JPS62246429A - Manufacture of tough ceramic tool - Google Patents

Manufacture of tough ceramic tool

Info

Publication number
JPS62246429A
JPS62246429A JP8969986A JP8969986A JPS62246429A JP S62246429 A JPS62246429 A JP S62246429A JP 8969986 A JP8969986 A JP 8969986A JP 8969986 A JP8969986 A JP 8969986A JP S62246429 A JPS62246429 A JP S62246429A
Authority
JP
Japan
Prior art keywords
tool
ceramic
al2o3
coating
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8969986A
Other languages
Japanese (ja)
Inventor
Masaaki Tobioka
正明 飛岡
Minoru Nakano
稔 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP8969986A priority Critical patent/JPS62246429A/en
Publication of JPS62246429A publication Critical patent/JPS62246429A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the wear-resistance and toughness of a ceramic tool, by holding a sintered ceramic mother material at a temperature of 1,150-1,500 deg.C, and by covering the outer surface of the mother material with a thin Al2O3 film having a thickness of 0.5-20mum with the use of a chemical gas phase vapor deposition. CONSTITUTION:If a covering layer is formed at a temperature below 1,150 deg.C, it may not ensure a sufficient useful life for an Al2O3 covering film, but if it is formed at a temperature about 1,500 deg.C, the particle size of Al2O3 particles is greater than about 5mum so that the wear-resistance of the covering film is deteriorated and therefore is unpreferably. Accordingly, a sintered ceramic mother material is held at a temperature of 1,150-1,500 deg.C. Further, if a thin Al2O3 film layer has a thickness of less than 0.5mum, the effect of improvement in the wear-resistance may not be expected, and if the thickness of the film layer is greater than about 20mum, it is economically unpreferable since the effect due to covering by the Al2O3 film layer is saturated. Accordingly, the outer surface of the sintered ceramic mother material is covered with a thin Al2O3 film having a thickness of 0.5-20mum with the use of a gas phase vapor deposition process.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は強靭セラミックス工具の製造方法に関する。更
に詳しくいえば、セラミックス焼結体母材とこれに被覆
された薄膜層とからなり、極めて高い耐摩耗性並びに靭
性を有するセラミックス切削工具の製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing strong ceramic tools. More specifically, the present invention relates to a method for manufacturing a ceramic cutting tool that is composed of a ceramic sintered base material and a thin film layer coated thereon, and has extremely high wear resistance and toughness.

従来の技術 近年、超硬工具材料としてのタングステン資源の枯渇の
ために、これに代る超硬工具材料の開発が活発に行われ
ている。このような新しい材料として耐摩耗性、耐食性
、耐熱性等に優れていることから、切削工具材料として
超硬合金が注目され、WC−Co、 WC−(WTiT
aNb) 、C−Co系のWC基超硬合金製の工具が開
発された。また、これ以外にもTi C−Ni−Mo系
サーメット工具、純^1□03またはA1□03+TI
C系等のセラミックス工具および焼結ダイヤモンド工具
などが開発され、実用に供されている。
BACKGROUND OF THE INVENTION In recent years, due to the depletion of tungsten resources as a carbide tool material, the development of alternative carbide tool materials has been actively conducted. As such a new material, cemented carbide has attracted attention as a cutting tool material because of its excellent wear resistance, corrosion resistance, heat resistance, etc., and WC-Co, WC-(WTiT
aNb), a C-Co based WC-based cemented carbide tool was developed. In addition to this, we also offer TiC-Ni-Mo based cermet tools, pure^1□03 or A1□03+TI
C-based ceramic tools and sintered diamond tools have been developed and put into practical use.

この中で、セラミックス工具は常温並びに高温での硬度
が高く、高温度下で刃先が酸化されるので切屑の溶着を
回避でき、従って高速度での切削が可能であり、被加工
物(被削材)の適用範囲が広く、取扱い易い等という各
種の利点がある。しかしながら、他方において超硬合金
製工具と比較して特に問題となる点は抗折力、即ち靭性
の点で劣っていることにある。そこで、この抗折力の問
題を解決するために種々の方法が提案されてきた。
Among these tools, ceramic tools have high hardness at room temperature and high temperature, and the cutting edge is oxidized at high temperatures, so it is possible to avoid welding of chips. Therefore, it is possible to cut at high speed, and the workpiece (workpiece It has various advantages such as a wide range of applications (materials) and ease of handling. However, on the other hand, a particular problem compared to tools made of cemented carbide is that they are inferior in terms of transverse rupture strength, that is, toughness. Therefore, various methods have been proposed to solve this problem of transverse rupture force.

例えば、特公昭53−13276号公報発明にみられる
ように、A1□o3焼結体あるいはAl2O3に硬質炭
化物および/または硬質窒化物、例えばTi、 Zr5
Hf。
For example, as seen in the invention disclosed in Japanese Patent Publication No. 53-13276, hard carbides and/or hard nitrides, such as Ti and Zr5, are added to the A1□o3 sintered body or Al2O3.
Hf.

Bなどの炭化物および/または窒化物を添加して得た焼
結体を母材とし、その表面にAl2O3膜を被覆したセ
ラミックス工具が知られている。
Ceramic tools are known in which the base material is a sintered body obtained by adding carbides and/or nitrides such as B, and the surface thereof is coated with an Al2O3 film.

また、特公昭59−13475号公報発明はSi3N、
を主成分とし、焼結助剤としてMgO1Y203、Ta
205、ZrO□、A1□0.などを添加して得た焼結
体の表面に、化学気相蒸着法(CVD法)によってAl
2O3および/またはAl0Nの被覆薄膜を形成したセ
ラミックス・スローアウェイチップの製造方法を開示し
ている。
In addition, the invention disclosed in Japanese Patent Publication No. 59-13475 is Si3N,
as the main component, and MgO1Y203 and Ta as sintering aids.
205, ZrO□, A1□0. Al was added to the surface of the sintered body by chemical vapor deposition (CVD).
A method for manufacturing a ceramic indexable chip with a thin coating of 2O3 and/or AlON is disclosed.

