JPS62247176A - Ignition timing controller for multicylinder internal combustion engine - Google Patents

Ignition timing controller for multicylinder internal combustion engine

Info

Publication number
JPS62247176A
JPS62247176A JP8920986A JP8920986A JPS62247176A JP S62247176 A JPS62247176 A JP S62247176A JP 8920986 A JP8920986 A JP 8920986A JP 8920986 A JP8920986 A JP 8920986A JP S62247176 A JPS62247176 A JP S62247176A
Authority
JP
Japan
Prior art keywords
cylinder
cylinders
engine
ignition timing
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8920986A
Other languages
Japanese (ja)
Inventor
Yujiro Akiyama
秋山 友二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP8920986A priority Critical patent/JPS62247176A/en
Publication of JPS62247176A publication Critical patent/JPS62247176A/en
Pending legal-status Critical Current

Links

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Abstract

PURPOSE:To obtain the max. combustion efficiency of an engine as a whole by allowing the spark plug in each cylinder to be ignition-timing-controlled independently, in the engine equipped with the cylinders for lean combustion and the cylinders for rich combustion. CONSTITUTION:The first cylinders 11-13 which are operated by the supply of the mixed gas in the vicinity of a theoretical air-fuel ratio and the second cylinder 14 into which the mixed gas in lean state is supplied in the low load operation and which is operated by the supply of the mixed gas in the vicinity of a theoretical air-fuel ratio in the operation other than the low load operation are provided. In such an engine, the spark plugs 51-54 installed onto the respective cylinders 11-14 are connected with a distributor 55, and supplied with the high voltage supplied from an ignition coil 56 controlled by the ignition instruction signal supplied from an ECU 60. Said ECU 60 is installed to allow the first cylinders 11-13 and the second cylinder 14 to perform the ignition timing control independently on the basis of the advance map memorized for the cylinder in each group according to the output of a cylinder discriminating sensor 57.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は多気筒内燃機関の点火時期制御装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to an ignition timing control device for a multi-cylinder internal combustion engine.

〔従来の技術〕[Conventional technology]

従来、エンジンの排気ガス中のIC,COおよびNOx
の三成分を同時に浄化するために三元触媒を用いた排気
浄化システムが知られている。しかし、第3図に示すよ
うに、これら三成分を同時に浄化できる空燃比の幅が狭
いため、電子制御式燃料噴射装置を有するエンジンの排
気浄化システムにおいては、空燃比制御に用いられる0
8センサの劣化等により空燃比がリッチあるいはリーン
側に偏れると、NOxあるいはI Cの放出量が増加し
てしまうという問題がある。
Conventionally, IC, CO and NOx in engine exhaust gas
An exhaust purification system using a three-way catalyst to purify three components simultaneously is known. However, as shown in Figure 3, the range of air-fuel ratios that can simultaneously purify these three components is narrow, so in exhaust purification systems for engines with electronically controlled fuel injection devices, the
If the air-fuel ratio deviates to the rich or lean side due to deterioration of the 8 sensor, etc., there is a problem in that the amount of NOx or IC released increases.

