JP4126548B2 - Exhaust gas purification device for multi-cylinder engine - Google Patents

Exhaust gas purification device for multi-cylinder engine Download PDF

Info

Publication number
JP4126548B2
JP4126548B2 JP2003147362A JP2003147362A JP4126548B2 JP 4126548 B2 JP4126548 B2 JP 4126548B2 JP 2003147362 A JP2003147362 A JP 2003147362A JP 2003147362 A JP2003147362 A JP 2003147362A JP 4126548 B2 JP4126548 B2 JP 4126548B2
Authority
JP
Japan
Prior art keywords
exhaust
cylinder
valve
timing
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003147362A
Other languages
Japanese (ja)
Other versions
JP2004346887A (en
Inventor
英夫 中井
勝彦 宮本
義幸 干場
勝幸 前田
聖二 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Mitsubishi Automotive Engineering Co Ltd
Original Assignee
Mitsubishi Motors Corp
Mitsubishi Automotive Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp, Mitsubishi Automotive Engineering Co Ltd filed Critical Mitsubishi Motors Corp
Priority to JP2003147362A priority Critical patent/JP4126548B2/en
Publication of JP2004346887A publication Critical patent/JP2004346887A/en
Application granted granted Critical
Publication of JP4126548B2 publication Critical patent/JP4126548B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、多気筒エンジンの排気浄化装置に係り、詳しくは、吸気通路噴射型(MPI型)エンジンの排気系に排気浄化触媒を配置した多気筒エンジンの排気浄化装置に関する。
【0002】
【従来の技術】
一般に、自動車用エンジンの排気系には、排気マニホールド直後や床下に排気浄化触媒が配置され、例えば三元触媒では、ストイキオ近傍においてHC、CO及びNOx等の排ガス物質を浄化している。
しかし、排気浄化触媒は、その活性化温度に達するまでは排ガス物質の浄化性能を十分に発揮できない性質を有しており、その触媒の早期活性化を図ることが求められる。
【0003】
ここで、エンジンの冷態始動時における触媒の早期活性化を図る多気筒エンジンの排気浄化装置の技術が提案されている(例えば、特許文献1参照)。
当該装置では、排気行程にて吸気通路を介した燃料噴射がなされる多気筒のMPI型エンジンにおいて、点火順序が連続しない気筒同士(例えば、#1と#4、#2と#3)を組とし、各気筒組毎の負荷が同一となるように、#1と#4の気筒組では空燃比を希薄(リーン)側に設定するとともに点火時期を進角制御し、#2と#3の気筒組では空燃比を濃化(リッチ)側に設定するとともに点火時期を遅角制御し、エンジン回転変動を抑制させつつ、上記各気筒組からの排ガスを排気浄化触媒の直上流に個別に導いている。これにより、冷態始動時の触媒の早期活性化が図られる。
【0004】
また、前記と同様な触媒の早期活性化を図る技術が提案されている(例えば、特許文献2参照)。
【0005】
【特許文献1】
特開2002−332833号公報(段落番号0016〜0021、図1等)
【特許文献2】
特開平11−166430号公報(段落番号0002〜0005等)
【0006】
【発明が解決しようとする課題】
ところで、前記特許文献1に記載された従来の技術では、#1と#4の気筒組からは低温で高濃度のO2が、#2と#3の気筒組からは高温で高濃度のCOが、それぞれ排気浄化触媒の直前まで運ばれてこの触媒上で反応することから、温度が急速に上昇し、エンジン冷態始動時の触媒の早期活性化を図ることができる一方、気筒組によって空燃比と点火時期の双方を違えており、冷態始動後では外乱等によって燃焼変動が増大して燃焼安定性を確保できくなるおそれがあるとの問題がある。
【0007】
ここで、#1と#4の気筒組では空燃比をリーン側に設定するとともに燃料噴射時期を圧縮行程とし、#2と#3の気筒組では空燃比をリーン側に設定するとともに燃料噴射時期を圧縮行程及び膨張行程の二段燃焼とにすれば、燃焼安定性を確保することができる。しかし、MPI型エンジンでは、上記噴射時期を採用可能な筒内噴射型エンジンの如くの噴射時期に設定することができないとの問題がある。
【0008】
また、前記特許文献2に記載された従来の技術の如く、排気弁の閉弁時期及び吸気弁の開弁時期とのバルブオーバラップ期間中に燃料噴射時期を設定すれば、空気の吹き抜け量が増加されるとともに、多くのHCが触媒に供給されることになるが、このディーゼルエンジンのような全気筒の燃料噴射時期の設定をMPI型エンジンに対して行えば、触媒上で反応するO2及びCOの量が減少し、冷態始動時の触媒の早期活性化が図れないとの問題が生ずる。
【0009】
本発明は、このような課題に鑑みてなされたもので、MPI型エンジンにおいて、冷態始動時における触媒の早期活性化と、燃焼安定性の確保との双方を達成することができる多気筒エンジンの排気浄化装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記の目的を達成するべく、請求項1記載の多気筒エンジンの排気浄化装置は、吸気通路を介した燃料噴射がなされる多気筒エンジンの排気管に設けられた排気浄化触媒と、エンジンの点火順序が連続しない気筒同士を組とした複数の気筒組と、複数の気筒組から排出された排ガスを排気浄化触媒の直上流に個別に導く複数の排ガス通路と、各気筒にそれぞれ設けられ、開閉により燃焼室と吸気通路との連通及び遮断を行う吸気弁並びに排ガス通路との連通及び遮断を行う排気弁と、排気弁の閉弁時期又は吸気弁の開弁時期の少なくともいずれか一方を変更するバルブタイミング可変手段と、エンジンの冷態始動時を判別する冷態始動時判別手段と、冷態始動時判別手段によって冷態始動時が判別されたとき、バルブタイミング可変手段によってバルブオーバラップ量を拡大するオーバラップ量拡大手段と、オーバラップ量拡大手段によりバルブオーバラップ量が拡大されたとき、一の気筒組に対する燃料噴射を排気弁の閉弁時期以前及び排気弁の閉弁時期以後とし、他の気筒組に対する燃料噴射を前記排気弁の閉弁時期以後とする噴射時期制御手段と、排気弁の閉弁時期以後の燃料噴射による一の気筒組及び他の気筒組の燃焼室内の空燃比をストイキオよりもリーンに制御する噴射量制御手段とを備えたことを特徴としている。
【0011】
したがって、請求項1記載の多気筒エンジンの排気浄化装置によれば、噴射時期制御手段が、オーバラップ量拡大手段によって冷態始動時にバルブオーバラップ量を拡大させたときの一の気筒組に対して、まず、排気弁の閉弁時期以前の時期で吸気通路にて噴射すると、この燃料は、吸気通路から未燃HCとして排気管に吹き抜ける。そして、この未燃HCは、高温の排気通路内でCO及びH2等の反応成分に分解される。次いで、噴射時期制御手段は、全気筒に対し、排気弁の閉弁時期以後の時期で吸気通路にて噴射すると、この燃料は、燃焼室内で正常燃焼するが、噴射量制御手段によってストイキオよりもリーン側の燃料量に設定されていることから、排ガスにはO2が多く存在する。よって、一の気筒組のCO及びH2と、他の気筒組のO2とが排気浄化触媒の直前で混合し、この触媒上で急速に反応してその温度が上昇し、排気浄化触媒の早期活性化が図られる。
【0012】
しかも、従来技術の如く気筒組によって空燃比を違える必要がないので、エンジン回転挙動が安定して燃焼変動が増大せず、燃焼安定性が確保される。
また、請求項2記載の発明では、噴射時期制御手段は、一の気筒組に対する燃料噴射を排気弁の閉弁時期以前と排気弁の閉弁時期後からとに連続しないように分割させることを特徴としている。
【0013】
このように、噴射時期制御手段が、一の気筒組に対する燃料噴射を排気弁の閉弁時期を境にして分割させると、未燃HCは吸気通路から排気管に確実に吹き抜けられる。
さらに、請求項3記載の発明では、噴射時期制御手段は、一の気筒組に対する燃料噴射を排気弁の閉弁時期を跨いで連続させることを特徴としている。
【0014】
このように、噴射時期制御手段が、一の気筒組に対する燃料噴射を排気弁の閉弁時期を境にして連続させても、未燃HCは吸気通路から排気管に確実に吹き抜けられる。なお、この閉弁時期直前の燃料噴射はバルブオーバラップ中の時期とすることが好ましい。
【0015】
【発明の実施の形態】
以下、図面により本発明の実施形態について説明する。
図1は、本発明の一実施形態に係る多気筒エンジンの排気浄化装置に適用されるシステム構成図を示し、図2は、当該排気浄化装置が適用される排気系の構成図を示しており、以下図1及び図2に基づき本発明に係る多気筒エンジンの排気浄化装置の構成を説明する。
【0016】
当該排気浄化装置に用いられる内燃機関(以下、エンジン)1としては、例えば、吸気マニホールド(吸気通路)10を介した燃料噴射が実施可能なマルチポイントインジェクションエンジン(MPI型エンジン)が採用される。
図1に示すように、エンジン1のシリンダヘッド2には、四つの各気筒毎に略水平方向に吸気ポート9が形成されており、各吸気ポート9の燃焼室5側には、各吸気ポート9と燃焼室5との連通及び遮断を行う吸気弁11がそれぞれ設けられている。吸気弁11は、エンジン回転に応じて回転するカムシャフト12のカム12aに倣って吸気口9aを開閉作動される。
【0017】
各吸気ポート9には吸気マニホールド10の一端がそれぞれ接続されている。吸気マニホールド10には、各気筒♯1〜♯4に燃料噴射を行う電磁式のインジェクタ6がそれぞれ取り付けられており、インジェクタ6には、燃料パイプ7を介して燃料タンクを擁した燃料供給装置(図示せず)が接続される。そして、インジェクタ6は燃焼室5に向けて燃料を噴射する。
【0018】
吸気マニホールド10には吸気管3の一端が接続されている。吸気管3には吸入空気量を調節する電磁式のスロットル弁17が設けられ、スロットル弁17近傍には、スロットル開度を検出するスロットルポジションセンサ(TPS)18が設けられ、さらに、スロットル弁17よりも上流側には、吸入空気量を検出するために、カルマン渦式のエアフローセンサ19が設けられている。そして、新気は、吸気マニホールド10を介して各気筒♯1〜♯4に吸入される。
【0019】
また、シリンダヘッド2には、各気筒毎に点火プラグ4が取り付けられており、点火プラグ4には高電圧を出力する点火コイル8が接続され、吸気管3からの新気とインジェクタ6からの燃料とからなる混合気に対して燃焼室5内で火花点火を行う。
さらに、シリンダヘッド2には、四つの各気筒毎に略水平方向に排気ポート13が形成されており、各排気ポート13の燃焼室5側には、各排気ポート13と燃焼室5との連通及び遮断を行う排気弁15がそれぞれ設けられている。排気弁15は、エンジン回転に応じて回転するカムシャフト16のカム16aに倣って排気口13aを開閉作動される。
【0020】
各排気ポート13には排気マニホールド14の一端がそれぞれ接続されている。排気マニホールド14は、図2に示すように、第1気筒(♯1)からの排ガス流を構成させる第1分岐路14aと、第2気筒(♯2)からの排ガス流を構成させる第2分岐路14bと、第3気筒(♯3)からの排ガス流を構成させる第3分岐路14cと、第4気筒(♯4)からの排ガス流を構成させる第4分岐路14dとから構成され、エンジン1の点火順序が連続しない♯1及び♯4を一の気筒組とし、同じく点火順序が連続しない♯2及び♯3を他の気筒組にすべく、第1通路14aからの排ガス流と第4通路14dからの排ガス流とを合流させるとともに、第2通路14bからの排ガス流と第3通路14cからの排ガス流とを合流させるよう構成される。
【0021】
排気マニホールド14の他端には排気管20が接続され、排気管20には、ストイキオ近傍においてHC、CO、NOxを高効率で浄化可能な三元触媒(排気浄化触媒)23が介装され、具体的には三元触媒は床下に配置されている。なお、三元触媒23の直上流部分には、排気中の酸素濃度ひいては排気空燃比を検出するO2センサ22が設けられている。
【0022】
上記排気管20は、図2に示すように、排気マニホールド14で合流された第1通路14a及び第4通路14dからの排ガス流と、同じく排気マニホールド14で合流された第2通路14b及び第3通路14cからの排ガス流とを三元触媒23の直上流まで個別に導くデュアル型のものであり、第1通路14a及び第4通路14dからの排ガス流は排ガス通路20aを、第2通路14b及び第3通路14cからの排ガス流は排ガス通路20bをそれぞれ導入される。
【0023】
また、シリンダヘッド2には、カム12aやカム16aを進角或いは遅角操作することで吸気弁11や排気弁15の開閉時期を油圧調整によって可変させるバルブタイミング可変部(バルブタイミング可変手段)30が設けられている。このバルブタイミング可変部30としては、例えばカムシャフト12、16を揺動させる振り子式可変動弁機構が適用される。なお、当該可変動弁機構は公知であり、ここではその構成の詳細については説明を省略する。また、可変動弁機構は、カムシャフト12、16のいずれか一方にだけ設けても良い。
【0024】
電子コントロールユニット(ECU)40は、入出力装置、記憶装置、中央処理装置(CPU)等を備えており、当該ECU40により、エンジン1の総合的な制御が行われる。
ECU40の入力側には、上記TPS18、エアフローセンサ19、O2センサ22等の他、エンジン1の冷却水温を検出する水温センサ(冷態始動時判別手段)24やエンジン1の回転速度を検出するクランク角センサ25等の各種センサ類が接続されている。
【0025】