更に、特開昭60−127905号公報発明にはA14
0sを主成分とし、hotを焼結助剤として添加して得
た焼結体の表面に、上記同様にAlzos被覆薄膜を形
成したセラミックス工具が提案されている。
Furthermore, the invention disclosed in JP-A-60-127905 includes A14.
A ceramic tool has been proposed in which a thin Alzos coating film is formed on the surface of a sintered body containing 0s as a main component and hot added as a sintering aid.

しかしながら、上記のようなセラミックス焼結体母材と
Al2O3の気相堆積膜とで構成される被覆セラミック
ス工具は、依然として靭性、特に耐熱衝撃性並びに耐熱
疲労靭性の点で著しく劣るために、耐摩耗性に極めて優
れているにも拘らず、その適用分野は著しく制限された
ものでしかなかった。
However, coated ceramic tools composed of a ceramic sintered base material and a vapor-deposited film of Al2O3 as described above still have significantly inferior toughness, especially thermal shock resistance and thermal fatigue toughness, and therefore have poor wear resistance. Despite its excellent properties, its field of application was extremely limited.

そこで、これら緒特性を改善する目的で、Al2O3被
覆薄膜としてAl2O3にTiC,TiN5Ti (C
O)、VJC,7,rO□などを添加し、その靭性を改
善した強靭セラミックス工具が開発されている。しかし
ながら、上記添加物を添加することにより確かに靭性の
改善を達成し得るものの、逆に耐摩耗性が犠牲となり、
その劣化は無視できないものであった。
Therefore, in order to improve these characteristics, we created an Al2O3 coating thin film using TiC, TiN5Ti (C
Strong ceramic tools have been developed whose toughness has been improved by adding elements such as O), VJC, 7, and rO□. However, although it is certainly possible to improve toughness by adding the above additives, wear resistance is sacrificed,
The deterioration could not be ignored.

また、最近の材料開発の成果として、^120.の代り
に5isN<を主成分とするセラミックス工具が提案さ
れてきた。このSi3N、系セラミックスは、Al2O
3系セラミックスと比較して耐熱衝撃性並びに耐熱疲労
靭性の点で極めて優れているので、従来のセラミックス
材料と比較して著しく優れたセラミックス材料といえる
。しかしながら、このように優れた特性の5i3Na系
セラミツクス材料も切削工具用材料として考えた場合に
は、被削材としての鉄とが反応することから、切屑の工
具表面への拡散が問題となる鋼の切削には全く利用でき
ず、切屑の工具表面への拡散が問題とならない鋳物のみ
の切削に利用できるに過ぎない。ところで、鋳物の切削
において最も重要な点は、高温における硬度であるが、
Si3N、はAl2O3と比較するとこの点において劣
っているために、鋳物の切削においても従来多用されて
きたAl2O*/TiC焼結体切削工具と比較すると靭
性の点では確かに格段に優れているものの、耐摩耗性の
点では比較にならないものであった。
Also, as a result of recent material development, ^120. Instead, ceramic tools containing 5isN< as a main component have been proposed. This Si3N, based ceramic is Al2O
Since it is extremely superior in terms of thermal shock resistance and thermal fatigue toughness compared to Type 3 ceramics, it can be said to be a ceramic material that is extremely superior to conventional ceramic materials. However, when 5i3Na ceramic materials with such excellent properties are considered as materials for cutting tools, they react with iron as the workpiece material, so it is difficult to use 5i3Na-based ceramic materials, which pose a problem of diffusion of chips to the tool surface. It cannot be used for cutting at all, and can only be used for cutting cast metals where diffusion of chips onto the tool surface is not a problem. By the way, the most important point in cutting castings is hardness at high temperatures.
Since Si3N is inferior to Al2O3 in this respect, it is certainly much superior in terms of toughness compared to Al2O*/TiC sintered cutting tools, which have traditionally been widely used in cutting castings. , which was incomparable in terms of wear resistance.

以上述べてきたように、513N4を主成分とするセラ
ミックス工具は、Al2O3焼結体切削工具(ご比べて
、靭性の点では改善されたものの、切削工具として重要
なもう一つの特性である耐摩耗性が劣化した。この点を
改善するために、従来技術においては、この靭性に優れ
たセラミックス焼結体を母材と゛し、その表面に数μm
の厚さのA1□03薄膜を被覆した被覆セラミックス工
具が提案されている。
As mentioned above, ceramic tools whose main component is 513N4 are improved in terms of toughness compared to Al2O3 sintered cutting tools (compared with In order to improve this point, in the conventional technology, this ceramic sintered body with excellent toughness is used as a base material, and the surface is coated several μm thick.
A coated ceramic tool coated with an A1□03 thin film having a thickness of .

発明が解決しようとする問題点 バイト等の切削工具としての、特にセラミックス工具に
要求される特性は抗折力、即ち靭性と耐摩耗性である。
Problems to be Solved by the Invention The characteristics particularly required of ceramic tools as cutting tools such as cutting tools are transverse rupture strength, that is, toughness and wear resistance.

前述のようにA I 203系の工具は耐摩耗性に優れ
るが靭性の点で不十分であり、そこで種々の解決策が提
案されたが、いずれも不満足であり、例えばSi3N、
系工具のように靭性が改善されはしたものの逆に耐摩耗
性が犠牲となりAlaOs系工具に比して著しく劣るも
のとなった。このような情況の下で、靭性の点で有利な
Si3N4系セラミックス焼結体を母材とし、その表面
を耐摩耗性の点で性別なAl2O3薄膜を設けた被覆セ
ラミックス工具が提案されている。
As mentioned above, A I 203 series tools have excellent wear resistance but are insufficient in terms of toughness, and various solutions have been proposed, but all are unsatisfactory; for example, Si3N,
Although the toughness was improved like that of the AlaOs-based tool, the wear resistance was sacrificed and it became significantly inferior to the AlaOs-based tool. Under these circumstances, a coated ceramic tool has been proposed in which the base material is a Si3N4 ceramic sintered body, which is advantageous in terms of toughness, and the surface thereof is provided with an Al2O3 thin film, which is advantageous in terms of wear resistance.