この問題を解決するため、出願人は既に特願昭61−1
5819号において、気筒を、エンジン運転時に理論空
燃比付近の混合気を供給されて稼動する第1の気筒と、
エンジンの低負荷運転時にリーン状態の混合気を供給さ
れ、低負荷運転以外の運転時に理論空燃比付近の混合気
を供給されて稼動する第2の気筒とに別け、そして燃料
噴射弁を各気筒毎に設けるとともに、三元触媒と酸化触
媒を有する触媒装置を排気通路に設けた排気浄化装置を
提冨した。なお、上記第2の気筒に対応する燃料噴射弁
は低負荷運転時においてその気筒の吸気行程に燃料を噴
射するよう構成され、上記第2の気筒に開口する吸気ボ
ートは吸気スワールを生成する形状を有する。また上記
触媒装置は、三元触媒が酸化触媒よりも上流側に配置さ
れ、上記第1の気筒からの排気ガスが三元触媒を通過し
た後酸化触媒を通過し、上記第2の気筒からの排気ガス
が酸化触媒の上流側に導かれるべく構成される。
In order to solve this problem, the applicant has already filed the patent application No.
No. 5819, the cylinder is a first cylinder that is operated by being supplied with an air-fuel mixture near the stoichiometric air-fuel ratio during engine operation;
A second cylinder is supplied with a lean air-fuel mixture during low-load operation of the engine, and a second cylinder is operated with a mixture near the stoichiometric air-fuel ratio during operations other than low-load operation, and the fuel injection valves are installed in each cylinder. We have proposed an exhaust purification device in which a catalyst device having a three-way catalyst and an oxidation catalyst is installed in the exhaust passage. The fuel injection valve corresponding to the second cylinder is configured to inject fuel during the intake stroke of that cylinder during low-load operation, and the intake boat opening to the second cylinder has a shape that generates an intake swirl. has. Further, in the catalyst device, a three-way catalyst is arranged upstream of the oxidation catalyst, and the exhaust gas from the first cylinder passes through the three-way catalyst and then the oxidation catalyst, and the exhaust gas from the second cylinder passes through the oxidation catalyst. Exhaust gas is configured to be directed upstream of the oxidation catalyst.

すなわち、この提案装置において、第1の気筒では常時
リッチ燃焼が行なわれ、第2の気筒では低負荷運転時リ
ーン燃焼が行なわれ、それ以外の時リッチ燃焼が行なわ
れる。また、点火時期は全ての気筒について同様に制御
される。
That is, in this proposed device, rich combustion is always performed in the first cylinder, lean combustion is performed in the second cylinder during low load operation, and rich combustion is performed at other times. Further, the ignition timing is controlled in the same way for all cylinders.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

リッチ燃焼とリーン燃焼では、最良の燃焼効率を発揮す
る要求点火時期が異なり、第4図に示すように、一般に
リーン燃焼の方が燃焼が遅く、点火時期を進み側にする
必要がある。したがって、上記提案装置のように各気筒
の点火時期を同一とする構成においては、第2の気筒で
リーン燃焼を行なう場合、第1および第2の気筒のいず
れかの気筒における実際の点火時期が要求点火時期より
ずれ、エンジン全体として最良の燃焼効率を得ることが
できないという問題を生じる。
Rich combustion and lean combustion differ in the required ignition timing to achieve the best combustion efficiency, and as shown in FIG. 4, combustion is generally slower in lean combustion and the ignition timing must be advanced. Therefore, in a configuration in which the ignition timing of each cylinder is the same as in the proposed device, when lean combustion is performed in the second cylinder, the actual ignition timing in either the first or second cylinder is This causes a problem that the ignition timing deviates from the required ignition timing, making it impossible to obtain the best combustion efficiency for the engine as a whole.

また、上記提案装置のように、第2の気筒の吸気ボート
が吸気スワールを生成する形状を有する場合、全負荷運
転時、第2の気筒における燃焼は早く、点火時期を遅く
する必要があり、第1の気筒と同じ点火時期ではノッキ
ングを生じてしまう。
Furthermore, when the intake boat of the second cylinder has a shape that generates an intake swirl as in the proposed device, combustion in the second cylinder is fast during full-load operation, and the ignition timing needs to be delayed. If the ignition timing is the same as that of the first cylinder, knocking will occur.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するため、本発明に係る多気筒内燃機
関の点火時期制御装置は、エンジン運転時に理論空燃比
付近の混合気を供給されて稼動する第1の気筒と、エン
ジンの低負荷運転時にリーン状態の混合気を供給され、
低負荷運転以外の運転時に理論空燃比付近の混合気を供
給されて稼動する第2の気筒と、これら各気筒毎に設け
られた点火栓とを備えた多気筒内燃機関において、上記
第1の気筒の点火栓と上記第2の気筒の点火栓が相互に
独立に点火時期制御されることを特徴としている。
In order to solve the above problems, the ignition timing control device for a multi-cylinder internal combustion engine according to the present invention provides a first cylinder that is operated by being supplied with an air-fuel mixture near the stoichiometric air-fuel ratio during engine operation, and a first cylinder that is operated by being supplied with an air-fuel mixture near the stoichiometric air-fuel ratio during engine operation. Sometimes a lean mixture is supplied,
In a multi-cylinder internal combustion engine comprising a second cylinder that operates by being supplied with an air-fuel mixture near the stoichiometric air-fuel ratio during operation other than low-load operation, and a spark plug provided for each of these cylinders, the first It is characterized in that the ignition timing of the cylinder's ignition plug and the second cylinder's ignition plug are controlled independently of each other.