一方、ECU40の出力側には、上記インジェクタ6、点火コイル8、スロットル弁17、バルブタイミング可変部30等の各種出力デバイスが接続されており、インジェクタ6及び点火コイル8には、上記各種センサ類からの検出情報に応じて燃料噴射量、燃料噴射時期、及び点火時期の各信号がそれぞれ出力される。これにより、インジェクタ6からは適正量の燃料が適正時期で噴射され、点火プラグ4により適正時期で火花点火が実施される。また、バルブタイミング可変部30に対しても適正なバルブタイミング指令が行われる。
【0026】
特に、本発明の排気浄化装置では、エンジン1の冷態始動時における排ガスの浄化を図るべく、ECU40に噴射時期制御部(噴射時期制御手段)41と噴射量制御部(噴射量制御手段)42と、オーバラップ量拡大部(オーバラップ量拡大手段)43とを備えている。
このオーバラップ量拡大部43では、水温センサ24からの信号によってエンジン1の冷態始動時であることが判別されると、排気弁15の閉弁時期や吸気弁11の開弁時期を操作してバルブオーバラップ量を拡大させる指令をバルブタイミング可変部30に対して出力する。
【0027】
そして、本実施形態の噴射時期制御部41では、冷態始動時が判別され、かつ、バルブオーバラップ量の拡大が図られたときには、上記一の気筒組に対する燃料噴射を排気弁15の閉弁時期以前であって排気行程中と、排気弁15の閉弁時期直後からとに分割噴射を実施している。
また、噴射量制御部42では、一の気筒組及び他の気筒組の双方に対する上記排気弁15の閉弁時期直後における燃料噴射量を、燃焼室5内の空燃比がストイキオよりもリーンになる燃料量に制御している。
【0028】
図3は、上記排気浄化装置によって実施される冷態始動時のタイミングチャートである。同図では、縦軸がバルブリフトLf、横軸がクランク角θを示しており、EO及びECは排気弁15の開及び閉タイミングをそれぞれ示し、IO及びICは吸気弁11の開及び閉タイミングをそれぞれ示している。
噴射時期制御部41では、水温センサ24からの出力信号に基づいて冷態始動時が判別され、同図(a)に示す如くの吸気弁11の開弁時期IOと排気弁15の閉弁時期ECとの間においてバルブオーバラップ量VOLが設定されている状態から、同図(b)に示すように、オーバラップ量拡大部43により、バルブオーバラップ量VOLの拡大が図られたときには、インジェクタ6に、♯1及び♯4による一の気筒組に対して、排気行程中にて吸気マニホールド10に噴射させる。
【0029】
この噴射燃料は、長いオーバラップ期間中に吸気マニホールド10から排気マニホールド14側に未燃HCとして吹き抜ける。そして、この未燃HCは、排気行程中によって高温状態にある排ガス通路20a内でCO及びH2等の反応成分に分解される。
次いで、噴射時期制御部41では、インジェクタ6に、全気筒、すなわち、♯1及び♯4による一の気筒組と♯2及び♯3による他の気筒組とに対して、吸気行程噴射、換言すれば、EC直後にて吸気マニホールド10に噴射させる。つまり、♯1及び♯4による一の気筒組を鑑みれば、分割噴射とされている。
【0030】
この噴射燃料は、燃焼室5内で正常に燃焼される。しかも、この燃料量は、噴射量制御部42にてストイキオよりもリーン側に設定されており、O2が多量に存在する排ガスとして排ガス通路20b内を流れることになる。
よって、排気行程中の噴射による一の気筒組のCO及びH2と、吸気行程中の噴射による他の気筒組のO2とが三元触媒23の直前で混合され、この三元触媒23上で急速に反応して温度が上昇し、三元触媒23の早期活性化が図られる。
【0031】
さらに、吸気行程噴射の燃料量、すなわち燃焼に寄与する燃料量が一の気筒組と他の気筒組で等しく、空燃比は全気筒同一となることから、エンジン回転挙動が安定し、燃焼変動が増大せず、燃焼安定性が確保される。
図4は、本発明の第二の実施形態の排気浄化装置によって実施される冷態始動時のタイミングチャートである。当該第二の実施形態では、一の気筒組の噴射時期の点を除き、前記第一の実施形態と同一の構成からなるものであることから、この噴射時期について詳細に説明する。
【0032】
本実施形態における噴射時期制御部41では、水温センサ24からの出力信号に基づいて冷態始動時が判別され、オーバラップ量拡大部43により、バルブオーバラップ量VOLの拡大が図られたときには、インジェクタ6に、♯1及び♯4による一の気筒組に対して、排気行程終盤から吸気マニホールド10に噴射させる。なお、この噴射時期はバルブオーバラップ期間中とすることが望ましい。
【0033】
この噴射燃料は、長いオーバラップ期間中に排気マニホールド14に未燃HCとして吹き抜けて、排気行程中によって高温状態にある排ガス通路20a内でCO及びH2等の反応成分に分解される。
次いで、噴射時期制御部41では、インジェクタ6に、全気筒、すなわち、♯1及び♯4による一の気筒組と♯2及び♯3による他の気筒組とに対して、吸気行程噴射、換言すれば、EC直後にて吸気マニホールド10に噴射させる。つまり、♯1及び♯4による一の気筒組を鑑みれば、ECを跨ぎ、ECを挟んだ連続噴射とされている。なお、噴射終了時期については、本実施形態と上記第一実施形態とはいずれも同じである。
【0034】
この両方の気筒組に対して噴射された噴射燃料は、燃焼室5内で正常に燃焼される。しかも、この燃料量は、噴射量制御部42にてストイキオよりもリーン側に設定されており、O2が多量に存在する排ガスとして排ガス通路20b内を流れることになる。
よって、本実施形態の場合にも、排気行程終盤の噴射による一の気筒組のCO及びH2と、吸気行程中の噴射による他の気筒組のO2とが三元触媒23の直前で混合され、この三元触媒23上で急速に反応して温度が上昇し、三元触媒23の早期活性化が図られる。
【0035】
さらに、吸気行程噴射の燃料量、すなわち燃焼に寄与する燃料量が一の気筒組と他の気筒組で等しく、空燃比は全気筒同一となることから、エンジン回転挙動が安定し、燃焼変動が増大せず、燃焼安定性が確保される。
なお、排気管20の管長比を調整し、バルブオーバラップ期間中に排気脈動の負圧波を同期させると、上記の吹き抜け現象が増長される。
【0036】
以上のように、本発明では、噴射時期制御部41が、冷態始動時に排ガス通路20aから可燃成分のCO及びH2を、排ガス通路20bからO2を三元触媒23の直前部分に供給し、これらを三元触媒23で反応させていることから、三元触媒23を早期に活性化でき、排ガス低減を図ることができる。
また、噴射量制御部42が、吸気行程噴射分、すなわち燃焼に寄与する燃料量を一の気筒組と他の気筒組で等しくし、空燃比が全気筒同一にされているので、燃焼変動を抑えることができ、燃焼安定性を確保することができる。
【0037】
さらに、エンジン1から大幅に下流側に配された三元触媒23では、その最高温度が低くなるので、当該触媒の劣化が抑制され、その耐久性が向上する。これにより、触媒に対する貴金属量を低減させ、コスト安を達成することができる。しかも、触媒に対する最高温度が低くなれば、高負荷域の空燃比をリーン化させることが可能になり、燃費の低減を図ることができる。
【0038】
以上で本発明の一実施形態についての説明を終えるが、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更ができるものである。
例えば、上記実施形態では、4気筒のエンジンが示されているが、必ずしもこの実施形態に限定されるものではなく、本発明の排気浄化装置は、他の多気筒エンジンにも適用可能である。
【0039】
また、バルブオーバラップ量の変更は、可変バルブタイミング機構(VVT)のみではなく、2段切換え式カムによってバルブオーバラップ量を拡大させても良いものであり、この場合にも上記の如く、触媒の早期活性化と燃焼安定化とを達成することができる。
【0040】
【発明の効果】
以上の説明から理解できるように、請求項1記載の本発明の多気筒エンジンの排気浄化装置によれば、噴射時期制御手段が、オーバラップ量拡大手段によって冷態始動時にバルブオーバラップ量を拡大させたときの一の気筒組に対して、まず、排気弁の閉弁時期以前の時期で吸気通路にて噴射すると、この燃料は、吸気通路から未燃HCとして排気管に吹き抜ける。そして、この未燃HCは、高温の排気通路内でCO及びH2等の反応成分に分解される。次いで、噴射時期制御手段は、全気筒に対し、排気弁の閉弁時期以後の時期で吸気通路にて噴射すると、この燃料は、燃焼室内で正常燃焼するが、噴射量制御手段によってストイキオよりもリーン側の燃料量に設定されていることから、排ガスにはO2が多く存在する。よって、一の気筒組のCO及びH2と、他の気筒組のO2とが排気浄化触媒の直前で混合し、この触媒上で急速に反応してその温度が上昇し、排気浄化触媒の早期活性化を図ることができる。
【0041】
しかも、全気筒に対して排気弁の閉弁時期以後の時期に噴射された燃料量、つまり燃焼に寄与する燃料量は、噴射量制御手段によって、一の気筒組と他の気筒組とで等しくされ、空燃比が全気筒同一にされているので、エンジン回転挙動が安定して燃焼変動が増大せず、燃焼安定性を確保することができる。
また、請求項2記載の発明によれば、噴射時期制御手段が、一の気筒組に対する燃料噴射を排気弁の閉弁時期を境にして分割させると、未燃HCは吸気通路から排気通路に確実に吹き抜けることができる。
【0042】
さらに、請求項3記載の発明によれば、噴射時期制御手段が、一の気筒組に対する燃料噴射を排気弁の閉弁時期を境にして連続させても、未燃HCは吸気通路から排気通路に確実に吹き抜けることができる。
【図面の簡単な説明】
【図1】本発明の第一実施形態に係る多気筒エンジンの排気浄化装置が適用されるエンジンの構成図である。
【図2】図1の排気浄化装置が適用されるエンジンの排気系の構成図である。
【図3】図1の排気浄化装置における冷態始動時の燃料噴射制御のタイミングチャートである。
【図4】本発明の第二実施形態に係る多気筒エンジンの排気浄化装置における冷態始動時の燃料噴射制御のタイミングチャートである。
【符号の説明】
1 エンジン
5 燃焼室
6 燃料噴射弁
10 吸気通路
11 吸気弁
15 排気弁
20 排気管
20a 排ガス通路
20b 排ガス通路
23 排気浄化触媒
24 水温センサ(冷態始動時判別手段)
30 バルブタイミング可変部(バルブタイミング可変手段)
40 電子コントロールユニット(ECU)
41 噴射時期制御部(噴射時期制御手段)
42 噴射量制御部(噴射量制御手段)
43 オーバラップ量拡大部(オーバラップ量拡大手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas purification device for a multi-cylinder engine, and more particularly to an exhaust gas purification device for a multi-cylinder engine in which an exhaust gas purification catalyst is arranged in an exhaust system of an intake passage injection type (MPI type) engine.
[0002]
[Prior art]
In general, in an exhaust system of an automobile engine, an exhaust purification catalyst is disposed immediately after an exhaust manifold or under a floor. For example, a three-way catalyst purifies exhaust gas substances such as HC, CO, and NOx in the vicinity of stoichiometric.
However, the exhaust purification catalyst has a property that the exhaust gas substance purification performance cannot be sufficiently exhibited until the activation temperature is reached, and it is required to activate the catalyst at an early stage.
[0003]
Here, there has been proposed a technology of an exhaust purification device for a multi-cylinder engine that aims at early activation of a catalyst at the time of cold start of the engine (see, for example, Patent Document 1).
In this apparatus, in a multi-cylinder MPI type engine in which fuel is injected through an intake passage in an exhaust stroke, cylinders whose ignition order is not continuous (for example, # 1 and # 4, # 2 and # 3) are assembled. In order for the cylinder groups # 1 and # 4 to have the same load for each cylinder group, the air-fuel ratio is set to a lean side and the ignition timing is advanced, and # 2 and # 3 In the cylinder set, the air-fuel ratio is set to the rich side, and the ignition timing is retarded to suppress the engine rotation fluctuation, and the exhaust gas from each cylinder set is individually introduced immediately upstream of the exhaust purification catalyst. ing. Thereby, early activation of the catalyst at the time of cold start is achieved.
[0004]
In addition, a technique for early activation of a catalyst similar to the above has been proposed (see, for example, Patent Document 2).