このように、セラミックス工具として母材(靭性の高い
もの)に耐摩耗性の良好なAl2O3薄膜を被覆するこ
とにより、母材の低い耐摩耗性が補償される。実際特に
、例えば313N4系の焼結体表面にAl2O3を約1
μm被覆したセラミックス工具によれば、セラミックス
工具に必要とされる強靭性と耐摩耗性とを兼備した工具
が実現でき、鋳物切削の分野で広く実用に供されている
In this way, by coating the base material (high toughness) of a ceramic tool with an Al2O3 thin film having good wear resistance, the low wear resistance of the base material is compensated for. In fact, for example, about 1% of Al2O3 is added to the surface of a 313N4-based sintered body.
A μm-coated ceramic tool can provide a tool that has both the toughness and wear resistance required of a ceramic tool, and is widely used in the field of casting cutting.

しかしながら、この切削工具では耐摩耗性の^1□0゜
被覆が約1μmと極めて薄いために、フランク摩耗があ
る程度以上に進行するとAl2O3の被覆効果が著しく
低下してしまうという欠点を有している。
However, since the wear-resistant ^1□0° coating on this cutting tool is extremely thin at approximately 1 μm, it has the disadvantage that when flank wear progresses beyond a certain point, the Al2O3 coating effect is significantly reduced. .

そこで、このような従来のセラミックス工具の呈する諸
欠点を解決し、強靭かつ耐摩耗性に優れたセラミックス
工具を開発することは、セラミックス工具の有する特性
を十分に生かして、鋼、鋳鉄等の切削加工を実施する上
で極めて重要であり、当業界においても重要な課題とな
っている。本発明の目的はこのようなセラミックス工具
の製造方法を提供することにあり、また強靭かつ高い耐
摩耗性の耐用寿命の長いセラミックス工具を提供するこ
とも本発明の目的の一つである。
Therefore, it is important to solve the various drawbacks of conventional ceramic tools and develop ceramic tools that are strong and wear resistant, making full use of the characteristics of ceramic tools to cut steel, cast iron, etc. It is extremely important in carrying out processing, and is also an important issue in this industry. An object of the present invention is to provide a method for manufacturing such a ceramic tool, and another object of the present invention is to provide a ceramic tool that is strong, highly wear resistant, and has a long service life.

問題点を解決するための手段 本発明者等はセラミックス工具の上記のような現状に鑑
みて、靭性並びに耐摩耗性両者の点で優れたセラミック
ス工具を開発すべく種々検討・研究した結果、セラミッ
クス焼結体母材の靭性を維持し、耐摩耗性を確保すると
共に耐用寿命を改善するためには母材と薄膜被覆層との
間の密着強度を高くすることにより目的とする優れた特
性のセラミックス工具を実現できるとの着想の下に、こ
の密着強度の改善が被覆処理温度の十分な制御により達
成しく尋ることを見出し、本発明を完成した。
Means for Solving the Problems In view of the above-mentioned current state of ceramic tools, the inventors conducted various studies and research to develop ceramic tools that are superior in both toughness and wear resistance. In order to maintain the toughness of the sintered compact base material, ensure wear resistance, and improve its service life, it is necessary to increase the adhesion strength between the base material and the thin film coating layer to achieve the desired excellent properties. Based on the idea that a ceramic tool could be realized, the inventors discovered that this improvement in adhesion strength could be achieved by sufficiently controlling the coating treatment temperature, and completed the present invention.

即ち、本発明の強靭セラミックス工具の製造方法はセラ
ミックス焼結体母材を1150〜1500℃の範囲内の
温度にて加熱保持し、該母材の表面を化学気相蒸着法に
よって厚さ0.5〜20μmのAl2O3薄膜で被覆す
ることを特徴とするものである。
That is, in the method for manufacturing a strong ceramic tool of the present invention, a ceramic sintered body base material is heated and maintained at a temperature within the range of 1150 to 1500°C, and the surface of the base material is coated to a thickness of 0.5 mm by chemical vapor deposition. It is characterized by being coated with an Al2O3 thin film of 5 to 20 μm.

本発明の方法において有用なセラミックス焼結体母材と
しては、特にA1□03を主成分とするものおよび51
3N4を主成分とするものを例示でき、前者は更に5〜
50重量%の割合でTiC,TiN、 Ti(CO )
、WCおよびZrO2からなる群から選ばれる少なくと
も1種の成分を含むことができ、また後者では同様に5
〜50重量%の割合でZr0z 、TiN、Y2O3、
Al2O3およびAlNからなる群から選ばれる少なく
とも1種の成分を含むものであり得る。ここで上記の添
加物を5重量%に満だない量で使用した場合には靭性が
不十分となり、また50重量%を越えて使用した場合に
は耐摩耗性が不十分となり、いずれも好ましくない。本
発明においては、上記の例示のものの他、Al2O3焼
結体の靭性を改善したものであればいかなるものであっ
ても母材としてイ吏用できることはいうまでもない。
In particular, ceramic sintered base materials useful in the method of the present invention include those containing A1□03 as a main component and 51
Examples include those containing 3N4 as the main component, and the former further contains 5 to
TiC, TiN, Ti(CO) in a proportion of 50% by weight
, WC, and ZrO2, and the latter similarly contains 5
Zr0z, TiN, Y2O3, in a proportion of ~50% by weight
It may contain at least one component selected from the group consisting of Al2O3 and AlN. If the above additive is used in an amount less than 5% by weight, the toughness will be insufficient, and if it is used in an amount exceeding 50% by weight, the wear resistance will be insufficient, and both are preferable. do not have. In the present invention, in addition to the above-mentioned examples, it goes without saying that any Al2O3 sintered body with improved toughness can be used as the base material.

