JPS622460A - Molten carbonate type fuel cell - Google Patents

Molten carbonate type fuel cell

Info

Publication number
JPS622460A
JPS622460A JP60140768A JP14076885A JPS622460A JP S622460 A JPS622460 A JP S622460A JP 60140768 A JP60140768 A JP 60140768A JP 14076885 A JP14076885 A JP 14076885A JP S622460 A JPS622460 A JP S622460A
Authority
JP
Japan
Prior art keywords
gas flow
flow path
fuel cell
rails
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60140768A
Other languages
Japanese (ja)
Inventor
Takashi Nishimura
隆 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60140768A priority Critical patent/JPS622460A/en
Publication of JPS622460A publication Critical patent/JPS622460A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To smooth the stacking of a fuel cell, by providing second rails on a separator plate at the mutually-opposite edges thereof opposite first rails so as to extend perpendicularly to the directions of gas passages, define gas passage sections and prevent the separator plate from warping due to a heat treatment. CONSTITUTION:Second rails 4 of stainless steel are provided on a separator plate 1 opposite first rails 3 and placed on an oxidizing gas passage. Other second rails 5 of stainless steel are placed on a fuel gas passage. The second rails 4, 5 are located at the mutually-opposite edges of the separator plate 1 and extend perpendicularly to the directions of the gas passages. The second rails 4, 5 have grooves 41, 51 for making gas passage sections. The first rails 2, 3 and the second rails 4, 5 are provided on both the sides of the separator plate 1 so that both the sides of the plate are almost equally affected by a heat treatment. The plate 1 is thus prevented from being deformed by the heat treatment.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、溶融炭酸塩形燃料電池に関し、たこの種の
溶融炭酸塩形燃料電池(以下燃料電池と記す)の従来の
構成例を示す。また、第4゜図は従来のセパレータ板の
斜視図金示す。図において(川は燃料側の端板であり、
材質としてステンレスが使用されるが燃料ガスが接■す
る面にはニッケルが被覆されている。(6a)%(6b
)、(6C)は燃料電極(7a)、(7b)、(7c)
に対設する燃料ガス流路板であり、燃料ガス流路?確保
する働きと、電流を流す集電板としての働きを兼ねてい
る。材質としては、溶融塩と反応ガスに対する耐食性か
らニッケル基の合金が選ばれていもそしてガスの電極へ
の拡散が円滑に行なわれるよう波型にプレス成型された
ものが用いられるゆ燃料側電極(7IL)、(7b)、
(7a社ニッケル系合金粉末を主成分として得られる多
孔質体である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a molten carbonate fuel cell, and shows a conventional configuration example of a molten carbonate fuel cell (hereinafter referred to as a fuel cell) of this type. . FIG. 4 is a perspective view of a conventional separator plate. In the figure (the river is the end plate on the fuel side,
The material used is stainless steel, but the surface that comes in contact with fuel gas is coated with nickel. (6a)%(6b
), (6C) are fuel electrodes (7a), (7b), (7c)
It is a fuel gas flow path plate installed opposite to the fuel gas flow path. It has the function of securing the current, and also functions as a current collector plate that allows the current to flow. As for the material, a nickel-based alloy was selected for its corrosion resistance against molten salts and reactive gases, and the fuel side electrode was press-molded into a corrugated shape to ensure smooth diffusion of gas into the electrode. 7IL), (7b),
(It is a porous body obtained using nickel-based alloy powder manufactured by Company 7a as a main component.

(8a)、(8b)、(ac社電電解質例えば電解質層
と呼ばれるものであり、アルミン酸リチウムの多孔質板
である電解質保持体に炭酸リチクムや炭酸ナトリクムと
いった電解質を含浸したものである。(9aχ(9m)
χ(9cλは酸化剤側電極であり、燃料側電極(7a)
、(7b)、(?a)と同様な多孔質構造体から成って
−る。この酸化剤側電極(9a)、(9b)、(9C)
には原料としてニッケル粉末を用いる場合と、酸化ニッ
ケル粉末を用いる場合があるが、1[aの動作状態にお
いては、いずれの場合も酸化ニッケルにリチクムイオン
が侵入した状態の多孔質構造体となる。
(8a), (8b), (AC company electrolyte, for example, is called an electrolyte layer, and is an electrolyte holder that is a porous plate of lithium aluminate impregnated with an electrolyte such as lyticum carbonate or sodium carbonate. ( 9aχ (9m)
χ (9cλ is the oxidizer side electrode, and the fuel side electrode (7a)
, (7b) and (?a). These oxidant side electrodes (9a), (9b), (9C)
There are cases where nickel powder is used as a raw material, and nickel oxide powder is used as a raw material, but in the operating state of 1[a, in both cases, a porous structure is formed in which lithium ions have penetrated into nickel oxide.