〔実施例〕〔Example〕

以下図示実施例により本発明を説明する。 The present invention will be explained below with reference to illustrated embodiments.

第1図は本発明の一実施例を適用したエンジンを示す、
エンジン本体10には#1〜#4の気筒11 、12 
、13 、14が設けられ、これらのうち第1の気筒1
1 、12 、13は理論空燃比付近の混合気を供給さ
れて稼動する気筒であり、第2の気筒14は低負荷運転
時にはリーン状態の混合気を供給され、低負荷運転以外
の運転時に理論空燃比付近の混合気を供給されて稼動す
る気筒である。
FIG. 1 shows an engine to which an embodiment of the present invention is applied.
The engine body 10 has cylinders #1 to #4, 11 and 12.
, 13 and 14 are provided, among which the first cylinder 1
1, 12, and 13 are cylinders that operate by being supplied with an air-fuel mixture near the stoichiometric air-fuel ratio, and the second cylinder 14 is supplied with a lean air-fuel mixture during low-load operation, and operates at a lean air-fuel ratio during operation other than low-load operation. This is a cylinder that operates by being supplied with an air-fuel mixture near the air-fuel ratio.

各気筒11 、12 、13 、14に連結されるイン
テークマニホールド15の各枝管には、各気筒に対応さ
せて燃料噴射弁21 、22 、23 、24が設けら
れる。これらの各枝管と各気筒を連通させる吸気ボー1
−31 、32 、33 、34のうち、第1の気筒1
1゜12 、13に連通ずる吸気ボート31 、32 
、33はストレート形状を有し、第2の気筒14に連通
ずる吸気ボート34は、吸気スワールを生成すべくへり
カルボート等のスワールボートである。インテークマニ
ホールド15の基部に連結された吸気管16には、スロ
ットル弁17が設けられ、このスロットル弁17の上流
側にはエアフローメータ18が配設され、最も上流側に
はエアクリーナ19が設けられる。しかしてエアクリー
ナ19を経てエアフローメータ18により計量され吸気
管16内に導かれる空気は、スロットル弁17により調
節された後、インテークマニホールド15において各枝
管に分配され、吸気ボー)31 、32゜33 、34
を通って各気筒11 、12 、13 、14に供給さ
れる。
Each branch pipe of the intake manifold 15 connected to each cylinder 11 , 12 , 13 , 14 is provided with a fuel injection valve 21 , 22 , 23 , 24 corresponding to each cylinder. Intake bow 1 that communicates each of these branch pipes with each cylinder
−1st cylinder 1 among 31, 32, 33, and 34
1゜Intake boats 31 and 32 connected to 12 and 13
, 33 have a straight shape, and the intake boat 34 communicating with the second cylinder 14 is a swirl boat such as a helical boat for generating intake swirl. An intake pipe 16 connected to the base of the intake manifold 15 is provided with a throttle valve 17, an air flow meter 18 is provided upstream of the throttle valve 17, and an air cleaner 19 is provided most upstream. The air that is metered by the air flow meter 18 and guided into the intake pipe 16 via the air cleaner 19 is regulated by the throttle valve 17, and then distributed to each branch pipe in the intake manifold 15. , 34
It is supplied to each cylinder 11, 12, 13, and 14 through.