本発明の方法において、^i2o、+薄膜被覆層の形成
温度は、既に述べたように極めて重要であり、臨界的な
条件となる。叩ら、下限の1150℃に満たない温度下
で被覆層を形成した場合には十分なAl2O3被覆の耐
用寿命を、即ち十分な密着強度を確保できず、一方15
00℃を越える温度の下で薄膜形成を行った場合には被
覆層のAl2O3粒子径が5μm以上の巨大なものとな
ってしまい耐摩耗性が劣化するために好ましくない。
In the method of the present invention, the temperature at which the thin film coating layer is formed is extremely important, as described above, and becomes a critical condition. If the coating layer is formed at a temperature lower than the lower limit of 1150°C, sufficient service life of the Al2O3 coating, that is, sufficient adhesion strength cannot be ensured;
If the thin film is formed at a temperature exceeding 00°C, the Al2O3 particles in the coating layer will have a huge diameter of 5 μm or more, which is undesirable because the wear resistance will deteriorate.

また、本発明の強靭セラミックス工具におG)てへ1□
03薄膜被覆層の厚さも臨界的であり、上記範囲内の値
とすることが好ましい。即ち、下限の0.5μmに満た
ない厚さではAbOs被覆による耐摩耗性の改善効果が
期待できない。一方、上限の20μmはそれ程重要では
なく、これ以上の厚さで適用したとしてもA1゜03被
覆による効果が飽和するため、経済的、工業生産的観点
から20μm以下とすることが有利である。
In addition, the strong ceramic tool of the present invention has G)
The thickness of the 03 thin film coating layer is also critical, and is preferably within the above range. That is, if the thickness is less than the lower limit of 0.5 μm, the effect of improving wear resistance by AbOs coating cannot be expected. On the other hand, the upper limit of 20 μm is not so important, and even if it is applied at a thickness greater than this, the effect of the A1°03 coating will be saturated, so it is advantageous to keep the thickness below 20 μm from the economic and industrial production standpoints.

本発明の方法で使用するセラミックス焼結体母材は常法
に従って所定の成分を混合し、所定の形状に成形し、次
いで焼成し、必要ならば寸法調整等の加工を施すことに
より容易に作製することができる。
The ceramic sintered body base material used in the method of the present invention can be easily produced by mixing predetermined ingredients in accordance with a conventional method, molding it into a predetermined shape, then firing it, and performing processing such as dimensional adjustment if necessary. can do.

次いで、該セラミックス母材表面上にAl2O3薄膜被
覆を施すが、これは各種CVD法、イオンブレーティン
グ法などの物理的蒸着法がいずれも使用できる。ここで
、物理蒸着法で得られる堆積膜に比較して、同一温度で
被覆処理を行ったCVD法により得られる膜は一般に母
材との密着強度に劣ると考えられるが、本発明の方法に
従って上記範囲の温度条件下で被覆処理を実施すること
により、通常の化学蒸着法で十分な強度並びに成長速度
が達成できる。また、このCVD法は付き回り性に優れ
ているために複雑な形状の母材を被覆するのに有利であ
る。
Next, an Al2O3 thin film coating is applied to the surface of the ceramic base material, and any of the physical vapor deposition methods such as various CVD methods and ion blasting methods can be used for this. Here, compared to deposited films obtained by physical vapor deposition, films obtained by CVD, which are coated at the same temperature, are generally considered to have inferior adhesion strength to the base material, but according to the method of the present invention, By carrying out the coating treatment under temperature conditions in the above range, sufficient strength and growth rate can be achieved by conventional chemical vapor deposition methods. Furthermore, this CVD method has excellent coverage and is therefore advantageous for coating base materials with complex shapes.

作用 以上述べたように、セラミックス工具を実用化するため
に最も重要な点は高い靭性と耐摩耗性とを併せ持つ構成
とすることであり、そのために従来から広範な研究がな
されてきた。中でも最も改良が図られたとされている靭
性に富むセラミックス母材と耐摩耗性の点で有利なCV
D法等で形成されたAl20i、Al0Nなどの薄膜と
で構成されるセラミックス工具にあっそも、フランク摩
耗がある程度以上進行すると被覆効果が低下し、十分な
耐摩耗性を維持できなくなってしまう。
Function As mentioned above, the most important point in putting ceramic tools into practical use is to have a structure that has both high toughness and wear resistance, and for this purpose, extensive research has been carried out. Among them, CV has an advantageous ceramic base material with high toughness and wear resistance, which is said to be the most improved.
Even with ceramic tools formed by the D method or the like with a thin film of Al20i, Al0N, etc., if flank wear progresses beyond a certain level, the coating effect decreases and sufficient wear resistance cannot be maintained.

そこで、本発明者等は以下のような切削試験を行い、そ
の際の摩耗曲線を得、切削時間とフランク摩耗との関係
を調べ、結果を添付第1図にプロットした。この切削試
験において被削材としては鋳鉄(F C25)を用い、
切削工具の形状は型番S N G N120408、ホ
ルダーF NIIR−44Aとし、切削剤を使用するこ
となしに以下の条件下で実施した。
Therefore, the present inventors conducted the following cutting test, obtained a wear curve at that time, investigated the relationship between cutting time and flank wear, and plotted the results in the attached FIG. 1. In this cutting test, cast iron (FC25) was used as the work material.
The shape of the cutting tool was model number SNGN120408 and holder F NIIR-44A, and the cutting was carried out under the following conditions without using a cutting agent.

切削速度(V) = 500m/min送り速度(f 
) =0.36mm/回転切込み(d)=2mm 第1図において曲線(a)はSi3N<を主成分とする
セラミックス焼結体工具を用いた結果であり、曲線(b
)は(a)で使用した工具にCVD法によりAl2O。
Cutting speed (V) = 500m/min feed rate (f
) = 0.36 mm/Rotary depth of cut (d) = 2 mm In Figure 1, curve (a) is the result of using a ceramic sintered tool whose main component is Si3N<, and curve (b)
) is Al2O applied to the tool used in (a) using the CVD method.