(10a)、(In)、(10e) H酸化剤側電極<
oh>、 (91)入(9C)に対設し、酸化剤ガス流
路を確保する酸化剤ガス流路板であり、燃料ガス流路板
(6a)、(6b)、(6c)と同様な形状をしたステ
ンレス製の波型板よシ成っている。(la)、(xb)
 t/i燃料ガス流路と酸化剤ガス流路を分離するセパ
レータ板で、燃料ガスに接する側が、例えばニッケル被
覆されたステンレス板である。このセパレータmt+。
(10a), (In), (10e) H oxidizer side electrode
oh>, (91) This is an oxidant gas flow path plate that is installed opposite to the input (9C) to ensure an oxidant gas flow path, and is similar to the fuel gas flow path plates (6a), (6b), and (6c). It is made of corrugated stainless steel plate with a unique shape. (la), (xb)
A separator plate that separates the t/i fuel gas flow path and the oxidant gas flow path, and the side that comes into contact with the fuel gas is, for example, a nickel-coated stainless steel plate. This separator mt+.

(la)、(11))は両端部に第1レール部、例えば
ステンレス製のハンドレール(2)、(2a)、(2b
)及び(31、(8a)、(8b)が溶接され、隣接す
る単電池間で燃料ガスと酸化剤ガスの混合を防ぐ。(+
2)は酸化剤側の端板で燃料側の端板(川と同様の形状
でステンレスにて構成されている。
(la), (11)) have first rail parts at both ends, for example, stainless steel handrails (2), (2a), (2b).
) and (31, (8a), and (8b)) are welded to prevent mixing of fuel gas and oxidant gas between adjacent cells. (+
2) is the end plate on the oxidizer side and the end plate on the fuel side (it has the same shape as the river and is made of stainless steel).

燃料電池は、上記のように、電解質層(8a)、(8b
)、(8c)全介在して対向する燃料側電極(7a)(
7b)、(7c)および酸化剤側電極(9a)、(9b
)(9C)を有する単電池とセパレータ板を交互に積層
した積層体を構成している。
As described above, the fuel cell includes electrolyte layers (8a) and (8b).
), (8c) fully interposed and opposing fuel side electrodes (7a) (
7b), (7c) and oxidant side electrodes (9a), (9b
) (9C) and separator plates are alternately stacked to form a laminate.

ガスの供給方法は、第5図に示されるように中心に流路
管をもつステンレス製のマニホールドを燃料電池の四方
1c収りつけ、それぞれ、燃料ガス人口FI3) 、 
焼料ガス出ロα4.酸化剤ガス入口aυ、酸化剤ガス出
口Hを構成する・燃料ガスを矢印A方向より流入させ、
酸化剤ガスを矢印B方向より流入させる。
As shown in Fig. 5, the gas supply method is to fit a stainless steel manifold with a flow pipe in the center into the four sides 1c of the fuel cell, and to supply the fuel gas to the fuel cell FI3), respectively.
Burning gas outflow α4. Configuring the oxidizing gas inlet aυ and the oxidizing gas outlet H ・Let the fuel gas flow in from the direction of arrow A,
Oxidizing gas is introduced from the direction of arrow B.

次にこの種の溶fi炭酸塩形燃料電池の動作について説
明する。燃料電池は、水素などの燃料ガスと空気などの
酸化剤ガスが反応する際に放出する化学エネルギーを、
電気化学的な反応を起こさせることによって直接電気エ
ネルギーに変換して電力を得る装置である。
Next, the operation of this type of soluble carbonate fuel cell will be explained. A fuel cell uses the chemical energy released when a fuel gas such as hydrogen and an oxidant gas such as air react.
This is a device that generates electricity by directly converting it into electrical energy by causing an electrochemical reaction.

