JPS62247005A - Production of compacted metallic magnetic core - Google Patents

Production of compacted metallic magnetic core

Info

Publication number
JPS62247005A
JPS62247005A JP61089529A JP8952986A JPS62247005A JP S62247005 A JPS62247005 A JP S62247005A JP 61089529 A JP61089529 A JP 61089529A JP 8952986 A JP8952986 A JP 8952986A JP S62247005 A JPS62247005 A JP S62247005A
Authority
JP
Japan
Prior art keywords
powder
magnetic core
magnetic
metal
compacted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61089529A
Other languages
Japanese (ja)
Inventor
Taku Meguro
卓 目黒
Hideki Nakamura
秀樹 中村
Kazu Sasaki
計 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP61089529A priority Critical patent/JPS62247005A/en
Publication of JPS62247005A publication Critical patent/JPS62247005A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a superior compacted magnetic core having improved high frequency characteristics and high magnetic permeability by coating the surfaces of the particles of magnetic metallic powder with tetrahydroxysilane [Si(OH)4] and heating the treated powder to form SiO2 films. CONSTITUTION:The surfaces of the particles of magnetic metallic powder are coated with tetrahydroxysilane [Si(OH)4]. The treated powder is heated to form SiO2 films and then the powder is mixed with a synthetic resin binder. The mixture is compacted and heat treated to produce a compacted metallic magnetic core.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、金属磁性粉末を加圧成形し、さらにこれを熱
処理してなる圧粉磁心の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a powder magnetic core by press-molding metal magnetic powder and further heat-treating the same.

〔従来の技術〕[Conventional technology]

従来、Fe−3L−Al系合金やFe−Ni系合金など
高透磁率圧粉磁心の製造においては、粉末粒子間の絶縁
抵抗を大ならしめるために、金属粉末に無機絶縁物質と
して水ガラスなどを被覆処理する方法が一般的になされ
ている6通常これを圧粉成形後、熱処理した磁心の透磁
率は、F e−S i−A l系合金で80−100、
Fe−Ni系合金で120前後であり、またこれらの透
磁率が半減する周波数(以下限界周波数と呼称する)も
数MIIZからIOMIIZ程度であった。
Conventionally, in the production of high permeability powder magnetic cores such as Fe-3L-Al alloys and Fe-Ni alloys, in order to increase the insulation resistance between powder particles, inorganic insulating substances such as water glass are added to metal powder. Generally, the magnetic permeability of the magnetic core is 80-100 for Fe-S i-Al alloy, which is heat-treated after powder compacting.6
It is around 120 for Fe-Ni alloys, and the frequency at which the magnetic permeability is halved (hereinafter referred to as the limit frequency) is about several MIIZ to IOMIIZ.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、近年電子機器の電源が従来のドロッパ一
方式から高効率のスイッチング電源へ切替りつつあり、
かつ駆動周波数が高くなる傾向にあることから、より高
透磁率で周波数特性の優れた圧粉磁心が求められる趨勢
にある。
However, in recent years, power supplies for electronic devices have been switching from the conventional dropper type to high-efficiency switching power supplies.
In addition, since the driving frequency tends to become higher, there is a trend for powder magnetic cores with higher magnetic permeability and excellent frequency characteristics to be required.

透磁率をさらに引き上げるには熱処理温度を高めてやれ
ばよいが、しかしながら水ガラス質の耐熱性が不充分な
ために粒子間の絶縁抵抗を損ね、透磁率の周波数特性が
劣下することになる。逆に、透磁率の周波数特性を維持
すべく水ガラス量を増加すると透磁率が低下する。した
がって、水ガラス呈と熱処理温度を調整することによっ
て、透磁率と周波数特性の均衡をとるのが実情であった
To further increase the magnetic permeability, it is possible to increase the heat treatment temperature, but the insufficient heat resistance of water glass impairs the insulation resistance between particles, resulting in a deterioration of the frequency characteristics of magnetic permeability. . Conversely, if the amount of water glass is increased in order to maintain the frequency characteristics of magnetic permeability, magnetic permeability decreases. Therefore, the current situation is to balance the magnetic permeability and frequency characteristics by adjusting the water glass properties and heat treatment temperature.

本発明は、以上の事情に鑑みてなされたもので。The present invention has been made in view of the above circumstances.