を厚さ1μmで被覆した工具による結果であり、さらに
曲線(C)はAl2O3/Ticのセラミックス焼結体
工具による結果である。この結果から、従来のセラミッ
クス工具による結果(曲線う))は513N4を主体と
する工具の結果(曲線(a))と比較した場合、耐摩耗
性の点で著しい改善が認められるものの、切削時間が2
5分以上、フランク摩耗が0.3mm以上となると、A
lzO3被覆による耐摩耗性改善効果が失われることを
理解できる。
Curve (C) is the result obtained from a tool coated with Al2O3/Tic ceramic sintered body to a thickness of 1 μm. From these results, when compared with the results of a tool made mainly of 513N4 (curve (a)), the results obtained using a conventional ceramic tool (curve (a)) show a significant improvement in terms of wear resistance, but the cutting time is 2
If the flank wear is 0.3 mm or more for 5 minutes or more, A.
It can be seen that the wear resistance improving effect of lzO3 coating is lost.

このような短い耐用寿命を改善するためには、A1□0
3被覆膜の膜厚を増大させることが考えられる。そこで
、Al2O3被覆膜々厚を種々変化させて、フランク摩
耗のAl2O3被覆の膜厚依存性を検討した。母材とし
ては313N4を主成分とする焼結体を用い、また得ら
れた製品につき第1図と同様な条件下で切削試験を行い
、フランク摩耗が0.3+mmに達する時間を測定し、
これをA1□03膜々厚に対して添付第2図にプロット
した。この結果は、A1□03膜々厚が1μmに達する
までは膜厚の増加に伴って耐摩耗性は増大するが、膜厚
が1μmを越えると耐摩耗性は急激に低下することを示
している。
In order to improve such a short service life, A1□0
3. It is possible to increase the thickness of the coating film. Therefore, the dependence of flank wear on the thickness of the Al2O3 coating was investigated by varying the thickness of the Al2O3 coating. A sintered body containing 313N4 as the main component was used as the base material, and the resulting product was subjected to a cutting test under the same conditions as shown in Figure 1, and the time required for flank wear to reach 0.3+mm was measured.
This is plotted in the attached Figure 2 against the A1□03 film thickness. This result shows that the wear resistance increases as the film thickness increases until the A1□03 film thickness reaches 1 μm, but when the film thickness exceeds 1 μm, the wear resistance rapidly decreases. There is.

これは膜厚が1μmを越えると、切削時に被覆膜が剥離
してしまうためであると考えられ、更に膜厚が3μmを
越えると剥離が逆に切欠き効果を生じ、未被覆の場合よ
りも摩耗が大きくなるものと思われる。膜厚が厚くなる
と、被覆膜と母材とは剛性に差があるため、当然の結果
として剥離し易くなることは当業者に良く知られた事実
である。
This is thought to be because if the film thickness exceeds 1 μm, the coating will peel off during cutting, and if the film thickness exceeds 3 μm, the peeling will actually create a notch effect, making it more It is thought that the wear will also increase. It is a well-known fact to those skilled in the art that when the film thickness increases, the coating film and the base material are more likely to peel off as a result of the difference in rigidity between the coating film and the base material.

このような状況の下で、本発明者等は上記試験結果を深
く考察し、検討し従来法の呈する問題を解決するために
は、母材と被覆膜との密着強度の改善を図ることが有利
であることを知った。
Under these circumstances, the inventors of the present invention deeply considered and studied the above test results, and found that in order to solve the problems presented by the conventional method, it is necessary to improve the adhesion strength between the base material and the coating film. I learned that it is advantageous.

上記母材と被覆膜との密着強度を改善するためには様々
な方法が考えられるが、本発明の方法におけるように被
覆処理の際の処理温度を特定範囲とすることが最も有効
である。
Although various methods can be considered to improve the adhesion strength between the base material and the coating film, it is most effective to set the treatment temperature during coating treatment within a specific range as in the method of the present invention. .

そこで、まず種々の被覆法に従って作製した被覆セラミ
ックス工具の母材と被覆膜との密着強度を、スイス時計
研究所製のレイテスト/オートマチックを用いて測定し
た。この測定原理は、荷重を掛けたダイヤモンドコーン
により被覆膜をひっかき、膜を破壊するのに要する荷重
を超音波吸収測置で検出し、この荷重〔臨界荷重: L
 c (criticalloadと呼ばれる)〕の大
小から接着強度を評価するものである。サンプルとして
は5iiN*を主成分とする焼結体母材に、CVD法イ
オンブレーティング法およびプラズマCVD法によって
、種々の温度条件下で、厚さ1μmのAl2O3薄膜を
被覆した工具を用いた。結果を添付第3図に示したが、
この結果から被覆方法の種類とは無関係にほぼ被覆温度
のみによって密着強度が決定され、被覆温度が高い程密
着強度も高くなることがわかる。
Therefore, first, the adhesion strength between the base material and the coating film of coated ceramic tools produced according to various coating methods was measured using a Raytest/Automatic manufactured by Swiss Watch Institute. The principle of this measurement is to scratch the coating film with a loaded diamond cone, detect the load required to destroy the film using ultrasonic absorption measurement, and measure this load [critical load: L].
The adhesion strength is evaluated based on the magnitude of c (referred to as critical load). As a sample, a tool was used in which a sintered base material mainly composed of 5iiN* was coated with a 1 μm thick Al2O3 thin film by CVD, ion blating, and plasma CVD under various temperature conditions. The results are shown in attached Figure 3.
These results show that the adhesion strength is determined almost solely by the coating temperature, regardless of the type of coating method, and the higher the coating temperature, the higher the adhesion strength.