この電気化学反応全効率良く行なわせるために、一般的
に多孔質電極が使用される。また電解質として、溶融状
態の炭酸リチクムや炭酸カリタムなどの炭酸塩の混合物
が使用され、電解質中の炭酸イオン(Co ”)が電荷
移動に寄与する。
In order to carry out this electrochemical reaction with high efficiency, porous electrodes are generally used. Further, as the electrolyte, a mixture of carbonates such as lyticum carbonate and potassium carbonate in a molten state is used, and carbonate ions (Co 2 '') in the electrolyte contribute to charge transfer.

燃料側電極(7a)、(7b)、(7c)及び酸化剤側
電極(9a)、(9b)、(9c)における反応は次の
ようになっている。
The reactions at the fuel side electrodes (7a), (7b), (7c) and the oxidizer side electrodes (9a), (9b), (9c) are as follows.

燃料側電極 山+ Cot  →Ht o+co鵞+2
e  Il1酸化剤側電極 C’h” V2O5+ 2
θ−Cot    (21上記の反応の進行を第8図に
基づいて説明する・燃料側電極(7a)、(7b)%(
7C)においては、燃料ガス流路板(6a)、(6b)
、(6C)を流れる燃料ガス中の水素と電解質層(8a
)、(8b)、(8C)に含まれる炭酸イオンがそれぞ
れの単電池において式il+のように反応し、水と二酸
化炭素と電子が虫取するO 第8図中で上方の単[aの燃料側電極(7a)で生じた
電子は燃料ガス流路板(6a)、燃料側の端板(11)
を通って外部負荷に送られた後、酸化剤側の端板(l匂
、酸化剤ガス流路板(10c)を通って下方の単電池の
酸化剤画′flL極(9C)に至る。また、燃料側電極
(7C)で生じた電子は燃料ガス流路板(8(り%セパ
レータ板(1)、酸化剤ガス流路板(IOlll)を通
って酸化剤側電極(91))K至る。酸化剤側i1E極
(9a〕、(9b)、(9C)においては、この流れ込
んだ電子と酸化剤ガス中に含まれる二酸化炭素と酸素が
反応し、式(2)のように炭酸イオンが生じ電解質層(
8a)、(sb)、 (8c)中に溶解することによっ
て電池反応が進行する。
Fuel side electrode Yama+ Cot →Hto+co+2
e Il1 oxidizer side electrode C'h” V2O5+ 2
θ-Cot (21 The progress of the above reaction will be explained based on FIG. 8. Fuel side electrodes (7a), (7b)% (
7C), fuel gas flow path plates (6a), (6b)
, (6C) and the electrolyte layer (8a
), (8b), and (8C) react in each unit cell as shown in the formula il+, and water, carbon dioxide, and electrons are removed. The electrons generated at the side electrode (7a) are transferred to the fuel gas flow path plate (6a) and the fuel side end plate (11).
After being sent to the external load through the oxidant side end plate (10c), it passes through the oxidant gas flow path plate (10c) and reaches the oxidizer terminal (9C) of the lower unit cell. In addition, the electrons generated at the fuel side electrode (7C) pass through the fuel gas flow path plate (8(recent) separator plate (1) and the oxidant gas flow path plate (IOll) to the oxidizer side electrode (91)). At the i1E electrodes (9a), (9b), and (9C) on the oxidizing agent side, the inflowing electrons react with carbon dioxide and oxygen contained in the oxidizing gas, and carbonate ions are generated as shown in equation (2). An electrolyte layer (
The battery reaction proceeds by dissolving in 8a), (sb), and (8c).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の溶融炭酸塩形燃料電池において、セパレータ板I
ll td第4図に示すように構成されているので、そ
の製造過程では例えば電池組み立て以前に水素雰囲気中
でおよそ1時間、1000℃の熱処理を行う。セパレー
タ板Il+の両面で、ハードレール(21、(3)が設
けられた部分と設けられていない部分があり、この彰響
で第6図に示されるように熱娠理後セパレータ板11)
に反りが生じ、電池の積層に支障をきたすという問題点
があったO この発明は上記のような問題点を解消するためになされ
たもので、熱処理を行なっても反りが生じにく−セパレ
ータ板により、電池の積層をスムーズにできる燃料電池
を得ること全目的とする。
In conventional molten carbonate fuel cells, separator plate I
Since the structure is as shown in FIG. 4, in the manufacturing process, for example, heat treatment at 1000° C. for about one hour in a hydrogen atmosphere is performed before battery assembly. On both sides of the separator plate Il+, there are parts with hard rails (21, (3)) and parts without them.
This invention was made to solve the above problems, and the separator does not warp even after heat treatment. The overall objective is to obtain a fuel cell that allows cells to be stacked smoothly using plates.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る溶融炭酸塩形燃料電池は、セパレータ板
の第1レール部が設けられた側と反対側で、流路方向と
垂直に両端部に、ガス流路を与えるような第2レール部
を設けたものである。
The molten carbonate fuel cell according to the present invention has a second rail portion that provides a gas flow path at both ends perpendicular to the flow path direction on the side opposite to the first rail portion of the separator plate. It has been established.

