する方法が
種々採用されている。
When pipes a and a are butted together and welded on one side as shown in Figs. 1 and 2, the amount of shrinkage on the outer surface of the welded part c is generally larger than that on the inner surface of the pipe, so
The tubes a and a are deformed as shown by imaginary lines in Fig. 1,
Tensile stress is generated in the heat affected zone (or sensitized zone) k, k near the weld line j and on both sides of the weld, and in the case of austenitic stainless steel, if this tensile stress is large, stress is generated in the inner surface of the heat affected zone k, k. Corrosion cracking occurs. Therefore, in austenitic stainless steel, it is extremely important to reduce residual stress in welded joints, and various thermal or mechanical treatment methods have been used to reduce this residual stress. .

第3図はいわゆるHSW法(Heat Sink Weld)
の概要を示すもので、溶接作業中、接続すべき管
a,aの内面に通水するか(矢印b)、あるいは
右折部c近傍の管内面dに冷却水をスプレーし
(矢印e)、これらによつて生じる溶接部c内、外
面の温度差を利用して残留応力を軽減する。
Figure 3 shows the so-called HSW method (Heat Sink Weld)
During welding work, water is passed through the inner surface of the pipes a to be connected (arrow b), or cooling water is sprayed on the inner surface d of the pipe near the right-turning part c (arrow e), The residual stress is reduced by utilizing the temperature difference between the inside and outside of the welded part c caused by these.

しかし、この方法は溶接準備に時間がかかり、
且つ少くとも一層目を溶接したあとでないと適用
できない欠点がある。
However, this method takes time to prepare for welding,
Another drawback is that it cannot be applied until at least the first layer has been welded.

第4図はIHSI法(Induction Heating Stress
Improvement)を示すもので、溶接後、管a,
a内に冷却水を通しながら(矢印b)、高周波加
熱コイルfを用いて溶接部cの外側を加熱し、こ
れらによつて生ずる溶接部cの内外面の温度差を
利用して残留応力を軽減する。しかし、この方法
は設備費が高価になり、また施工に高度の技術を
必要とする欠点があつた。
Figure 4 shows the IHSI method (Induction Heating Stress
After welding, pipe a,
While cooling water is passed through a (arrow b), a high-frequency heating coil f is used to heat the outside of the weld c, and the resulting temperature difference between the inner and outer surfaces of the weld c is used to reduce residual stress. Reduce. However, this method has the drawbacks of high equipment costs and the need for advanced technology for construction.

本発明は、前述の欠点に鑑み、溶着金属が冷
却、凝固する際の物理的特性の変化を利用し溶接
完了時の残留応力を軽減することによつて溶接施
工の簡便、容易化を図ると共に応力腐食割れの発
生を防止するためになしたもので、その方法は、
オーステナイト系ステンレス鋼でつくつた管材、
板などを相互に突き合わせて片側溶接する際に、
開先最深部に近い側の層をオーステナイト系溶加
材を用いて溶着し、前記層に隣接する外側の少く
とも1つの層をマルテンサイト系溶加材を用いて
溶着するものである。
In view of the above-mentioned drawbacks, the present invention aims to simplify and facilitate welding work by reducing the residual stress upon completion of welding by utilizing changes in the physical properties of the weld metal as it cools and solidifies. This was done to prevent the occurrence of stress corrosion cracking, and the method is as follows:
Pipe material made of austenitic stainless steel,
When welding one side of plates etc. against each other,
The layer closest to the deepest part of the groove is welded using an austenitic filler material, and at least one layer on the outside adjacent to the layer is welded using a martensitic filler material.

溶着金属が冷却、凝固する際、開先最深部に近
い層のオーステナイト系溶着金属の収縮量に比べ
この層の外側のマルテンサイト系溶着金属の収縮
量が小さいので、両溶着金属の相互作用によつて
収縮量が相殺、平均化され、熱影響部内面の残留
応力が軽減される。
When the weld metal cools and solidifies, the amount of contraction of the martensitic weld metal outside this layer is smaller than the amount of contraction of the austenitic weld metal in the layer near the deepest part of the groove, so the interaction between both weld metals is Therefore, the amount of shrinkage is offset and averaged, and the residual stress on the inner surface of the heat affected zone is reduced.