ところで、従来のセラミックス工具の製造方法に右ける
この被覆処理温度の上限は約1000℃に制限されてい
た。これは元来、この種の被覆工具作製技術が被覆超硬
合金から進展したものであって、一般に母材が超硬合金
であったため、1000℃以上の高温に保持すると結合
和合RCOの流動性が大きくなり、被覆操作中に被覆膜
中に拡散するCoの量が無視できなくなり、このCoの
拡散のために耐摩耗性の改善がまったく期待できなくな
る。そのため、被覆処理温度の上限は約1000℃とさ
れ、これがセラミックス焼結体にそのまま適用されてい
たものと考えられる。
By the way, the upper limit of this coating treatment temperature in the conventional manufacturing method of ceramic tools has been limited to about 1000°C. This is because this type of coated tool manufacturing technology was originally developed from coated cemented carbide, and the base material was generally made of cemented carbide, so when held at a high temperature of 1000°C or higher, the fluidity of the bonded RCO increases. becomes large, and the amount of Co that diffuses into the coating film during the coating operation cannot be ignored, and because of this Co diffusion, no improvement in wear resistance can be expected at all. Therefore, the upper limit of the coating treatment temperature was set at about 1000° C., and it is thought that this was applied as is to ceramic sintered bodies.

そこで、本発明の方法では上記のような被覆超硬合金工
具にみられたCoの流動化・拡散の問題を解決するため
に、このような高温で流動化する成分を含まない、ある
いは極く少量でのみ含有するセラミックス焼結体を母材
として選択した。このことは更に、本発明の方法におけ
るように、従来法よりも一層高温度下での被覆処理を、
上記のような問題を伴うことなしに実施することを可能
とする。
Therefore, in the method of the present invention, in order to solve the problem of Co fluidization and diffusion observed in coated cemented carbide tools as described above, the method does not contain components that fluidize at such high temperatures, or it contains very few components that fluidize at high temperatures. A ceramic sintered body containing only a small amount was selected as the base material. This further indicates that, as in the method of the present invention, the coating process can be carried out at higher temperatures than in conventional methods.
This makes it possible to implement the method without the problems described above.

かくして、本発明の方法によれば、被覆処理温度を特定
範囲とし、被覆膜々厚を制限し、かつセラミックス焼結
体母材の組成を上記のように精選したことの総合的な結
果として、靭性並びに耐摩耗性両者の点で満足でき、十
分に実用に耐え得るセラミックス工具を実現することが
できる。このような意味から上記3つの要件はいずれも
本発明の方法において臨界的であり、所定範囲内の条件
下で本発明の方法を実施することにより所期の効果を達
成できる。
Thus, according to the method of the present invention, as a comprehensive result of setting the coating treatment temperature within a specific range, limiting the coating film thickness, and selecting the composition of the ceramic sintered body base material as described above, , it is possible to realize a ceramic tool that is satisfactory in terms of both toughness and wear resistance and is sufficiently durable for practical use. In this sense, all of the above three requirements are critical for the method of the present invention, and the desired effect can be achieved by implementing the method of the present invention under conditions within a predetermined range.

また、本発明の方法によれば、上記条件に従うことによ
り、被覆処理方法の選択範囲が拡大され、一般には高い
密着強度が期待できないとされるCVD法によっても十
分な強度の製品が得られる。
Furthermore, according to the method of the present invention, by following the above conditions, the range of selection of coating treatment methods is expanded, and a product with sufficient strength can be obtained even with the CVD method, which is generally not expected to provide high adhesion strength.

このCVD法は他の物理的被覆法とし比較して経済的で
あり、工業生産的に有利であるので、CVD法を利用で
きることは本発明の方法を生産性の点でも好ましいもの
とする。
This CVD method is economical and advantageous in terms of industrial production compared to other physical coating methods, so the ability to utilize the CVD method makes the method of the present invention preferable in terms of productivity.

実施例 以下実施例により本発明の方法を更に具体的に説明する
と共に、本発明の方法の効果を立証するが、本発明の範
囲は以下の例により何等制限されるものではない。
EXAMPLES The following examples will further specifically explain the method of the present invention and demonstrate the effects of the method of the present invention, but the scope of the present invention is not limited in any way by the following examples.

実施例1 2rOz29.5重量%、MgO0,5重量%および残
部のAl2O3からなるセラミックス焼結体(型番:S
 N G N 120408)を作製し、この母材を1
200℃に加熱保持してAlCl33容量%、CO□1
.5容量%、残部のH2からなる混合ガスを10Tor
rにて1時間流し、Al2O3を5μmの厚さで被覆し
た(工具A)。
Example 1 A ceramic sintered body (model number: S
N G N 120408) was prepared, and this base material was
Heating and holding at 200℃, AlCl33% by volume, CO□1
.. A mixed gas consisting of 5% by volume and the remainder H2 was heated to 10 Torr.
r for 1 hour and coated with Al2O3 to a thickness of 5 μm (Tool A).

この工具Aと同一の母材を1000℃にて5μmのAl
2O,で被覆し、得られた工具をBとする。
The same base material as this tool A was heated to 5μm of aluminum at 1000℃.
2O, and the resulting tool is designated as B.

かくして得た工具A、Bにつき、上記の如くレイテスト
/オートマチックで被覆膜と母材との密着強度を測定し
たところ、工具Aは荷重Lcは42Nであったのに対し
て、工具Bでは21Nにすぎなかった。
When the adhesion strength between the coating film and the base material was measured for the thus obtained tools A and B using the Ray Test/Automatic method as described above, the load Lc for tool A was 42N, whereas for tool B it was It was only 21N.

また、工具AおよびB1比較のための同一の母材に10
00℃にてAl2O3を1μm被覆して得た工具Cおよ
び母材のみからなる工具りにつき以下のような条件下で
切削テストを行った。
In addition, 10
Cutting tests were conducted under the following conditions on tool C obtained by coating Al2O3 to a thickness of 1 .mu.m at 00.degree. C. and on a tool consisting only of the base material.