[0005]
[Patent Document 1]
JP 2002-332833 A (paragraph numbers 0016 to 0021, FIG. 1, etc.)
[Patent Document 2]
JP-A-11-166430 (paragraph numbers 0002 to 0005, etc.)
[0006]
[Problems to be solved by the invention]
By the way, in the conventional technique described in the above-mentioned Patent Document 1, the low temperature and high concentration O 2 from the # 1 and # 4 cylinder sets, and the high temperature and high concentration CO 2 from the # 2 and # 3 cylinder sets. However, since each of them is carried to immediately before the exhaust purification catalyst and reacts on this catalyst, the temperature rises rapidly, and the catalyst can be activated early at the time of engine cold start. There is a problem that both the fuel ratio and the ignition timing are different, and after the cold start, there is a possibility that combustion fluctuations increase due to disturbances and the like, and combustion stability cannot be secured.
[0007]
Here, in the cylinder groups # 1 and # 4, the air-fuel ratio is set to the lean side and the fuel injection timing is set to the compression stroke, and in the cylinder groups # 2 and # 3, the air-fuel ratio is set to the lean side and the fuel injection timing is set. If two-stage combustion is performed in the compression stroke and the expansion stroke, combustion stability can be ensured. However, the MPI type engine has a problem that the injection timing cannot be set as in the in-cylinder injection type engine that can adopt the above injection timing.
[0008]
Further, if the fuel injection timing is set during the valve overlap period between the exhaust valve closing timing and the intake valve opening timing as in the prior art described in Patent Document 2, the amount of air blown is reduced. As the fuel injection timing of all cylinders such as this diesel engine is set for the MPI type engine, O 2 reacts on the catalyst. And the amount of CO decreases and the problem that the catalyst cannot be activated early at the time of cold start arises.
[0009]
The present invention has been made in view of such a problem, and in a MPI type engine, a multi-cylinder engine capable of achieving both early activation of a catalyst during cold start and ensuring of combustion stability. An object of the present invention is to provide an exhaust purification device.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, an exhaust emission control device for a multi-cylinder engine according to claim 1 includes an exhaust emission control catalyst provided in an exhaust pipe of a multi-cylinder engine in which fuel is injected through an intake passage, and ignition of the engine. A plurality of cylinder groups, each of which is a group of cylinders that are not in sequence, a plurality of exhaust gas passages that individually guide the exhaust gas discharged from the plurality of cylinder groups directly upstream of the exhaust purification catalyst, and each cylinder is opened and closed. By changing at least one of the intake valve for communicating and shutting off the combustion chamber and the intake passage and the exhaust valve for communicating and shutting off the exhaust passage and the closing timing of the exhaust valve or the opening timing of the intake valve When the cold start time is determined by the valve timing variable means, the cold start determination means for determining the cold start time of the engine, and the cold start time determination means, the valve timing variable means When the valve overlap amount is expanded by the overlap amount expanding means for expanding the valve overlap amount and the overlap amount expanding means, the fuel injection to one cylinder set is performed before the closing timing of the exhaust valve and the exhaust valve An injection timing control means for setting the fuel injection to the other cylinder set after the valve closing timing and after the valve closing timing of the exhaust valve, and one cylinder set and other cylinder sets by fuel injection after the valve closing timing of the exhaust valve And an injection amount control means for controlling the air-fuel ratio in the combustion chamber more leanly than stoichiometric.
[0011]
Therefore, according to the exhaust emission control device for a multi-cylinder engine according to claim 1, for one cylinder set when the injection timing control means expands the valve overlap amount at the cold start by the overlap amount expanding means. First, when the fuel is injected into the intake passage at a time before the exhaust valve closing timing, this fuel blows out from the intake passage into the exhaust pipe as unburned HC. The unburned HC is decomposed into reaction components such as CO and H 2 in the high temperature exhaust passage. Next, when the injection timing control means injects into all the cylinders in the intake passage at a timing after the exhaust valve closing timing, this fuel normally burns in the combustion chamber, but the injection amount control means causes the fuel to burn more than stoichiometric. Since the fuel amount is set on the lean side, the exhaust gas contains a large amount of O 2 . Therefore, CO and H 2 of one cylinder group and O 2 of the other cylinder group are mixed immediately before the exhaust purification catalyst, and react rapidly on this catalyst to increase its temperature. Early activation is achieved.
[0012]
In addition, since it is not necessary to change the air-fuel ratio depending on the cylinder set as in the prior art, the engine rotation behavior is stabilized, combustion fluctuations are not increased, and combustion stability is ensured.
Further, in the invention according to claim 2, the injection timing control means divides the fuel injection for one cylinder set so as not to continue before the exhaust valve closing timing and after the exhaust valve closing timing. It is a feature.
[0013]
In this way, when the injection timing control means divides the fuel injection for one cylinder set with the closing timing of the exhaust valve as a boundary, the unburned HC is surely blown through the intake passage to the exhaust pipe.
Further, the invention according to claim 3 is characterized in that the injection timing control means makes the fuel injection to one cylinder set continue across the closing timing of the exhaust valve.
[0014]