第1の気筒11 、12 、13の排気ボートにはエキ
ゾーストマニホールド25が接続され、このエキゾース
トマニホールド25の基部には02センサ26が設けら
れる。この基部に連結されたフロントエギゾーストパイ
プ27の下流側開口は触媒装置40の人口部41が接続
され、触媒装置ii1.40の出口部42はマフラー2
8を有するリアエキゾーストパイプ29の上流側開口に
接続される。触媒装置40は三元触媒43と酸化触媒4
4を有し、三元触媒43は人口部41の近傍に配設され
、酸化触媒44は出口部42の近傍に配設される。しか
してこれら触媒43 、44の間には空間部45が形成
される。一方、第2の気筒14の排気ボート35にはエ
キゾーストパイプ36が接続され、このエキゾーストパ
イプ36の下流側開口は触媒装置40の空間部45に口
nむ。
An exhaust manifold 25 is connected to the exhaust boats of the first cylinders 11, 12, and 13, and an 02 sensor 26 is provided at the base of the exhaust manifold 25. The downstream opening of the front exhaust pipe 27 connected to this base is connected to the artificial part 41 of the catalyst device 40, and the outlet part 42 of the catalyst device ii1.40 is connected to the muffler 2.
8 is connected to the upstream opening of the rear exhaust pipe 29. The catalyst device 40 includes a three-way catalyst 43 and an oxidation catalyst 4
4, the three-way catalyst 43 is disposed near the population section 41, and the oxidation catalyst 44 is disposed near the outlet section 42. Thus, a space 45 is formed between these catalysts 43 and 44. On the other hand, an exhaust pipe 36 is connected to the exhaust boat 35 of the second cylinder 14 , and the downstream opening of the exhaust pipe 36 opens into the space 45 of the catalyst device 40 .

したがって、第1の気筒11 、12 、13からの排
気ガスは三元触媒43を通過した後酸化触媒44を通っ
てリアエキゾーストパイプ29へ排出される。一方第2
の気筒14からの排気ガスは空間部45へ導入され、酸
化触媒44を通ってリアエキゾーストパイプ29へ排出
される。
Therefore, the exhaust gas from the first cylinders 11 , 12 , 13 passes through the three-way catalyst 43 and then passes through the oxidation catalyst 44 and is discharged to the rear exhaust pipe 29 . On the other hand, the second
Exhaust gas from the cylinder 14 is introduced into the space 45, passes through the oxidation catalyst 44, and is discharged to the rear exhaust pipe 29.

各気筒11 、12 、13 、14には、それぞれ点
火栓51 、52 、53 、54が設けられる。これ
らの点火栓51 、52 、53 、54はディストリ
ビュータ55に電気的に接続され、ディストリビュータ
55はイグニッションコイル56に電気的に接続される
。イグニッションコイル56は、マイクロコンピュータ
を備えた電子制御部(ECU>60から点火指令信号を
受け、この信号に基いて高電圧の電流をディストリビュ
ータ55に供給する。
Each cylinder 11, 12, 13, 14 is provided with a spark plug 51, 52, 53, 54, respectively. These spark plugs 51 , 52 , 53 , 54 are electrically connected to a distributor 55 , and the distributor 55 is electrically connected to an ignition coil 56 . The ignition coil 56 receives an ignition command signal from an electronic control unit (ECU>60) equipped with a microcomputer, and supplies high voltage current to the distributor 55 based on this signal.

ディストリビュータ55はこの高電圧電流を各点火栓5
1 、52 、53 、54に配電し、これにより点火
栓51 、52 、53 、54が所定の順序で発火す
る。
A distributor 55 distributes this high voltage current to each spark plug 5.
Power is distributed to the spark plugs 51, 52, 53, and 54 in a predetermined order.

ディストリビュータ55には次に点火すべき気筒を判別
する気筒判別センサ57が取付けられる。
A cylinder discrimination sensor 57 is attached to the distributor 55 to discriminate which cylinder should be ignited next.