被削材:  SCM435(Ha =280)V= 6
00m/m1n f = 0.36mm /回転 d = 2 mtn ホルダー: F NIIR−44A 切削剤 :使用せず 切削時間:10分 この切削試験の結果、工具Aはフランク摩耗が0.31
mであったのに対して、工具Bは2分15秒間の切削時
点でフランク摩耗が0.5n以上となり切削不能となっ
てしまい、工具Cは6分11秒の切削時点でやはりフラ
ンク摩耗が0.5111ff1以上となってしまい、工
具りにあっては3分38秒の切削後フランク摩耗は0.
5mm以上となりいずれも切削不能となった。この結果
は本発明の有効性を十分に立証するものである。
Work material: SCM435 (Ha = 280) V = 6
00m/m1n f = 0.36mm/rotation d = 2 mtn Holder: F NIIR-44A Cutting agent: Not used Cutting time: 10 minutes As a result of this cutting test, tool A has flank wear of 0.31
On the other hand, tool B had flank wear of 0.5n or more at the cutting time of 2 minutes and 15 seconds and became unable to cut, and tool C also had flank wear at the cutting time of 6 minutes and 11 seconds. 0.5111ff1 or more, and for the tool, the flank wear after cutting for 3 minutes and 38 seconds was 0.5111ff1 or more.
The diameter exceeded 5 mm, making it impossible to cut any of them. This result fully proves the effectiveness of the present invention.

実施例2 313N485重量%、ZrozlO重I%、Y2O3
5重量%からなるセラミックス焼結体く型番: 5NG
N120408>を作製し、この母材を1150℃に加
熱保持してAlCl32.5容量%、CO22容量%、
残部のH2からなる混合ガスを15Torrにて1時間
流し、Al2O3を4μm被覆したく工具E)。工具E
と同一の母材に、1000℃にてAl2O3を4μm被
覆して工具Fを得、更に同様に1000℃でAl2O3
を1μm被覆した工具Gを作製した。かくして、得られ
た工具E〜Gにつき以下の切削条件下で切削テストを行
った。
Example 2 313N485% by weight, ZrozlO weight I%, Y2O3
Ceramic sintered body consisting of 5% by weight Model number: 5NG
N120408> was prepared, and this base material was heated and held at 1150°C to form AlCl32.5% by volume, CO22% by volume,
A mixed gas consisting of the remaining H2 was flowed at 15 Torr for 1 hour to coat the tool E) with Al2O3 to a thickness of 4 μm. Tool E
The same base material was coated with 4 μm of Al2O3 at 1000°C to obtain tool F, and then similarly coated with Al2O3 at 1000°C.
A tool G coated with 1 μm of Cutting tests were conducted on the tools E to G thus obtained under the following cutting conditions.

被削材: 鋳鉄F C25 V= 700m/m1n f =0.36mm /回転 d == 2mrn ホルダー: F NIIR−44A 切削剤 :使用せず 切削時間:5分 この切削テストの結果、工具Eのフランク摩耗が0.2
4mであったのに対して、工具FおよびGのフランク摩
耗は夫々0.72m+nおよび1順以上であり、更に工
具Gではフランク摩耗1 aonに達するのにわずか3
分14秒であった。尚、市販のAl2O3/TIC製焼
結体工具では4分6秒間の切削により欠損を生じた。
Work material: Cast iron FC25 V = 700m/m1n f = 0.36mm/rotation d = = 2mrn Holder: F NIIR-44A Cutting agent: Not used Cutting time: 5 minutes As a result of this cutting test, the flank of tool E Wear is 0.2
4 m, whereas the flank wear of tools F and G was 0.72 m+n and 1 order or more, respectively, and furthermore, tool G required only 3 aon to reach flank wear of 1 aon.
It was minutes and 14 seconds. It should be noted that a commercially available sintered tool made of Al2O3/TIC produced a chip after cutting for 4 minutes and 6 seconds.

実施例3 実施例2と同一の母材に種々の条件でAl2O3被覆を
設け11個のサンプルH−Rを作製した。被覆温度、A
l2O5膜厚および実施例2と同一条件下で行った切削
テスト結果は以下の表に示す通りであった。
Example 3 Eleven samples HR were prepared by applying Al2O3 coating to the same base material as in Example 2 under various conditions. Coating temperature, A
The l2O5 film thickness and the cutting test results conducted under the same conditions as in Example 2 were as shown in the table below.

第1表 発明の効果 以上詳しく述べたように、本発明の方法によれば、セラ
ミックス焼結体母材を精選し、被覆Al2O3膜々厚を
所定範囲内に制限し、かつ該Al2O3被覆処理温度を
特定の範囲内の値としたことに基き、セラミックス工具
にとって重要な2つの要件、即ち耐摩耗性と靭性に対す
る要件を同時に満足する、実用化に十分耐え寿る被覆セ
ラミックス工具を提供することができた。これはセラミ
ックス焼結体母材とA1□0.被覆層との密着強度を上
記のような3つの要件、中でも特に被覆処理温度を従来
法よりも高くしたことにより達成されたものであり、市
販のAl203/Tt C系の焼結体工具と1ヒ較して
大巾に改善されたフランク摩耗等の緒特性を有するもの
である。
Table 1 Effects of the Invention As described in detail above, according to the method of the present invention, the ceramic sintered body base material is carefully selected, the thickness of the coating Al2O3 films is limited within a predetermined range, and the Al2O3 coating treatment temperature is Based on the value set within a specific range, it is possible to provide a coated ceramic tool that satisfies two important requirements for ceramic tools at the same time, namely wear resistance and toughness, and that has sufficient durability for practical use. did it. This is a ceramic sintered body base material and A1□0. The adhesion strength with the coating layer was achieved by meeting the three requirements mentioned above, especially by increasing the coating treatment temperature higher than that of the conventional method. It has significantly improved flank wear and other properties compared to previous models.

また、本発明の方法では生産性、経済性の観点から有利
なCVD法が通常の条件下で十分な堆積速度で利用でき
るので、本発明の方法はセラミックス工具の製造コスト
、量産性の点でも満足し得るものである。
Furthermore, in the method of the present invention, the CVD method, which is advantageous from the viewpoint of productivity and economy, can be used at a sufficient deposition rate under normal conditions. It's satisfying.