Thus, even if the injection timing control means continues the fuel injection for one cylinder set with the exhaust valve closing timing as a boundary, the unburned HC is surely blown through the intake passage to the exhaust pipe. In addition, it is preferable that the fuel injection immediately before the valve closing timing is a timing during the valve overlap.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a system configuration diagram applied to an exhaust purification device for a multi-cylinder engine according to an embodiment of the present invention, and FIG. 2 shows a configuration diagram of an exhaust system to which the exhaust purification device is applied. Hereinafter, the configuration of an exhaust emission control device for a multi-cylinder engine according to the present invention will be described with reference to FIGS. 1 and 2.
[0016]
As the internal combustion engine (hereinafter referred to as engine) 1 used in the exhaust purification apparatus, for example, a multipoint injection engine (MPI engine) capable of performing fuel injection via an intake manifold (intake passage) 10 is employed.
As shown in FIG. 1, the cylinder head 2 of the engine 1 is formed with intake ports 9 in the substantially horizontal direction for each of the four cylinders, and each intake port 9 has a respective intake port 9 on the combustion chamber 5 side. An intake valve 11 is provided for communicating and shutting off 9 and the combustion chamber 5. The intake valve 11 is operated to open and close the intake port 9a following the cam 12a of the camshaft 12 that rotates in accordance with engine rotation.
[0017]
One end of an intake manifold 10 is connected to each intake port 9. The intake manifold 10 is provided with electromagnetic injectors 6 for injecting fuel into the respective cylinders # 1 to # 4. The injector 6 is provided with a fuel supply device (a fuel supply device having a fuel tank via a fuel pipe 7). (Not shown) are connected. The injector 6 injects fuel toward the combustion chamber 5.
[0018]
One end of an intake pipe 3 is connected to the intake manifold 10. The intake pipe 3 is provided with an electromagnetic throttle valve 17 for adjusting the amount of intake air. A throttle position sensor (TPS) 18 for detecting the throttle opening is provided in the vicinity of the throttle valve 17. Further, a Karman vortex type air flow sensor 19 is provided on the upstream side in order to detect the amount of intake air. Then, fresh air is sucked into the cylinders # 1 to # 4 through the intake manifold 10.
[0019]
The cylinder head 2 is provided with an ignition plug 4 for each cylinder, and an ignition coil 8 for outputting a high voltage is connected to the ignition plug 4 so that fresh air from the intake pipe 3 and the injector 6 Spark ignition is performed in the combustion chamber 5 on the air-fuel mixture composed of fuel.
Further, the cylinder head 2 is formed with exhaust ports 13 in the substantially horizontal direction for each of the four cylinders. The exhaust ports 13 communicate with the combustion chambers 5 on the combustion chamber 5 side of the exhaust ports 13. In addition, an exhaust valve 15 for shutting off is provided. The exhaust valve 15 is operated to open and close the exhaust port 13a following the cam 16a of the camshaft 16 that rotates according to engine rotation.
[0020]
One end of an exhaust manifold 14 is connected to each exhaust port 13. As shown in FIG. 2, the exhaust manifold 14 includes a first branch path 14 a that configures an exhaust gas flow from the first cylinder (# 1) and a second branch that configures an exhaust gas flow from the second cylinder (# 2). The engine is composed of a path 14b, a third branch path 14c that constitutes an exhaust gas flow from the third cylinder (# 3), and a fourth branch path 14d that constitutes an exhaust gas flow from the fourth cylinder (# 4). The exhaust gas flow from the first passage 14a and the fourth flow are set so that # 1 and # 4 where the ignition order of 1 is not continuous are set as one cylinder group, and # 2 and # 3 are also set as other cylinder groups where the ignition order is not continuous. The exhaust gas flow from the passage 14d is merged, and the exhaust gas flow from the second passage 14b and the exhaust gas flow from the third passage 14c are merged.
[0021]
An exhaust pipe 20 is connected to the other end of the exhaust manifold 14, and a three-way catalyst (exhaust purification catalyst) 23 capable of purifying HC, CO, and NOx with high efficiency in the vicinity of the stoichiometry is interposed in the exhaust pipe 20, Specifically, the three-way catalyst is arranged under the floor. An O 2 sensor 22 for detecting the oxygen concentration in the exhaust gas and the exhaust air-fuel ratio is provided immediately upstream of the three-way catalyst 23.
[0022]
As shown in FIG. 2, the exhaust pipe 20 includes the exhaust gas flow from the first passage 14 a and the fourth passage 14 d joined by the exhaust manifold 14, and the second passage 14 b and the third passage joined together by the exhaust manifold 14. The exhaust gas flow from the passage 14c is individually guided to the upstream of the three-way catalyst 23, and the exhaust gas flow from the first passage 14a and the fourth passage 14d passes through the exhaust passage 20a, the second passage 14b, and The exhaust gas flow from the third passage 14c is introduced into the exhaust gas passage 20b.
[0023]
Further, the cylinder head 2 has a valve timing variable section (valve timing variable means) 30 that varies the opening / closing timing of the intake valve 11 and the exhaust valve 15 by hydraulic adjustment by operating the cam 12a and the cam 16a to advance or retard. Is provided. For example, a pendulum variable valve mechanism that swings the camshafts 12 and 16 is applied as the variable valve timing unit 30. Note that the variable valve mechanism is well known, and a detailed description of its configuration is omitted here. The variable valve mechanism may be provided only on one of the camshafts 12 and 16.
[0024]
The electronic control unit (ECU) 40 includes an input / output device, a storage device, a central processing unit (CPU), and the like, and the ECU 40 performs overall control of the engine 1.
On the input side of the ECU 40, in addition to the TPS 18, the air flow sensor 19, the O 2 sensor 22, and the like, a water temperature sensor (cooling start determination means) 24 that detects the cooling water temperature of the engine 1 and the rotational speed of the engine 1 are detected. Various sensors such as a crank angle sensor 25 are connected.