以下、本発明の実施例を図面を参照しつつ説明
する。第5図ないし第7図は本発明の一実施例を
示すもので図中、符号1,1は接続すべきオース
テナイト系ステンレス鋼鋼管、2は溶接部であ
り、1層目3の溶加材としてオーステナイト系溶
加棒を、2層目4および3層目5の溶加材として
マルテンサイト系溶加棒を、4層目6の溶加材と
してオーステナイト系溶加棒をそれぞれ使用す
る。
Embodiments of the present invention will be described below with reference to the drawings. Figures 5 to 7 show one embodiment of the present invention. In the figures, numerals 1 and 1 are austenitic stainless steel pipes to be connected, 2 is a welded part, and filler metal in the first layer 3. An austenitic filler rod is used as the filler material for the second layer 4 and the third layer 5, a martensitic filler rod is used as the filler material for the fourth layer 6, and an austenitic filler rod is used as the filler material for the fourth layer 6.

次に、各溶着金属が冷却・凝固する際の作用を
第7図を参照して説明する。第7図はオーステナ
イト系溶着金属の収縮曲線l(点ABDCを通る曲
線)とマルテンサイト系溶着金属の収縮曲線m
(点ABDEを通る曲線)を示し、オーステナイト
系溶着金属(以下、オーステナイト系と称す)の
収縮量は或る温度の状態Aから温度が低下するの
に従つて曲線lに沿つて単調に増大する(膨張係
数が常に正である)。
Next, the effects of cooling and solidifying each weld metal will be explained with reference to FIG. 7. Figure 7 shows the shrinkage curve l of austenitic weld metal (the curve passing through point ABDC) and the shrinkage curve m of martensitic weld metal.
(curve passing through point ABDE), and the amount of shrinkage of austenitic weld metal (hereinafter referred to as austenitic) increases monotonically along curve l as the temperature decreases from state A at a certain temperature. (The expansion coefficient is always positive).

一方マルテンサイト系溶着金属(以下、マルテ
ンサイト系と称す)は状態Aから450℃まではオ
ーステナイト系とほぼ同様に収縮するが、約450
℃と約150℃間の温度域でマルテンサイト変態を
生じ、収縮量が大幅に減少する(膨張係数がB―
D間で負になる)。そして、150℃以下の温度域で
は、再び収縮量が増大する(D―E間参照)。上
記150℃〜450℃の温度域に示されるように収縮特
性が異なる二種の溶着金属が溶融状態で相互に隣
接した状態(例えば第2層目を第1層目の外側に
盛ると第1層目は部分的に溶融してこの状態がつ
くられる)から冷却してゆくと、約800℃で収縮
量の差が溶着金属間で機械的な相互作用を生ずる
ようになり、収縮量が相殺されて平均化し、残留
応力が軽減される。上述の平均化はオーステナイ
ト系とマルテンサイト系とを交互に積み重ねるご
とにその度合が高まるが、開先最深部に近いオー
ステナイト系とマルテンサイト系との組み合わせ
が熱影響部内面の残留応力の軽減に支配的な役割
りを果す。
On the other hand, martensitic weld metal (hereinafter referred to as martensitic) shrinks in almost the same way as austenitic from state A to 450°C, but about 450°C.
martensitic transformation occurs in the temperature range between ℃ and approximately 150℃, and the amount of shrinkage decreases significantly (expansion coefficient is B-
becomes negative between D). Then, in the temperature range below 150°C, the amount of shrinkage increases again (see between D and E). As shown in the above temperature range of 150°C to 450°C, two types of weld metals with different shrinkage characteristics are adjacent to each other in a molten state (for example, if the second layer is placed outside the first layer, the first layer (The layer partially melts to create this state), and as it cools down to approximately 800°C, the difference in the amount of shrinkage causes mechanical interaction between the weld metals, and the amount of shrinkage cancels out. is averaged and the residual stress is reduced. The degree of the above-mentioned averaging increases as austenitic and martensitic systems are stacked alternately, but the combination of austenitic and martensitic systems near the deepest part of the groove reduces the residual stress on the inner surface of the heat affected zone. play a dominant role.