【図面の簡単な説明】[Brief explanation of drawings]

添付第1図は、従来のセラミックス工具による鋳鉄の切
削テスト結果をプロットしたグラフであり、 第2図は、従来法で得た被覆セラミックス工具の被覆膜
々厚に伴う、フランク摩耗が0.3mmに達するまでの
時間の変動をプロットしたグラフであり、 第3図は各種成膜法による被覆膜の形成温度と、接着強
度(臨界荷重+Lc)との関係をプロットしたグラフで
ある。 特許出願人  住友電気工業株式会社 ;刀 肖i  g守 間  (分) 第1図 Al2O3梳ma厚 (声) W覆n 度 (”C)
Attached Figure 1 is a graph plotting the cast iron cutting test results using a conventional ceramic tool, and Figure 2 shows that the flank wear of the coated ceramic tool obtained by the conventional method was 0. This is a graph plotting the variation in the time taken to reach 3 mm. FIG. 3 is a graph plotting the relationship between the coating film formation temperature and adhesive strength (critical load + Lc) by various film forming methods. Patent applicant: Sumitomo Electric Industries, Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)セラミックス焼結体母材を1150〜1500℃
の範囲内の温度に加熱保持し、その表面を化学気相蒸着
法によって0.5〜20μmの厚さのAl_2O_3薄
膜で被覆することを特徴とする強靭セラミックス工具の
製造方法。
(1) Ceramic sintered body base material at 1150-1500℃
1. A method for producing a strong ceramic tool, which comprises heating and maintaining the tool at a temperature within the range of 100 to 100 μm, and coating the surface of the tool with an Al_2O_3 thin film having a thickness of 0.5 to 20 μm by chemical vapor deposition.
(2)上記セラミックス焼結体母材がAl_2O_3を
主成分とし、TiC、TiN、Ti(CO)、WCおよ
びZrO_2からなる群から選ばれる少なくとも1種の
成分を5〜50重量%の割合で含むものであることを特
徴とする特許請求の範囲第1項記載の強靭セラミックス
工具の製造方法。
(2) The ceramic sintered body base material has Al_2O_3 as a main component and contains at least one component selected from the group consisting of TiC, TiN, Ti(CO), WC, and ZrO_2 in a proportion of 5 to 50% by weight. A method for manufacturing a tough ceramic tool according to claim 1, characterized in that the tool comprises:
(3)上記セラミックス焼結体母材がSi_3N_4を
主成分とし、ZrO_2、TiN、Y_2O_3、Al
_2O_3およびAlNからなる群から選ばれる少なく
とも1種を5〜50重量%の割合で含むものであること
を特徴とする特許請求の範囲第1項記載の強靭セラミッ
クス工具の製造方法。
(3) The ceramic sintered body base material mainly contains Si_3N_4, ZrO_2, TiN, Y_2O_3, Al
The method for manufacturing a strong ceramic tool according to claim 1, characterized in that the tool contains at least one selected from the group consisting of _2O_3 and AlN in a proportion of 5 to 50% by weight.
JP8969986A 1986-04-18 1986-04-18 Manufacture of tough ceramic tool Pending JPS62246429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8969986A JPS62246429A (en) 1986-04-18 1986-04-18 Manufacture of tough ceramic tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8969986A JPS62246429A (en) 1986-04-18 1986-04-18 Manufacture of tough ceramic tool

Publications (1)

Publication Number Publication Date
JPS62246429A true JPS62246429A (en) 1987-10-27

Family

ID=13978016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8969986A Pending JPS62246429A (en) 1986-04-18 1986-04-18 Manufacture of tough ceramic tool

Country Status (1)

Country Link
JP (1) JPS62246429A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011093003A (en) * 2009-10-27 2011-05-12 Kyocera Corp Surface-coated member

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155079A (en) * 1980-04-30 1981-12-01 Sumitomo Electric Industries Coated cutting tool
JPS5873764A (en) * 1981-10-29 1983-05-04 Hitachi Metals Ltd Coated sinteredhard alloy and its production thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155079A (en) * 1980-04-30 1981-12-01 Sumitomo Electric Industries Coated cutting tool
JPS5873764A (en) * 1981-10-29 1983-05-04 Hitachi Metals Ltd Coated sinteredhard alloy and its production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011093003A (en) * 2009-10-27 2011-05-12 Kyocera Corp Surface-coated member

Similar Documents

Publication Publication Date Title
US5503913A (en) Tool with wear-resistant cutting edge made of cubic boron nitride or polycrystalline cubic boron nitride, a method of manufacturing the tool and its use
KR100432108B1 (en) Coated turning insert and method of making it
US6737178B2 (en) Coated PCBN cutting tools
JP2008183708A (en) Coated insert for milling and its manufacturing method
JP4786800B2 (en) Cutting tool coated with PVD-
JP2007237391A (en) Coated cermet cutting tool
JP2004100004A (en) Coated cemented carbide and production method therefor
JPH11124672A (en) Coated cemented carbide
JP4142955B2 (en) Surface coated cutting tool
JP2012144766A (en) Coated member
JPS62246429A (en) Manufacture of tough ceramic tool
JPH10237650A (en) Wc base cemented carbide and its production
JPH0364469A (en) Coated sintered hard alloy tool
JPS63306805A (en) Diamond coated cutting tool
JPH01180980A (en) Coated tool material
JPS6244572A (en) Surface coated tool
JPH0353070A (en) Surface coated tool member having excellent wear resistance
JPS5925972A (en) Coated hard member
JPS6274508A (en) Cemented carbide coated cutting tip
JPS631278B2 (en)
JP2970016B2 (en) Hard layer coated cemented carbide cutting tool
JPH03122280A (en) Coated cemented carbide tool
JP2657235B2 (en) Coated super hard alloy tool
JPS6111724B2 (en)
JPS6136071B2 (en)