従来以上に粉末粒子間の高い絶縁抵抗、すなわち圧粉磁
心の高周波特性を改善するとともにより高い透磁率を有
する高性能な金属圧粉磁心を提供することを目的とする
The object of the present invention is to improve the high insulation resistance between powder particles, that is, the high frequency characteristics of the powder magnetic core, and to provide a high-performance metal powder magnetic core that has higher magnetic permeability than ever before.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、金属磁性粉末の粒子表面を絶縁性酸化物を形
成し得る金属を含有する有機金属化合物で被覆処理し、
さらにこれを加熱して絶縁性金属酸化物被膜を生成させ
ることを特徴とする金属圧粉磁心の製造方法である。
The present invention involves coating the particle surface of metal magnetic powder with an organometallic compound containing a metal capable of forming an insulating oxide,
This method of manufacturing a metal dust core is characterized in that the metal powder core is further heated to form an insulating metal oxide film.

〔作用〕[Effect]

本発明者は、従来の水ガラス質被膜が耐熱性に乏しいた
めに圧粉成形後の熱処理温度を高めて高透磁率化しよう
とすれば粒子間の絶縁抵抗が劣下することから、耐熱性
の高い絶縁性金属酸化物被膜を金属磁性粉末表面上に緻
密に造膜することが必要と認めた。すなわち、水ガラス
質の被膜は、Na20−nSio2よりなり、Na、O
の存在により粉末粒子間を結着させているが、逆にこの
ために耐熱性が低く実質上600℃以上の熱処理を施す
とFe−9i−Al系合金およびFe−Ni系合金とも
絶縁抵抗が劣下し、限界周波数がMIIZオーダーを下
用るため、450〜550℃の熱処理によって、透磁率
と周波数特性の均衡をとっているのが現状である。
The present inventor discovered that conventional water glass coatings have poor heat resistance, and if an attempt is made to increase the heat treatment temperature after compaction to increase magnetic permeability, the insulation resistance between particles will deteriorate. It was recognized that it was necessary to form a highly insulating metal oxide film on the surface of the metal magnetic powder. That is, the water glass film is made of Na20-nSio2, and contains Na, O
The presence of these alloys binds the powder particles together, but on the other hand, they have low heat resistance, and when heat treated at temperatures above 600°C, the insulation resistance of both Fe-9i-Al and Fe-Ni alloys decreases. Since the limit frequency is below the MIIZ order, the current situation is to balance the magnetic permeability and frequency characteristics by heat treatment at 450 to 550°C.

本発明者らは、Na2Oを含まない耐熱性の高いSi、
O,膜の造膜手法を種々検討した結果、粒子表面をテト
ラヒドロキシシラン S j(OH) 4で被覆処理し
、さらにこれを加熱して得られたSio2被膜が圧粉成
形時にも粒子間絶縁抵抗の劣下が少なく、成形性があり
引き続き施される熱処理の温度を上昇させて透磁率を高
めても周波数特性が劣下しないことを見出し1本発明を
なすに至った。
The present inventors have discovered that Si, which has high heat resistance and does not contain Na2O,
As a result of examining various film-forming methods for the O, film, we found that the Sio2 film obtained by coating the particle surface with tetrahydroxysilane S j (OH) 4 and then heating it provides interparticle insulation even during powder compaction. The present inventors have discovered that there is little deterioration in resistance, good moldability, and that frequency characteristics do not deteriorate even if the temperature of subsequent heat treatment is raised to increase magnetic permeability, leading to the present invention.

テトラヒドロキシシラン(別名オルトケイ酸)は、アル
カリに可溶であるが、アルコール溶液として粉末に添加
処理した後、これを200〜300℃で加熱すると緻密
で耐熱性の高いSin、被膜を得ることができる。この
他原理的には、このテトラヒドロキシシラン以外にSi
に水酸基のついた化合物であれば同様の被膜を得ること
が可能である。たとえばメタケイ酸、メソ三ケイ酸、メ
ソ三ケイ酸。
Tetrahydroxysilane (also known as orthosilicic acid) is soluble in alkali, but if it is added to powder as an alcohol solution and then heated at 200 to 300°C, it is possible to obtain a dense and highly heat-resistant Sin film. can. In principle, other than this tetrahydroxysilane, Si
It is possible to obtain a similar film using a compound having a hydroxyl group attached to it. For example, metasilicic acid, mesotrisilicate, mesotrisilicate.

メソ四ケイ酸等がある。Examples include mesotetrasilicic acid.

添加方法は、ヘンシェルミキサー、スーパーミキサー、
V型ブレンダー等を利用し上記アルコール溶液を添加、
湿式によって粉末表面を被覆する。
Addition methods include Henschel mixer, super mixer,
Add the above alcohol solution using a V-type blender etc.
The powder surface is coated by wet coating.