〔作用〕[Effect]

この発明におけるセパレータ板は、その両面でほぼ同じ
状態にできるため、製造過程において熱処理を行なって
も反シが生じにくい。
Since the separator plate according to the present invention can be made in substantially the same state on both sides, it is difficult to cause warping even if heat treatment is performed during the manufacturing process.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。第1
図は、この発明の一実施例に係るセパレータ板の斜視図
であり、図において、(4)はセパレータ板Il+の第
1レール部(3)が設けられた側と反対側の酸化剤ガス
流路に取り付けられた、例えばステンレス製の第8レー
ル部、i5)は同じく憾科ガス流路に収り付けられたス
テンレス製の第8レール部である。この4f、2レ一ル
部+41、(5)はガスの流路方向と垂直方向にセパレ
ータ板+11の両端部に設けられ、それぞれガス流路を
与えるように複数の開孔、例えば溝(ロ)、(6υが設
けられている。さらに、Wa師、FJDで構成されるガ
ス流路断面積を第2レール部(41、(6)の中央部と
同辺部で変化させており、この場合は、第2レール部(
41、(5)の中央から両端に近づくにつれて溝(財)
、利の幅を広く構成している。第6図は、5個の単電池
を積層した燃料電池を示すもので、溝(6)、(財)で
構成されるガス流路断面積をセパレータ板(la)〜(
ld)で変化させている。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is a perspective view of a separator plate according to an embodiment of the present invention, and in the figure, (4) indicates the oxidizing gas flow on the side opposite to the side where the first rail portion (3) of the separator plate Il+ is provided. The eighth rail part i5), which is made of stainless steel, for example, and which is attached to the passage, is also the eighth rail part made of stainless steel, which is also housed in the gas flow passage. These 4f, 2 rail parts +41, (5) are provided at both ends of the separator plate +11 in a direction perpendicular to the gas flow direction, and each has a plurality of openings, such as grooves (rotations), to provide a gas flow path. ), (6υ) are provided.Furthermore, the cross-sectional area of the gas flow path composed of Wa and FJD is changed at the center and the same side of the second rail part (41, (6)). In this case, the second rail section (
41. As you approach both ends from the center of (5), the groove (goods)
, with a wide range of profits. Figure 6 shows a fuel cell in which five single cells are stacked, and the cross-sectional area of the gas flow path, which is composed of grooves (6) and
ld).

即ち、燃料電池の中心のセパレータ板(lb)における
第2レール部(5b)に形成された溝削の深さは、端部
のセパレータ板(1cL)における溝削の深さより浅い
That is, the depth of the groove formed in the second rail portion (5b) of the separator plate (lb) at the center of the fuel cell is shallower than the depth of the groove formed in the end separator plate (1cL).

上記のように構成されたセパレータ板は、セパレータ板
Il+の両面に第1レール部+21、+31と第2レー
ル部(41、(61が形成されており、熱処理による杉
響がセパレータ板+11の上下でほぼ同一の状態になシ
、変形を防ぐことができる。また、従来のマニホールド
を使用したガス供給方法では、イニホールドの流路管か
ら離れるにつれてガス流量が少なくなり、各単電池の特
性にばらホールドの流路管よ#)離れるにつれて、溝(
財)、(BDの断面積を大きくすれば、燃料電池内のガ
ス流量を一様にすることができる。
The separator plate configured as described above has the first rail parts +21, +31 and the second rail parts (41, (61) formed on both sides of the separator plate Il+, and Sugi-kyou due to heat treatment is formed on the upper and lower sides of the separator plate +11. In addition, in the conventional gas supply method using a manifold, the gas flow rate decreases as the distance from the inifold flow pipe increases, and the characteristics of each cell vary. Hold the flow path pipe #) as it moves away from the groove (
(Goods), (By increasing the cross-sectional area of BD, the gas flow rate within the fuel cell can be made uniform.