ECU60は、吸入空気量と排気ガス中の酸素濃度に基
いて燃料噴射弁21 、22 、23 、24から噴射
される燃料量を決定する。このためECU60には、エ
アフローメータ18の信号と08センサ26の信号とが
入力される。またECU60は、点火する気筒毎にエン
ジン負荷、エンジン回転数および空燃比に応じた点火時
期を定める。このためECU60には、さらに気筒判別
センサ57の信号と回転数センサ58の信号とが入力さ
れる。
The ECU 60 determines the amount of fuel injected from the fuel injection valves 21, 22, 23, and 24 based on the intake air amount and the oxygen concentration in the exhaust gas. Therefore, the signal from the air flow meter 18 and the signal from the 08 sensor 26 are input to the ECU 60. Further, the ECU 60 determines the ignition timing according to the engine load, engine speed, and air-fuel ratio for each cylinder to be ignited. Therefore, a signal from the cylinder discrimination sensor 57 and a signal from the rotational speed sensor 58 are further input to the ECU 60 .

第2図は点火制御ルーチンのプログラムのフローチャー
トを示す。このプログラムは気筒判別センサ57から入
力される気筒判別信号によって割込み処理される。ステ
ップ101では吸入空気量とエンジン回転数を読込む、
ステップ102ではその気筒判別信号の内容を読み、ス
テップ103において#4気筒14(第2の気筒)の点
火が次に行なわれるか否かを判別する。ステップ103
において肯定判定した時、ステップ104へ進み、EC
U60に予め記憶されている#4気筒用の進角マツプか
ら点火時期を定める。これに対し、ステップ103にお
いて否定判定した時、ステップ105へ進み、#1〜3
気筒用の進角マツプから点火時期を定める。これらの進
角マツプは、吸入空気量とエンジン回転数の比Q/N、
エンジン回転数N1および空燃比に対する点火時期の変
化を記憶するもので、#4気筒用の進角マツプには、リ
ーン燃焼時点火時期を早め、全負荷運転時点火時期を遅
くするようなデータが記憶されている。しかしてステッ
プ106では、ステップ104 、105において定め
られた点火時期に従って点火を行なう。
FIG. 2 shows a flow chart of the ignition control routine program. This program is interrupted by a cylinder discrimination signal input from the cylinder discrimination sensor 57. In step 101, the intake air amount and engine speed are read.
In step 102, the content of the cylinder discrimination signal is read, and in step 103, it is determined whether or not the #4 cylinder 14 (second cylinder) will be ignited next. Step 103
When an affirmative determination is made in step 104, the EC
The ignition timing is determined from the advance angle map for #4 cylinder stored in advance in U60. On the other hand, when a negative determination is made in step 103, the process proceeds to step 105, and #1 to #3
Determine the ignition timing from the advance angle map for the cylinder. These advance angle maps are based on the ratio Q/N of intake air amount and engine speed,
It stores changes in ignition timing with respect to engine speed N1 and air-fuel ratio, and the advance angle map for #4 cylinder includes data that advances the ignition timing during lean combustion and retards the ignition timing during full-load operation. remembered. In step 106, ignition is performed according to the ignition timing determined in steps 104 and 105.

本実施例装置は次のように作動する。The device of this embodiment operates as follows.

エンジンの低負荷運転時、第2の気筒14はECU60
の制御により、第1の気筒11 、12 。
During low load operation of the engine, the second cylinder 14 is operated by the ECU 60.
under the control of the first cylinders 11 and 12.

13に対して供給される量よりも少ない量の燃料を供給
され、すなわちリーン状態(空燃比20以上)の混合気
を供給されて稼動する。この時、第2の気筒14の燃焼
室に導かれる吸気が吸気ボート34によってスワール流
を生成しており、燃料噴射弁24による燃料噴射の時期
がこの気筒14の吸気行程になるよう設定されているこ
とと相俟って、燃焼室内の混合気の成層化が行なわれ、
また点火時期が第4図に示すような進み側に定められて
おり、したがって安定した燃焼が行なわれる。
It operates by being supplied with a smaller amount of fuel than that supplied to No. 13, that is, by being supplied with a lean air-fuel mixture (air-fuel ratio of 20 or more). At this time, the intake air introduced into the combustion chamber of the second cylinder 14 is generating a swirl flow by the intake boat 34, and the timing of fuel injection by the fuel injection valve 24 is set to coincide with the intake stroke of this cylinder 14. Coupled with this, the air-fuel mixture in the combustion chamber is stratified,
Furthermore, the ignition timing is set on the advanced side as shown in FIG. 4, so that stable combustion is achieved.