これを200〜300℃に加熱して乾燥、脱水すると耐
熱性が高く緻密なSio2被膜が容易に得られる。
When this is heated to 200 to 300° C., dried, and dehydrated, a dense Sio2 film with high heat resistance can be easily obtained.

また、絶縁性S i O2被膜のみでは成形しにくい場
合、たとえばやや粒度の粗いFe−5L−Al系合金の
粉末の場合には、S i O、被膜を造膜の後、該粉末
と合成樹脂を混合することによって成形性を上げ得ると
ともに、引き続く熱処理によって高い透磁率と周波数特
性が得られることも合わせて見出した。
In addition, if it is difficult to mold with only an insulating SiO2 coating, for example, in the case of Fe-5L-Al alloy powder with slightly coarse grain size, after forming the SiO coating, the powder and synthetic resin may be formed. We have also discovered that moldability can be improved by mixing these materials, and that high magnetic permeability and frequency characteristics can be obtained by subsequent heat treatment.

〔実施例〕〔Example〕

以下、本発明の具体的内容を実施例に即してさらに説明
する。
Hereinafter, the specific contents of the present invention will be further explained based on examples.

実施例I Ni 81%、Mo2%、Fe残部を主成分とする平均
粒度55μmの粉砕された合金粉末をひずみとり焼鈍し
た。この粉末を、テトラヒドロキシシランSi(○H)
4のアルコール溶液中に浸漬した後、250℃にて加熱
して粉末表面にSiO2の被膜を生成せしめた。テトラ
ヒドロキシシランの添加量は、粉末の比表面積を測定す
ることにより、シランの最小被膜面積から計算されたシ
ラン単分子膜生成に必要な理論量の1.5倍の添加量と
した。この粉末をリング状に15ton/ aJの圧力
で圧粉成形の後。
Example I A pulverized alloy powder having an average particle size of 55 μm and consisting mainly of 81% Ni, 2% Mo, and the balance Fe was strain-relieved and annealed. This powder was mixed with tetrahydroxysilane Si (○H).
After immersing it in the alcohol solution of No. 4, it was heated at 250° C. to form a SiO2 film on the powder surface. The amount of tetrahydroxysilane added was 1.5 times the theoretical amount required to form a silane monomolecular film, which was calculated from the minimum coating area of silane by measuring the specific surface area of the powder. This powder was compacted into a ring shape at a pressure of 15 tons/aJ.

500.700.900℃で熱処理した。Heat treatment was performed at 500.700.900°C.

このようにして得られた圧粉磁心のl0KIIZにお1
づる透磁率μelOKと、周波数特性の目安として、1
3MlI2での透磁率とl0KH2での透磁率の比μe
13M/7zelOKとを表1に示す。
1 in l0KIIZ of the powder magnetic core obtained in this way.
As a guideline for magnetic permeability μelOK and frequency characteristics, 1
Ratio μe of magnetic permeability at 3MlI2 and magnetic permeability at 10KH2
13M/7zelOK is shown in Table 1.

同時に比較例として同一粉末に従来方法の1%の水ガラ
スを被覆処理して15ton/antの圧力にて圧粉成
形した結果を合わせて示す。
At the same time, as a comparative example, the results of coating the same powder with 1% water glass using a conventional method and compacting it at a pressure of 15 tons/ant are also shown.

表  1 これによれば、本発明の圧粉磁心は特に500℃を越え
る高温の熱処理によってμelOKを高め得るとともに
μe13M/μelOKの劣下がなく、従来の金属圧粉
磁心にない高い透磁率と周波数特性を有していることが
わかる。
Table 1 According to this, the powder magnetic core of the present invention can increase μelOK by heat treatment at a high temperature exceeding 500°C, has no deterioration in μe13M/μelOK, and has high magnetic permeability and frequency not found in conventional metal powder magnetic cores. It can be seen that it has certain characteristics.

実施例2 Si9.5%、 Al 5.5%、Fe残部を主成分と
する平均粒度80μmの粉砕された合金粉末をひずみと
り焼鈍した。この粉末を実施例1と全く同時に表面処理
した後、エポキシ樹脂を0.5%添加、均一に混合分散
させてから、成形圧20ton/ ciにて成形、熱処
理した。比較例として同一粉末に従来方法の1%の水ガ
ラスを被覆処理したものでμelOKとμe13M/μ
elOKを比較した。結果を表2に示す。
Example 2 A pulverized alloy powder having an average particle size of 80 μm and containing 9.5% Si, 5.5% Al, and the balance Fe was strain-relieved and annealed. After this powder was surface-treated at the same time as in Example 1, 0.5% of epoxy resin was added, mixed and dispersed uniformly, and then molded and heat-treated at a molding pressure of 20 tons/ci. As a comparative example, the same powder was coated with 1% water glass using the conventional method, and μelOK and μe13M/μ
elOK was compared. The results are shown in Table 2.