なお、上記実施例では第2レール部+41.+51に溝
包υ、□□□Oをつけることによシ、ガス流路を作った
が、これ以外にも第2レール部n1.+51に貫通孔を
持たせてもよく、また、ガス流路を閉鎖しない程度の櫃
層方向の厚さの薄い@22レ一ルを用りるなど、ガス流
路を与えるようなものであればよro また、上記に示す貫通孔の大きさを分布させること、及
び薄い第2レール部14]、(5)に分布全もたせるこ
とに本シ、ガス流量分布をほぼ一様にして、燃料電池全
体の特性の低下を防ぐこともできる。
In addition, in the above embodiment, the second rail portion +41. A gas flow path was created by attaching groove envelopes υ and □□□O to +51, but in addition to this, the second rail portion n1. +51 may have a through hole, or it may be something that provides a gas flow path, such as using a @22 rail with a thin thickness in the direction of the shell layer that does not close the gas flow path. In addition, by distributing the sizes of the through holes shown above, and by making the thin second rail part 14 and (5) have the entire distribution, the gas flow rate distribution is made almost uniform, and the fuel It is also possible to prevent the overall characteristics of the battery from deteriorating.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、電解質を介在して対
向する燃料側電極および酸化剤電極を有する単電池、並
びに溶料側電極に対設する燃料ガス流路と酸化剤側電極
に対設する酸化剤ガス流路とを分離し、流路方向と平行
に両端部に設けた第1レール部を有するセパレータ板を
交互に積層して積層体を構成する溶融炭酸塩形溶料電池
において、セパレータ板の第1レール部が設けられた側
と反対側で、流路方向と垂直に両端部に、ガス流路を与
えるような第2レール部を設けることによシ、変形の生
じにくいセパレータ板を得て、電池の積層が容易な溶融
炭酸塩形燃料電池を得ることができる。
As described above, according to the present invention, there is provided a unit cell having a fuel side electrode and an oxidant electrode facing each other with an electrolyte interposed therebetween, and a fuel gas flow path and an oxidant side electrode provided opposite to the solvent side electrode. In a molten carbonate type solvent battery in which a laminate is formed by alternately laminating separator plates having first rail portions provided at both ends parallel to the flow path direction, By providing a second rail portion that provides a gas flow path at both ends perpendicular to the flow path direction on the side opposite to the first rail portion of the separator plate, deformation is less likely to occur. By obtaining separator plates, it is possible to obtain a molten carbonate fuel cell in which cells can be easily stacked.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例に係るセパレータ板を示す
斜視図、第2図はこの発明の一実施例による燃料電池を
示す平面図、第8図は従来の燃料電池を示す斜視図、第
4図は従来のセパレータ板を示す斜視図、第5図は燃料
電池にガス供給用のマニホールドを収り付けて示す斜視
図、第6図(・ゴ従来のセパレータ板の熱処理後の変形
を示す斜視図である。 Hl、(la) 〜(ld) :セパレータ板、+21
 、 (ga〜1cL)、(21、(2a)二(1) 
、fall、(3a) 〜(3d):第1レール部、(
4)、(6)、(5a) 〜(5d) :第2レール部
、G11)、!5υ:開孔、(8a) 〜(8c):電
解質。 なお、図中、同一・符号は同一、又は相当部分を示す。
FIG. 1 is a perspective view showing a separator plate according to an embodiment of the present invention, FIG. 2 is a plan view showing a fuel cell according to an embodiment of the invention, and FIG. 8 is a perspective view showing a conventional fuel cell. Fig. 4 is a perspective view showing a conventional separator plate, Fig. 5 is a perspective view showing a gas supply manifold installed in a fuel cell, and Fig. 6 shows deformation of a conventional separator plate after heat treatment. It is a perspective view showing Hl, (la) to (ld): separator plate, +21
, (ga~1cL), (21, (2a) two (1)
, fall, (3a) to (3d): first rail part, (
4), (6), (5a) to (5d): Second rail part, G11),! 5υ: open pores, (8a) to (8c): electrolyte. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (3)