この第2の気筒14からの排気ガスは、エキゾーストパ
イプ36を介して触媒装W140の空間部へ導かれ、酸
化触媒44によってIICおよびCOを浄化されてリア
エキゾーストパイプ29へ排出される。なお、第2の気
筒14からの排気ガス中のNOxは、空燃比がリーンで
あるために少量しかなく、触媒により浄化されなくても
問題はない。
The exhaust gas from the second cylinder 14 is guided to the space of the catalyst unit W140 via the exhaust pipe 36, purified of IIC and CO by the oxidation catalyst 44, and discharged to the rear exhaust pipe 29. Note that the amount of NOx in the exhaust gas from the second cylinder 14 is small because the air-fuel ratio is lean, and there is no problem even if it is not purified by the catalyst.

またこの低負荷運転時、第1の気筒11 、1.2 。Also, during this low load operation, the first cylinders 11, 1.2.

13はECU60によりフィードバック制御されて理論
空燃比付近(ややリッチ状態)の混合気を供給され、ま
た点火時期が第4図に示すような遅れ側に定められて稼
動する。これら第1の気筒11 。
13 is feedback-controlled by the ECU 60 to supply an air-fuel mixture near the stoichiometric air-fuel ratio (slightly rich state), and operates with the ignition timing set to the delayed side as shown in FIG. These first cylinders 11.

12 、13からの排気ガスは、エキゾーストマニホー
ルド25に放出され、フロントエキゾーストパイプ27
を介して触媒装置40の入口部41に導入される。この
排気ガスは、混合気の空燃比がややりッチ伏態にあるの
で同様にややリッチ状態にあり、まず、三元触媒43を
通過することによってNOxを浄化される。もっとも、
排気ガス中のNOxは、点火時期が遅れ側に定められる
ことにより燃焼が緩慢になっているが、通常よりも低減
されている。この排気ガスが三元触媒43を通過する時
、排気ガス中のHCおよびcoは充分には浄化されない
、しかし、この排気ガスは空間部45において第1の気
筒14からの排気ガスにより希釈され、リーン状態とな
って酸化触媒44に導かれるので、この排気ガス中のl
fcおよびCOはこの酸化触媒44によって充分浄化さ
れる。
Exhaust gas from 12 and 13 is discharged to the exhaust manifold 25 and then to the front exhaust pipe 27.
is introduced into the inlet portion 41 of the catalyst device 40 via the catalytic converter. This exhaust gas is also in a slightly rich state since the air-fuel ratio of the air-fuel mixture is in a slightly rich state, and first passes through the three-way catalyst 43 to be purified of NOx. However,
Although combustion of NOx in the exhaust gas is slow due to the ignition timing being set to the delayed side, the amount of NOx in the exhaust gas is reduced compared to normal. When this exhaust gas passes through the three-way catalyst 43, HC and CO in the exhaust gas are not sufficiently purified, but this exhaust gas is diluted by the exhaust gas from the first cylinder 14 in the space 45, Since it is in a lean state and guided to the oxidation catalyst 44, the l in this exhaust gas is
fc and CO are sufficiently purified by this oxidation catalyst 44.