[0025]
On the other hand, various output devices such as the injector 6, the ignition coil 8, the throttle valve 17, and the valve timing variable unit 30 are connected to the output side of the ECU 40. The injector 6 and the ignition coil 8 are connected to the various sensors. Each signal of the fuel injection amount, the fuel injection timing, and the ignition timing is output in accordance with the detection information from. As a result, an appropriate amount of fuel is injected from the injector 6 at an appropriate time, and spark ignition is performed by the spark plug 4 at an appropriate time. An appropriate valve timing command is also issued to the valve timing variable unit 30.
[0026]
In particular, in the exhaust emission control device of the present invention, the ECU 40 has an injection timing control unit (injection timing control unit) 41 and an injection amount control unit (injection amount control unit) 42 to purify exhaust gas when the engine 1 is cold-started. And an overlap amount enlarging unit (overlap amount enlarging means) 43.
When it is determined by the signal from the water temperature sensor 24 that the engine 1 is in the cold start, the overlap amount enlargement unit 43 operates the closing timing of the exhaust valve 15 and the opening timing of the intake valve 11. A command to increase the valve overlap amount is output to the valve timing variable unit 30.
[0027]
Then, in the injection timing control unit 41 of the present embodiment, when the cold start time is determined and the valve overlap amount is increased, the fuel injection for the one cylinder set is closed by the exhaust valve 15. Split injection is performed before the timing, during the exhaust stroke, and immediately after the closing timing of the exhaust valve 15.
Further, in the injection amount control unit 42, the fuel injection amount immediately after the closing timing of the exhaust valve 15 for both the one cylinder group and the other cylinder group is set to be leaner than the stoichiometric air / fuel ratio in the combustion chamber 5. The amount of fuel is controlled.
[0028]
FIG. 3 is a timing chart at the time of cold start performed by the exhaust purification device. In the figure, the vertical axis indicates the valve lift Lf, the horizontal axis indicates the crank angle θ, EO and EC indicate the opening and closing timings of the exhaust valve 15, respectively, and IO and IC are the opening and closing timings of the intake valve 11. Respectively.
In the injection timing control unit 41, the cold start time is determined based on the output signal from the water temperature sensor 24, and the opening timing IO of the intake valve 11 and the closing timing of the exhaust valve 15 as shown in FIG. When the valve overlap amount VOL is increased by the overlap amount expanding unit 43 as shown in FIG. 5B from the state in which the valve overlap amount VOL is set with respect to the EC, the injector 6, one cylinder set of # 1 and # 4 is injected into the intake manifold 10 during the exhaust stroke.
[0029]
This injected fuel blows out as unburned HC from the intake manifold 10 to the exhaust manifold 14 side during a long overlap period. The unburned HC is decomposed into reaction components such as CO and H 2 in the exhaust gas passage 20a in a high temperature state during the exhaust stroke.
Next, the injection timing control unit 41 causes the injector 6 to perform intake stroke injection, that is, in other words, to all cylinders, that is, one cylinder set by # 1 and # 4 and another cylinder set by # 2 and # 3. For example, the air is injected into the intake manifold 10 immediately after EC. That is, split injection is considered in view of one cylinder set of # 1 and # 4.
[0030]
This injected fuel is normally burned in the combustion chamber 5. In addition, the fuel amount is set to be leaner than stoichiometric in the injection amount control unit 42, and flows in the exhaust gas passage 20b as exhaust gas in which a large amount of O 2 exists.
Therefore, CO and H 2 of one cylinder set by the injection during the exhaust stroke and O 2 of another cylinder set by the injection during the intake stroke are mixed immediately before the three-way catalyst 23, Thus, the temperature rapidly rises and the three-way catalyst 23 is activated early.
[0031]
Furthermore, the fuel amount of the intake stroke injection, that is, the fuel amount contributing to combustion is the same in one cylinder set and the other cylinder sets, and the air-fuel ratio is the same in all cylinders. The combustion stability is ensured without increasing.
FIG. 4 is a timing chart at the time of cold start which is performed by the exhaust emission control device of the second embodiment of the present invention. In the second embodiment, since it has the same configuration as the first embodiment except for the injection timing of one cylinder set, this injection timing will be described in detail.
[0032]
In the injection timing control unit 41 of the present embodiment, when the cold start time is determined based on the output signal from the water temperature sensor 24, and the valve overlap amount VOL is expanded by the overlap amount expanding unit 43, The injector 6 is made to inject into the intake manifold 10 from the end of the exhaust stroke with respect to one cylinder set of # 1 and # 4. Note that this injection timing is preferably during the valve overlap period.
[0033]
This injected fuel blows through the exhaust manifold 14 as unburned HC during a long overlap period, and is decomposed into reaction components such as CO and H 2 in the exhaust gas passage 20a in a high temperature state during the exhaust stroke.
Next, the injection timing control unit 41 causes the injector 6 to perform intake stroke injection, that is, in other words, to all cylinders, that is, one cylinder set by # 1 and # 4 and another cylinder set by # 2 and # 3. For example, the air is injected into the intake manifold 10 immediately after EC. In other words, considering one cylinder set of # 1 and # 4, continuous injection is performed across EC and sandwiching EC. In addition, about the completion | finish timing of injection, both this embodiment and said 1st embodiment are the same.
[0034]
The injected fuel injected into both the cylinder sets is normally burned in the combustion chamber 5. In addition, the fuel amount is set to be leaner than stoichiometric in the injection amount control unit 42, and flows in the exhaust gas passage 20b as exhaust gas in which a large amount of O 2 exists.