【特許請求の範囲】[Claims] (1)電解質を介在して対向する燃料側電極および酸化
剤側電極を有する単電池、並びに燃料側電極に対設する
燃料ガス流路と酸化剤側電極に対設する酸化剤ガス流路
とを分離し、流路方向と平行に両端部に設けた第1レー
ル部を有するセパレータ板を交互に積層して積層体を構
成する溶融炭酸塩形燃料電池において、上記セパレータ
板の第1レール部が設けられた側と反対側で、流路方向
と垂直に両端部に、ガス流路を与えるような第2レール
部を設けたことを特徴とする溶融炭酸塩形燃料電池。
(1) A unit cell having a fuel-side electrode and an oxidizer-side electrode facing each other with an electrolyte interposed therebetween, and a fuel gas flow path facing the fuel-side electrode and an oxidizer gas flow path facing the oxidizer-side electrode. In a molten carbonate fuel cell in which a laminate is formed by alternately laminating separator plates having first rail parts provided at both ends parallel to the flow path direction, the first rail part of the separator plate A molten carbonate fuel cell characterized in that second rail portions are provided at both ends perpendicular to the flow path direction on the side opposite to the side where the gas flow path is provided.
(2)第2レール部は、ガス流路を与える複数の開孔を
有し、そのガス流路断面積を、第2レール部の中央部と
周辺部で変化させたことを特徴とする特許請求の範囲第
1項記載の溶融炭酸塩形燃料電池。
(2) A patent characterized in that the second rail portion has a plurality of openings providing gas flow paths, and the cross-sectional area of the gas flow paths is changed between the central portion and the peripheral portion of the second rail portion. A molten carbonate fuel cell according to claim 1.
(3)第2レール部は、ガス流路を与える複数の開孔を
有し、そのガス流路断面積を、積層されている複数のセ
パレータ板同志で変化させたことを特徴とする特許請求
の範囲第1項又は第2項記載の溶融炭酸塩形燃料電池。
(3) A patent claim characterized in that the second rail portion has a plurality of openings providing gas flow paths, and the cross-sectional area of the gas flow paths is varied between the plurality of laminated separator plates. The molten carbonate fuel cell according to item 1 or 2.
JP60140768A 1985-06-27 1985-06-27 Molten carbonate type fuel cell Pending JPS622460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60140768A JPS622460A (en) 1985-06-27 1985-06-27 Molten carbonate type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60140768A JPS622460A (en) 1985-06-27 1985-06-27 Molten carbonate type fuel cell

Publications (1)

Publication Number Publication Date
JPS622460A true JPS622460A (en) 1987-01-08

Family

ID=15276293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60140768A Pending JPS622460A (en) 1985-06-27 1985-06-27 Molten carbonate type fuel cell

Country Status (1)

Country Link
JP (1) JPS622460A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006221853A (en) * 2005-02-08 2006-08-24 Toyota Motor Corp Separator of fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006221853A (en) * 2005-02-08 2006-08-24 Toyota Motor Corp Separator of fuel cell
JP4692001B2 (en) * 2005-02-08 2011-06-01 トヨタ自動車株式会社 Fuel cell separator

Similar Documents

Publication Publication Date Title
US7569301B2 (en) Fuel cell
KR102027117B1 (en) Current collector for fuel cell and stack structure including the same
JP2004087311A (en) Fuel cell stack and metallic separator for for fuel cell stack
JPS61216257A (en) Separator for fuel cell
EP2860806B1 (en) Stack structure of fuel cell
JP6781188B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
JP2005166423A (en) Solid oxide fuel cell
JPS625569A (en) Molten carbonate type fuel cell stack
JP6890040B2 (en) Electrochemical reaction cell stack
JPH0355764A (en) Solid electrolytic type fuel cell
JPS622460A (en) Molten carbonate type fuel cell
JPS61148766A (en) Fused carbonate type fuel cell
JP4422505B2 (en) Fuel cell
JP7507738B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
JP7112443B2 (en) Electrochemical reaction cell stack
JP7159126B2 (en) Electrochemical reaction cell stack
JP6917339B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
JPH06342664A (en) Method for reforming inside of flat solid electrolyte fuel cell having internal manifold structure using compound separator of heat resistant metal plate and oxide plate
JP7049781B2 (en) Conductive members, electrochemical reaction units, and electrochemical reaction cell stacks
JPS62122070A (en) Molten carbonate fuel cell stack
JPH0656765B2 (en) Molten carbonate fuel cell
JP2023081742A (en) Electrochemical reaction unit and electrochemical reaction cell stack
JP2023119145A (en) Collector-electrochemical reaction single cell composite and electrochemical reaction cell stack
JP2023080457A (en) Electrochemical reaction unit and electrochemical reaction cell stack
JPS61248364A (en) Fused carbonate type fuel cell