表  2 これによれば、本発明のFe−8i−Al系合金圧粉磁
心は、従来圧粉磁心に比べμelOkが高く、特に13
M/μelOKが非常に安定しており周波数特性が従来
になく優れていることがわかる。
Table 2 According to this, the Fe-8i-Al alloy powder magnetic core of the present invention has a higher μelOk than the conventional powder magnetic core, especially 13
It can be seen that M/μelOK is very stable and the frequency characteristics are better than ever.

実施例としてはFe−Ni、Fe−8i−A1合金をあ
げたが、これ以外に純鉄、Si 0.5〜8%を含有す
るFe−5i合金等にも当然本発明が適用できる。
Although Fe-Ni and Fe-8i-A1 alloys have been given as examples, the present invention can of course be applied to pure iron, Fe-5i alloy containing 0.5 to 8% Si, and the like.

〔発明の効果〕〔Effect of the invention〕

以上から明らかなように本発明の金属圧粉磁心の製造法
によれば、従来になく高い透磁率と周波数特性に優れた
高性能圧粉磁心を得ることができ、その工業的価値が大
である。
As is clear from the above, according to the manufacturing method of the metal powder magnetic core of the present invention, a high-performance powder magnetic core with unprecedentedly high magnetic permeability and excellent frequency characteristics can be obtained, and its industrial value is great. be.

Claims (1)

【特許請求の範囲】 1 金属磁性粉末の表面を無機絶縁物質で被覆し、然る
後、該粉末を加圧成形し、熱処理してなる金属圧粉磁心
の製造方法において、粉末の表面をテトラヒドロキシシ
ランSi(OH)_4にて被覆処理した後、さらにこれ
を加熱してSiO_2被膜を生成せしめることを特徴と
する金属圧粉磁心の製造方法。 2 金属磁性粉末の表面を無機絶縁物質で被覆し、然る
後、該粉末を加圧成形し、熱処理してなる金属圧粉磁心
の製造方法において、粉末の表面をテトラヒドロキシシ
ランSi(OH)_4にて被覆処理し、さらにこれを加
熱してSiO_2被膜を生成せしめた後、該粉末に結着
剤としての合成樹脂を混合してから加圧成形、熱処理し
てなる金属圧粉磁心の製造方法。
[Claims] 1. A method for manufacturing a metal powder magnetic core in which the surface of a metal magnetic powder is coated with an inorganic insulating material, and then the powder is pressure-molded and heat treated. A method for producing a metal powder magnetic core, which comprises coating with hydroxysilane Si(OH)_4 and then further heating it to form a SiO_2 film. 2. A method for producing a metal powder magnetic core in which the surface of a metal magnetic powder is coated with an inorganic insulating material, and then the powder is pressure-molded and heat-treated. Production of a metal powder magnetic core, which is coated with _4, further heated to form a SiO_2 film, and then a synthetic resin as a binder is mixed with the powder, followed by pressure molding and heat treatment. Method.
JP61089529A 1986-04-18 1986-04-18 Production of compacted metallic magnetic core Pending JPS62247005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61089529A JPS62247005A (en) 1986-04-18 1986-04-18 Production of compacted metallic magnetic core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61089529A JPS62247005A (en) 1986-04-18 1986-04-18 Production of compacted metallic magnetic core

Publications (1)

Publication Number Publication Date
JPS62247005A true JPS62247005A (en) 1987-10-28

Family

ID=13973336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61089529A Pending JPS62247005A (en) 1986-04-18 1986-04-18 Production of compacted metallic magnetic core

Country Status (1)