一方、エンジンが所定値以上の負荷で運転される時、第
2の気筒14がリーン状態で稼動する制御が解除され、
全気筒11 、12 、13 、14に対して供給され
る燃料が増量されて全気筒がリッチ状態で稼動するよう
になる。この時、第2の気筒14の点火時期は遅れ側に
定められており、スワールボートによる吸気のために燃
焼が早められることが防止されている。したがって第2
の気筒14にノンキングが生じるおそれがなく、充分な
エンジン出力が得られる。
On the other hand, when the engine is operated with a load higher than a predetermined value, the control for operating the second cylinder 14 in a lean state is canceled,
The amount of fuel supplied to all cylinders 11, 12, 13, and 14 is increased so that all cylinders operate in a rich state. At this time, the ignition timing of the second cylinder 14 is set to the delayed side, and combustion is prevented from being accelerated due to intake by the swirl boat. Therefore, the second
There is no risk of non-king occurring in the cylinder 14, and sufficient engine output can be obtained.

なお、上記実施例は本発明を4気筒エンジンに適用し、
第1の気筒を3個、第2の気筒を1個としたものである
が、例えば第1および第2の気筒を2個ずつとしてもよ
く、また本発明は同様に6気筒エンジンにも適用される
ことは言うまでもない。
In addition, in the above embodiment, the present invention is applied to a 4-cylinder engine,
Although the first cylinder has three cylinders and the second cylinder has one cylinder, for example, the first and second cylinders may each have two cylinders, and the present invention is also applicable to a six-cylinder engine. Needless to say, it will happen.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、リーン燃焼する気筒の点
火時期を相対的に早め、リッチ燃焼する気筒の点火時期
を相対的に遅らせることができ、エンジン全体として最
良の燃焼効率を得ることが可能となる。また一部の気筒
が吸気スワールを生成する吸気ボートを有する場合、全
負荷運転時にその気筒の点火時期を相対的に遅らせて燃
焼が早くなり過ぎるのを防止し、ノンキングの発生を防
止することが可能となる。
As described above, according to the present invention, the ignition timing of lean combustion cylinders can be relatively advanced and the ignition timing of rich combustion cylinders can be relatively delayed, and the best combustion efficiency can be obtained for the entire engine. It becomes possible. Additionally, if some cylinders have an intake boat that generates intake swirl, the ignition timing of that cylinder can be relatively delayed during full-load operation to prevent combustion from becoming too rapid and prevent non-king from occurring. It becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を適用したエンジンを示す断
面図、 第2図は点火時期制御ルーチンのプログラムのフローチ
ャート、 第3図は空燃比に対するNOx、HClおよびCOの各
浄化率を示すグラフ、 第4図は空燃比に対する要求点火時期を示すグラフであ
る。 11 、12 、13・・・第1の気筒14・・・第2
の気筒 51 、52 、53 、54・・・点火栓55・・・
ディストリビュータ
Fig. 1 is a sectional view showing an engine to which an embodiment of the present invention is applied, Fig. 2 is a flowchart of the ignition timing control routine program, and Fig. 3 shows the purification rates of NOx, HCl, and CO with respect to the air-fuel ratio. Graph FIG. 4 is a graph showing the required ignition timing with respect to the air-fuel ratio. 11, 12, 13...first cylinder 14...second cylinder
Cylinders 51, 52, 53, 54... Spark plugs 55...
distributor

Claims (1)

【特許請求の範囲】[Claims] 1、エンジン運転時に理論空燃比付近の混合気を供給さ
れて稼動する第1の気筒と、エンジンの低負荷運転時に
リーン状態の混合気を供給され、低負荷運転以外の運転
時に理論空燃比付近の混合気を供給されて稼動する第2
の気筒と、これら各気筒毎に設けられた点火栓とを備え
た多気筒内燃機関において、上記第1の気筒の点火栓と
上記第2の気筒の点火栓は、相互に独立に点火時期制御
されることを特徴とする多気筒内燃機関の点火時期制御
装置。
1. The first cylinder operates by being supplied with an air-fuel mixture near the stoichiometric air-fuel ratio during engine operation, and the first cylinder is supplied with a lean air-fuel mixture during low-load operation of the engine and operates at a near-stoichiometric air-fuel ratio during operations other than low-load operation. The second engine is supplied with a mixture of
In a multi-cylinder internal combustion engine, the spark plug of the first cylinder and the spark plug of the second cylinder are controlled independently of each other. An ignition timing control device for a multi-cylinder internal combustion engine, characterized in that:
JP8920986A 1986-04-19 1986-04-19 Ignition timing controller for multicylinder internal combustion engine Pending JPS62247176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8920986A JPS62247176A (en) 1986-04-19 1986-04-19 Ignition timing controller for multicylinder internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8920986A JPS62247176A (en) 1986-04-19 1986-04-19 Ignition timing controller for multicylinder internal combustion engine