Therefore, also in the present embodiment, the CO and H 2 of one cylinder set by the injection at the end of the exhaust stroke and the O 2 of another cylinder set by the injection during the intake stroke are mixed immediately before the three-way catalyst 23. Then, the reaction rapidly occurs on the three-way catalyst 23, the temperature rises, and the three-way catalyst 23 is activated early.
[0035]
Furthermore, the fuel amount of the intake stroke injection, that is, the fuel amount contributing to combustion is the same in one cylinder set and the other cylinder sets, and the air-fuel ratio is the same in all cylinders. The combustion stability is ensured without increasing.
If the pipe length ratio of the exhaust pipe 20 is adjusted and the negative pressure wave of the exhaust pulsation is synchronized during the valve overlap period, the above-described blow-through phenomenon is increased.
[0036]
As described above, in the present invention, the injection timing control section 41, the CO and H 2 of combustible components from the exhaust gas passage 20a at cold start, the O 2 is supplied to the portion immediately before the three-way catalyst 23 from the exhaust gas passage 20b Since these are reacted with the three-way catalyst 23, the three-way catalyst 23 can be activated at an early stage, and the exhaust gas can be reduced.
Also, the injection amount control unit 42 equalizes the intake stroke injection amount, that is, the amount of fuel contributing to combustion in one cylinder group and the other cylinder group, and the air-fuel ratio is made the same for all cylinders. It can suppress, and combustion stability can be ensured.
[0037]
Furthermore, since the maximum temperature of the three-way catalyst 23 arranged significantly downstream from the engine 1 is lowered, deterioration of the catalyst is suppressed and its durability is improved. Thereby, the amount of noble metal with respect to the catalyst can be reduced, and cost reduction can be achieved. In addition, if the maximum temperature for the catalyst is lowered, the air-fuel ratio in the high load region can be made lean, and fuel consumption can be reduced.
[0038]
The description of one embodiment of the present invention is finished above, but the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, although the four-cylinder engine is shown in the above embodiment, the present invention is not necessarily limited to this embodiment, and the exhaust emission control device of the present invention can also be applied to other multi-cylinder engines.
[0039]
The valve overlap amount can be changed not only by the variable valve timing mechanism (VVT) but also by a two-stage switching cam. In this case as well, as described above, the catalyst overlap amount can be increased. Early activation and combustion stabilization can be achieved.
[0040]
【The invention's effect】
As can be understood from the above description, according to the exhaust gas purification apparatus for a multi-cylinder engine of the present invention, the injection timing control means increases the valve overlap amount at the time of cold start by the overlap amount increasing means. When one cylinder set is first injected into the intake passage at a time before the closing timing of the exhaust valve, this fuel blows out from the intake passage into the exhaust pipe as unburned HC. The unburned HC is decomposed into reaction components such as CO and H 2 in the high temperature exhaust passage. Next, when the injection timing control means injects into all the cylinders in the intake passage at a timing after the exhaust valve closing timing, this fuel normally burns in the combustion chamber, but the injection amount control means causes the fuel to burn more than stoichiometric. Since the fuel amount is set on the lean side, the exhaust gas contains a large amount of O 2 . Therefore, CO and H 2 of one cylinder group and O 2 of the other cylinder group are mixed immediately before the exhaust purification catalyst, and react rapidly on this catalyst to increase its temperature. Early activation can be achieved.
[0041]
In addition, the amount of fuel injected from the exhaust valve closing timing to all cylinders, that is, the amount of fuel contributing to combustion, is equal between one cylinder set and the other cylinder set by the injection amount control means. In addition, since the air-fuel ratio is the same for all cylinders, the engine rotation behavior is stabilized, combustion fluctuations do not increase, and combustion stability can be ensured.
According to the invention described in claim 2, when the injection timing control means divides the fuel injection for one cylinder set with the closing timing of the exhaust valve as a boundary, the unburned HC is changed from the intake passage to the exhaust passage. Can blow through reliably.
[0042]
Further, according to the third aspect of the present invention, even if the injection timing control means continues the fuel injection to one cylinder set with the closing timing of the exhaust valve as a boundary, the unburned HC is discharged from the intake passage to the exhaust passage. It is possible to blow through reliably.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an engine to which an exhaust emission control device for a multi-cylinder engine according to a first embodiment of the present invention is applied.
FIG. 2 is a configuration diagram of an exhaust system of an engine to which the exhaust purification device of FIG. 1 is applied.
3 is a timing chart of fuel injection control at the time of cold start in the exhaust gas purification apparatus of FIG. 1. FIG.
FIG. 4 is a timing chart of fuel injection control at the time of cold start in an exhaust emission control device for a multi-cylinder engine according to a second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Engine 5 Combustion chamber 6 Fuel injection valve 10 Intake passage 11 Intake valve 15 Exhaust valve 20 Exhaust pipe 20a Exhaust passage 20b Exhaust passage 23 Exhaust purification catalyst 24 Water temperature sensor (Cooling start time discrimination means)
30 Valve timing variable part (Valve timing variable means)
40 Electronic Control Unit (ECU)
41 Injection timing control unit (injection timing control means)
42 Injection amount control unit (injection amount control means)
43 Overlap amount expansion part (overlap amount expansion means)