Country Link
JP (1) JPS62247005A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5651841A (en) * 1994-07-22 1997-07-29 Tdk Corporation Powder magnetic core
JP2007254768A (en) * 2006-03-20 2007-10-04 Aisin Seiki Co Ltd Soft magnetic powder material, its production method, soft magnetic compact and its production method
US7422697B2 (en) 2003-10-03 2008-09-09 Matsushita Electric Industrial Co., Ltd. Composite sintered magnetic material, its manufacturing method, and magnetic element using composite sintered magnetic material
WO2008136383A1 (en) * 2007-04-26 2008-11-13 Toho Zinc Co., Ltd. Winding inductor and process for manufacturing the same
JP2010043361A (en) * 2009-11-16 2010-02-25 Jfe Steel Corp Soft magnetic metallic powder for dust core and dust core
CN112086257A (en) * 2019-10-24 2020-12-15 中国科学院宁波材料技术与工程研究所 Magnetic powder core with high magnetic conductivity and high quality factor and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS599101A (en) * 1982-07-06 1984-01-18 Dainippon Ink & Chem Inc Rare earth magnetic powder applied with surface treatment and its production
JPS60154502A (en) * 1984-01-24 1985-08-14 Ube Ind Ltd Method for stabilizing magnetic metal powder
JPS61154111A (en) * 1984-12-27 1986-07-12 Toshiba Corp Iron core and manufacture thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS599101A (en) * 1982-07-06 1984-01-18 Dainippon Ink & Chem Inc Rare earth magnetic powder applied with surface treatment and its production
JPS60154502A (en) * 1984-01-24 1985-08-14 Ube Ind Ltd Method for stabilizing magnetic metal powder
JPS61154111A (en) * 1984-12-27 1986-07-12 Toshiba Corp Iron core and manufacture thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5651841A (en) * 1994-07-22 1997-07-29 Tdk Corporation Powder magnetic core
US7422697B2 (en) 2003-10-03 2008-09-09 Matsushita Electric Industrial Co., Ltd. Composite sintered magnetic material, its manufacturing method, and magnetic element using composite sintered magnetic material
JP2007254768A (en) * 2006-03-20 2007-10-04 Aisin Seiki Co Ltd Soft magnetic powder material, its production method, soft magnetic compact and its production method
WO2008136383A1 (en) * 2007-04-26 2008-11-13 Toho Zinc Co., Ltd. Winding inductor and process for manufacturing the same
JP2010043361A (en) * 2009-11-16 2010-02-25 Jfe Steel Corp Soft magnetic metallic powder for dust core and dust core
CN112086257A (en) * 2019-10-24 2020-12-15 中国科学院宁波材料技术与工程研究所 Magnetic powder core with high magnetic conductivity and high quality factor and preparation method and application thereof

Similar Documents

Publication Publication Date Title
WO2018179812A1 (en) Dust core
KR101224825B1 (en) Powder for magnetic core, powder magnetic core, and their production methods
JP5263653B2 (en) Powder magnetic core and manufacturing method thereof
JP3624681B2 (en) Composite magnetic material and method for producing the same
KR20160030052A (en) Powder for magnetic core, method of producing dust core, dust core, and method of producing powder for magnetic core
JP2008195986A (en) Powder of soft magnetic metal, green compact thereof, and method for manufacturing powder of soft magnetic metal
CN105355356A (en) Dust core and method for manufacturing the same
JP6606162B2 (en) Dust core, method for manufacturing the same, and magnetic component using the same
JP2009302420A (en) Dust core and manufacturing method thereof
JP2006287004A (en) Magnetic core for high frequency and inductance component using it
JPS62247005A (en) Production of compacted metallic magnetic core
JP2002170707A (en) Dust core having high electric resistance and its manufacturing method
JP2010236018A (en) High-strength low-core-loss composite soft magnetic material, method for manufacturing the same, and electromagnetic circuit parts
JPH04328805A (en) Anisotropic configuration soft magnet alloy powder and manufacture thereof
CN110783091B (en) Preparation method of nanocrystalline FeSiBCr magnetic powder core
US9431159B2 (en) Iron cobalt ternary alloy nanoparticles with silica shells and metal silicate interface
JPS61166902A (en) Electromagnetic parts made of amorphous alloy powder and its production
JPS6321807A (en) Electromagnetic component made from amorphous alloy powder and manufacture thereof
JP2003197416A (en) Method of manufacturing powder magnetic core, and powder magnetic core manufactured by the method
WO2017208824A1 (en) Method for manufacturing coated magnetic powder, method for manufacturing dust core, and method for manufacturing magnetic component
JP2006183121A (en) Iron based powder for powder magnetic core and powder magnetic core using the same
JP4790224B2 (en) SOFT MAGNETIC MATERIAL, ITS MANUFACTURING METHOD, AND DUST MAGNETIC CORE CONTAINING THE SOFT MAGNETIC MATERIAL
JPS62224004A (en) Manufacture of metal dust magnetic core
JPS62247004A (en) Production of compacted metallic magnetic core
JP3857356B2 (en) Manufacturing method of magnetic powder for dust cores