第6図に本発明の方法(第5図参照)および従
来の方法(オーステナイト系溶加棒のみを使用)
を用いて管を突合わせ片面溶接した場合の管内面
7の残留応力の分布状態を、それぞれ実線gおよ
び破線hを用いて示す。なお、図の横軸は溶接線
oを起点とし各管内面7,7に沿つて溶接線oに
対し直角方向に測つた距離、縦軸は管内面7にお
ける引張および圧縮応力を示す。図示のように溶
接線o近傍および熱影響部9,9における引張応
力は従来の溶接継手に比べて大幅に軽減され、熱
影響部9,9における応力腐食割れの発生を防止
する。なお、10は溶接ビードを示す。
Figure 6 shows the method of the present invention (see Figure 5) and the conventional method (using only austenitic filler rods).
The distribution of residual stress on the inner surface 7 of the tube when the tubes are butted and welded on one side using a solid line g and a broken line h are shown, respectively. In addition, the horizontal axis of the figure shows the distance measured from the welding line o as a starting point along each tube inner surface 7, 7 in a direction perpendicular to the welding line o, and the vertical axis shows the tensile and compressive stress on the tube inner surface 7. As shown in the figure, the tensile stress near the weld line o and in the heat-affected zones 9, 9 is significantly reduced compared to conventional welded joints, and the occurrence of stress corrosion cracking in the heat-affected zones 9, 9 is prevented. Note that 10 indicates a weld bead.

上記の説明では第1層目にオーステナイト系溶
加材を、また、第2層目にマルテンサイト系溶加
材を使用すると述べたが、口径の大きい管(約6
吋以上)を相互に溶接する際は開先寸法に対応さ
せて第1層目の溶着金属を充分大きく盛ることが
困難なため(溶着金属量が大き過ぎると母材が溶
融して良好なビードが得られない)、第1層目お
よび第2層目にオーステナイト系を使用して第3
層目にマルテンサイト系を使用し、第2層目と第
3層目間の収縮量の差を利用して残量応力の軽減
を図るようにする。
In the above explanation, it was stated that an austenitic filler metal is used in the first layer and a martensitic filler metal is used in the second layer.
When welding welding materials (more than ), the first and second layers are austenitic, and the third layer is
A martensitic material is used for the layers, and the difference in shrinkage between the second and third layers is used to reduce residual stress.

なお、本発明は前述の実施例だけに限定される
ものではなく、例えばステンレス鋼鋼板相互間の
突合わせ溶接継手に適用してもよいことなど、そ
の他本発明の要旨を逸脱しない範囲内において
種々変更を加え得ることは勿論である。
Note that the present invention is not limited to the above-described embodiments, and may be applied to butt welded joints between stainless steel plates, for example, and various other modifications may be made without departing from the gist of the present invention. Of course, modifications can be made.

本発明のオーステナイト系ステンレス鋼の多層
盛溶接方法は、前述の構成を有するので次の優れ
た効果を発揮する。
The multi-layer welding method for austenitic stainless steel of the present invention has the above-described configuration, and therefore exhibits the following excellent effects.

(i) 開先最深部に近い層にオーステナイト系溶加
材を用い、前記層の外側に隣接する層にマルテ
ンサイト系溶加材を用いるので、溶着金属が冷
却、凝固する際の収縮量が相殺、平均化され、
溶接継手熱影響部内面の残量応力を大幅に軽減
でき、その結果、応力腐食割れの発生を防止す
ることができる。
(i) Since an austenitic filler metal is used in the layer closest to the deepest part of the groove, and a martensitic filler metal is used in the layer adjacent to the outside of said layer, the amount of shrinkage when the weld metal cools and solidifies is reduced. canceled out, averaged out,
The residual stress on the inner surface of the heat-affected zone of the welded joint can be significantly reduced, and as a result, the occurrence of stress corrosion cracking can be prevented.

(ii) 第(i)項の結果、従来のごとき残留応力除去の
ための高価な設備を設けたり、準備作業に時間
をかける必要がなく、また高度の技術に頼る必
要がない。
(ii) As a result of paragraph (i), there is no need to install expensive equipment for removing residual stress, spend time on preparatory work, or rely on advanced technology as in the past.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は溶接継手熱影響部に引張
応力が発生するメカニズムを説明するための図
で、第1図は管の断面図、第2図は溶接継手部の
断面図、第3図および第4図はいずれも従来の残
留応力軽減方法を説明するための管断面図、第5
図ないし第7図は本方法の実施例を示し、第5図
は溶接部の断面図、第6図は管内面における残溜
応力の分布状態を示す図、第7図は溶接金属の収
縮曲線の説明図である。 図中、1はオーステナイト系ステンレス鋼鋼
管、2は溶接継手部を示す。
Figures 1 and 2 are diagrams for explaining the mechanism by which tensile stress is generated in the heat-affected zone of a welded joint. Figure 1 is a cross-sectional view of a pipe, Figure 2 is a cross-sectional view of a welded joint, and Figure 3 Both Fig. 4 and Fig. 4 are pipe cross-sectional views for explaining the conventional residual stress reduction method.
Figures 7 through 7 show examples of this method, Figure 5 is a cross-sectional view of a welded part, Figure 6 is a diagram showing the distribution of residual stress on the inner surface of a tube, and Figure 7 is a shrinkage curve of weld metal. FIG. In the figure, 1 indicates an austenitic stainless steel pipe, and 2 indicates a welded joint.

Claims (1)

【特許請求の範囲】[Claims] 1 オーステナイト系ステンレス鋼でつくつた管
材、板などを相互に突き合わせて片側溶接する際
に、開先最深部に近い側の層をオーステナイト系
溶加材を用いて溶着し、前記層に隣接する外側の
少くとも1つの層をマルテンサイト系溶加材を用
いて溶着することを特徴とするオーステナイト系
ステンレス鋼の多層盛溶接方法。
1 When welding pipes, plates, etc. made of austenitic stainless steel against each other on one side, the layer closest to the deepest part of the groove is welded using an austenitic filler metal, and the outer layer adjacent to the layer A multilayer welding method for austenitic stainless steel, characterized in that at least one layer of the above is welded using a martensitic filler metal.
JP12588583A 1983-07-11 1983-07-11 Method for relieving residual stress of welded joint part Granted JPS6018293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12588583A JPS6018293A (en) 1983-07-11 1983-07-11 Method for relieving residual stress of welded joint part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12588583A JPS6018293A (en) 1983-07-11 1983-07-11 Method for relieving residual stress of welded joint part

Publications (2)

Publication Number Publication Date
JPS6018293A JPS6018293A (en) 1985-01-30
JPS6219953B2 true JPS6219953B2 (en) 1987-05-01

Family

ID=14921327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12588583A Granted JPS6018293A (en) 1983-07-11 1983-07-11 Method for relieving residual stress of welded joint part

Country Status (1)

Country Link
JP (1) JPS6018293A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4633554A (en) * 1985-08-08 1987-01-06 Westinghouse Electric Corp. Method for repairing a steam turbine or generator rotor
JPH05169401A (en) * 1991-12-20 1993-07-09 Ishita:Kk Method for lumbering
JP2007044698A (en) * 2005-08-05 2007-02-22 Toshiba Corp Welded structure, and welding method of structure
JP4912097B2 (en) * 2006-09-08 2012-04-04 東電工業株式会社 MULTILAYER WELDING METHOD FOR STAINLESS STEEL PIPE AND MULTILAYER WELDING
CN110434503A (en) * 2019-07-29 2019-11-12 沈阳露天采矿设备制造有限公司 A kind of welding procedure of A743-CA6NM material

Also Published As

Publication number Publication date
JPS6018293A (en) 1985-01-30

Similar Documents

Publication Publication Date Title
EP0071261B1 (en) Corrosion-resistant, multiple-wall pipe structure and method
JPS622903B2 (en)
JPS59159294A (en) Improvement of residual stress by build-up welding on outside circumferential surface of pipe
JPS5950730B2 (en) How to improve residual stress in austenitic stainless steel pipes, etc.
JPS6219953B2 (en)
US4608101A (en) Method for heat treating pipe with double-pipe section
US4209123A (en) Prevention of sensitization of welded-heat affected zones in structures primarily made from austenitic stainless steel
US2183757A (en) Flue tube for steam boilers
JP2005028405A (en) Pipe welding method, and structure of welded part
JPH0734992B2 (en) Welding method for metal pipes
JP4134427B2 (en) Pipe material welding method and existing pipe joint repair method
JPS608917B2 (en) Welding method for austenitic stainless steel pipes
JPS5952689B2 (en) Method for improving residual stress on the inner and outer surfaces of steel pipes
JPS60131923A (en) Heat treatment of weld zone of double-walled pipe
JPH0857641A (en) Method for automatic circumferential welding of fixed tube
JPH02195097A (en) Telescoping pipe fitting and production thereof
JPS5950430B2 (en) Clad pipe manufacturing method
JP2563990Y2 (en) Tube connection structure in multi-tube heat exchanger
JPS61197892A (en) Method of locking pipe
JPH05169255A (en) Method for welding tube with tube
JPS59113394A (en) Metallic pipe joint of different thermal expansion coefficient
JPS62248574A (en) Manufacture of finned tube
JPH0253681B2 (en)
JP2629918B2 (en) Manufacturing method of welding roll
JPS60231589A (en) Method of improving residual stress in weld zone