Claims (3)

吸気通路を介した燃料噴射がなされる多気筒エンジンの排気管に設けられた排気浄化触媒と、
前記エンジンの点火順序が連続しない気筒同士を組とした複数の気筒組と、
該複数の気筒組から排出された排ガスを前記排気浄化触媒の直上流に個別に導く複数の排ガス通路と、
前記各気筒にそれぞれ設けられ、開閉により燃焼室と前記吸気通路との連通及び遮断を行う吸気弁並びに前記排ガス通路との連通及び遮断を行う排気弁と、
該排気弁の閉弁時期又は前記吸気弁の開弁時期の少なくともいずれか一方を変更するバルブタイミング可変手段と、
前記エンジンの冷態始動時を判別する冷態始動時判別手段と、
該冷態始動時判別手段によって冷態始動時が判別されたとき、前記バルブタイミング可変手段によってバルブオーバラップ量を拡大するオーバラップ量拡大手段と、
該オーバラップ量拡大手段によりバルブオーバラップ量が拡大されたとき、一の気筒組に対する燃料噴射を前記排気弁の閉弁時期以前及び前記排気弁の閉弁時期以後とし、他の気筒組に対する燃料噴射を前記排気弁の閉弁時期以後とする噴射時期制御手段と、
該排気弁の閉弁時期以後の燃料噴射による前記一の気筒組及び前記他の気筒組の燃焼室内の空燃比をストイキオよりもリーンに制御する噴射量制御手段と、
を備えたことを特徴とする多気筒エンジンの排気浄化装置。
An exhaust purification catalyst provided in an exhaust pipe of a multi-cylinder engine in which fuel is injected through an intake passage;
A plurality of cylinder sets in which the cylinders in which the ignition order of the engine is not continuous are combined;
A plurality of exhaust gas passages for individually leading the exhaust gas discharged from the plurality of cylinder sets directly upstream of the exhaust purification catalyst;
An intake valve that is provided in each cylinder and that opens and closes the combustion chamber and the intake passage to communicate with and shuts off, and an exhaust valve that communicates and shuts off to the exhaust gas passage;
Valve timing varying means for changing at least one of the closing timing of the exhaust valve or the opening timing of the intake valve;
Cold start time determining means for determining the cold start time of the engine;
An overlap amount expanding means for expanding a valve overlap amount by the valve timing variable means when the cold start time is determined by the cold start time determining means;
When the valve overlap amount is increased by the overlap amount expanding means, fuel injection to one cylinder set is made before the closing timing of the exhaust valve and after the closing timing of the exhaust valve, and fuel for the other cylinder sets Injection timing control means for performing injection after the closing timing of the exhaust valve;
Injection amount control means for controlling the air-fuel ratio in the combustion chambers of the one cylinder group and the other cylinder group to be leaner than stoichiometric by fuel injection after the closing timing of the exhaust valve;
An exhaust emission control device for a multi-cylinder engine.
前記噴射時期制御手段は、前記一の気筒組に対する燃料噴射を前記排気弁の閉弁時期以前と前記排気弁の閉弁時期後からとに連続しないように分割させることを特徴とする請求項1記載の多気筒エンジンの排気浄化装置。2. The injection timing control means divides the fuel injection for the one cylinder set so as not to be continuous before the exhaust valve closing timing and after the exhaust valve closing timing. An exhaust emission control device for a multi-cylinder engine as described. 前記噴射時期制御手段は、前記一の気筒組に対する燃料噴射を前記排気弁の閉弁時期を跨いで連続させることを特徴とする請求項1記載の多気筒エンジンの排気浄化装置。The exhaust purification device of a multi-cylinder engine according to claim 1, wherein the injection timing control means continues fuel injection to the one cylinder set across the closing timing of the exhaust valve.
JP2003147362A 2003-05-26 2003-05-26 Exhaust gas purification device for multi-cylinder engine Expired - Fee Related JP4126548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003147362A JP4126548B2 (en) 2003-05-26 2003-05-26 Exhaust gas purification device for multi-cylinder engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003147362A JP4126548B2 (en) 2003-05-26 2003-05-26 Exhaust gas purification device for multi-cylinder engine