Publications (1)

Publication Number Publication Date
JPS62247176A true JPS62247176A (en) 1987-10-28

Family

ID=13964327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8920986A Pending JPS62247176A (en) 1986-04-19 1986-04-19 Ignition timing controller for multicylinder internal combustion engine

Country Status (1)

Country Link
JP (1) JPS62247176A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5211011A (en) * 1991-02-12 1993-05-18 Nippondenso Co., Ltd. Control apparatus for rapidly warming up catalyst in internal combustion engine
US5315823A (en) * 1991-02-12 1994-05-31 Nippondenso Co., Ltd. Control apparatus for speedily warming up catalyst in internal combustion engine
GB2391330A (en) * 2002-06-04 2004-02-04 Ford Global Tech Llc A method and system for rapid heating of an emission control device
US6868667B2 (en) 2002-06-04 2005-03-22 Ford Global Technologies, Llc Method for rapid catalyst heating
US7363915B2 (en) 2002-06-04 2008-04-29 Ford Global Technologies, Llc Method to control transitions between modes of operation of an engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5211011A (en) * 1991-02-12 1993-05-18 Nippondenso Co., Ltd. Control apparatus for rapidly warming up catalyst in internal combustion engine
US5315823A (en) * 1991-02-12 1994-05-31 Nippondenso Co., Ltd. Control apparatus for speedily warming up catalyst in internal combustion engine
GB2391330A (en) * 2002-06-04 2004-02-04 Ford Global Tech Llc A method and system for rapid heating of an emission control device
US6868667B2 (en) 2002-06-04 2005-03-22 Ford Global Technologies, Llc Method for rapid catalyst heating
GB2391330B (en) * 2002-06-04 2005-08-24 Ford Global Tech Llc A method and system for rapid heating of an emission control device
US7363915B2 (en) 2002-06-04 2008-04-29 Ford Global Technologies, Llc Method to control transitions between modes of operation of an engine

Similar Documents

Publication Publication Date Title
US7111452B2 (en) Control device of hydrogen engine
US5562086A (en) Control device of a varable cylinder engine
US6148612A (en) Engine exhaust gas control system having NOx catalyst
JP3562016B2 (en) Car lean burn engine
US6516612B1 (en) Exhaust gas purification device for an engine and A/F ratio control for early activating a NOx trapping catalyst
EP1028243B1 (en) Control apparatus for direct injection engine
US20040055281A1 (en) Hydrogen fueled spark ignition engine
JP3324039B2 (en) Method for reducing harmful exhaust emissions of gasoline engines operated with lean fuel-air mixtures
US6170260B1 (en) Exhaust emission control apparatus for combustion engine
US6173704B1 (en) Exhaust gas purification system of internal combustion engine
US6347612B1 (en) Control system for a direct injection engine of spark ignition type
JP4126548B2 (en) Exhaust gas purification device for multi-cylinder engine
JPS62247176A (en) Ignition timing controller for multicylinder internal combustion engine
JPH10184418A (en) Exhaust purifying device for lean combustion engine
JP2002038953A (en) Cylinder injection type engine
JP3350187B2 (en) Air-fuel ratio control device for lean burn engine
JPH0261326A (en) Intake controller for internal combustion engine
JP2773341B2 (en) Exhaust gas purification device for internal combustion engine
JPH0532570B2 (en)
JPS63117149A (en) Fuel injection controller for internal combustion engine
JPH05223040A (en) Intake device for engine
JP3562047B2 (en) Engine intake system
JPS6120270Y2 (en)
JPH0343640A (en) Fuel controller of engine
JPH077568Y2 (en) Engine controller