Publications (2)

Publication Number Publication Date
JP2004346887A JP2004346887A (en) 2004-12-09
JP4126548B2 true JP4126548B2 (en) 2008-07-30

Family

ID=33533908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003147362A Expired - Fee Related JP4126548B2 (en) 2003-05-26 2003-05-26 Exhaust gas purification device for multi-cylinder engine

Country Status (1)

Country Link
JP (1) JP4126548B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274945A (en) * 2005-03-29 2006-10-12 Mazda Motor Corp Spark ignition type direct injection engine
JP4907416B2 (en) 2007-04-23 2012-03-28 日立オートモティブシステムズ株式会社 Variable valve operating device for internal combustion engine
JP2009074414A (en) 2007-09-20 2009-04-09 Hitachi Ltd Variable valve gear system and variable valve device for internal combustion engine
JP5029288B2 (en) * 2007-10-29 2012-09-19 日産自動車株式会社 Exhaust purification catalyst warm-up control device and warm-up control method
JP5195498B2 (en) * 2009-02-17 2013-05-08 日産自動車株式会社 Control device for internal combustion engine
JP2012097720A (en) * 2010-11-05 2012-05-24 Toyota Motor Corp Control device of internal combustion engine
JP5447350B2 (en) * 2010-11-18 2014-03-19 三菱自動車工業株式会社 Control device for internal combustion engine
JP5594420B2 (en) * 2013-10-28 2014-09-24 三菱自動車工業株式会社 Control device for internal combustion engine
JP5617988B2 (en) * 2013-10-28 2014-11-05 三菱自動車工業株式会社 Control device for internal combustion engine

Also Published As

Publication number Publication date
JP2004346887A (en) 2004-12-09

Similar Documents

Publication Publication Date Title
JP3963144B2 (en) Control device for spark ignition engine
JP2006283754A (en) Engine
JPH10122015A (en) Exhaust gas temperature raising device
KR101035439B1 (en) Control apparatus and control method of in-cylinder injection type spark ignition internal combustion engine
JP4126548B2 (en) Exhaust gas purification device for multi-cylinder engine
US20050263118A1 (en) Valve timing control apparatus for engine
JP2000145511A (en) Exhaust gas temperature raising device
JP2002221037A (en) Cylinder injection type gas fuel internal combustion engine
JP2009243360A (en) Engine combustion control device
JP4044625B2 (en) Combustion control device for internal combustion engine
JP4069375B2 (en) engine
JP2000170560A (en) Intake and exhaust controller for cylinder stop engine
JP3711939B2 (en) Control device for spark ignition engine
JP4045867B2 (en) Operation mode detection device and control device for spark ignition engine
JP4240083B2 (en) In-cylinder injection spark ignition internal combustion engine control device
JP3826850B2 (en) Control device for spark ignition engine
JP4285091B2 (en) Control device for spark ignition engine
JP3711941B2 (en) Control device for spark ignition engine
JP4123122B2 (en) Control device for spark ignition engine
JP2001098964A (en) Controller for spark ignition type direct injection engine
JP3951855B2 (en) Control device for spark ignition engine
JP2004176608A (en) Cylinder injection engine
JP4107180B2 (en) Control device for spark ignition engine
JP3972744B2 (en) Control device for spark ignition type 4-cycle engine
JP2005016358A (en) Controller of spark ignition engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080416

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080429

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4126548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees