JPS62245741A - Polarization diversity optial reception - Google Patents

Polarization diversity optial reception

Info

Publication number
JPS62245741A
JPS62245741A JP61089306A JP8930686A JPS62245741A JP S62245741 A JPS62245741 A JP S62245741A JP 61089306 A JP61089306 A JP 61089306A JP 8930686 A JP8930686 A JP 8930686A JP S62245741 A JPS62245741 A JP S62245741A
Authority
JP
Japan
Prior art keywords
light
polarization
signal
ratio
local oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61089306A
Other languages
Japanese (ja)
Inventor
Katsumi Emura
克己 江村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61089306A priority Critical patent/JPS62245741A/en
Publication of JPS62245741A publication Critical patent/JPS62245741A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/614Coherent receivers comprising one or more polarization beam splitters, e.g. polarization multiplexed [PolMux] X-PSK coherent receivers, polarization diversity heterodyne coherent receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/615Arrangements affecting the optical part of the receiver
    • H04B10/6151Arrangements affecting the optical part of the receiver comprising a polarization controller at the receiver's input stage
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/64Heterodyne, i.e. coherent receivers where, after the opto-electronic conversion, an electrical signal at an intermediate frequency [fIF] is obtained

Abstract

PURPOSE:To apply the ratio scaler multiplex without using the electric square characteristic by adjusting the polarization of a local oscillated light so that the branch ratio to the 1st and 2nd optical beams by a polarization separation element of the local oscillation light is equal to the branch ratio of the signal light. CONSTITUTION:Part of the 1st and 2nd electric signals 12, 13 is branched, a division circuit 22 detects its ratio to obtain the 1st output signal 24. On the other hand, a division circuit 23 detects the ratio of the lst and 2nd DC components 20,21, the signal 25 obtained is given to a nonlinear circuit 26 having the square characteristic to obtain the 2nd output signal 27 proportional to the square of the branch ratio of the local oscillation light 2 to the 1st and 2nd light beams 8,9. The difference obtained by inputting the 1st and 2nd output signals 24,27 to a differential amplifier 28 is utilized as a control signal 29 to the polarization control element 3. The control signal 29 turns the polariza tion control element 3 to change the polarized direction of the local oscillation light 2, the branch ratio of the local oscillation light 2 by a polarization separa tion element 3 is changed to make the branch ratio of the signal light 4 to the local oscillation light 2 euqal.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は光ヘテロダイン検波、光ホモダイン検波を用
いる光通信システムや光計測システム等に用いられる偏
波ダイパーシティ光受信装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a polarization diversity optical receiver used in optical communication systems, optical measurement systems, etc. that use optical heterodyne detection or optical homodyne detection.

(従来の技術) 一般に光ヘテロゲイン検波方式には、従来の光直接検波
方式に比べ受信感度を10〜100倍以上に高めること
ができるという大きな特長があるため、長距離光通信幹
線システムや各種高感度光センサに有効な光検波方式と
なっている。
(Prior technology) In general, the optical heterogain detection method has the great feature of increasing reception sensitivity by 10 to 100 times compared to the conventional optical direct detection method, so it is used in long-distance optical communication trunk systems and various high-speed This is an effective optical detection method for sensitive optical sensors.

この光検波方式において高い受信感度を実現するために
は、信号光と局部発振光の効率の良い合波が必要であり
、そのために信号光と局部発振光両光の伝搬方向、偏波
状態、ビーム径等を一致させなければならない。ここで
信号光と局部発振光両光の伝搬方向、ビーム径の一致を
低損失で行なうには、光フアイバカップラの利用が有効
であり、光合波器としての光フアイバカップラの利用が
一般的になっている。偏波状態に関しては、光通信の場
合には、長い距離の光ファイバを伝搬してきた信号光の
偏波状態が光ファイバに加わる様々な擾乱の影響を受は
時間的に変動するし、また光計測システムの場合も、被
測定物の状態により信号光の偏波状態が変動するので、
信号光と局部発振光の偏波状態を常に一致させるための
装置が必要となる。
In order to achieve high reception sensitivity in this optical detection method, efficient multiplexing of the signal light and local oscillation light is required. The beam diameter etc. must be matched. Here, in order to match the propagation direction and beam diameter of both the signal light and the local oscillation light with low loss, it is effective to use an optical fiber coupler, and the use of an optical fiber coupler as an optical multiplexer is generally used. It has become. Regarding the polarization state, in the case of optical communications, the polarization state of signal light propagated over a long distance in an optical fiber is affected by various disturbances applied to the optical fiber, and the polarization state changes over time. In the case of measurement systems, the polarization state of the signal light changes depending on the state of the object to be measured.
A device is required to always match the polarization states of the signal light and the local oscillation light.

この装置としては従来から次の3つが考えられている。Conventionally, the following three types of devices have been considered.

その1つは偏波保存性の良いファイバである。これによ
り信号光の偏波状態が変化しないようにすることができ
る。もう1つは受信時に信号光の偏波状態をモニタし、
それにより信号光あるいは局部発振光の偏波状態を制御
する装置であり、偏波状態の制御により信号光と局部発
振光の偏波整合を図ろうとするものである。残りのひと
つが本発明に関係する偏波ダイパーシティ先受信装置で
ある。これは、信号光と局部発振光を光合波部により合
波し、合波光を偏光分離素子に入射して互いに直交する
偏波面を有する直線偏光の第1、第2の光ビームに2分
し、それぞれ別の受光素子に入射して電気信号に変換し
、その電気信号を処理部により処理、合成しようとする
ものである。この場合、偏光分離素子で分離された第1
、第2の光ビームの各信号光成分と局部発振光成分は、
直線偏光で偏波方向も一致しているので、第1、第2の
光ビームにおいて、偏波状態の不一致による信号の損失
を生じることはない。
One of them is a fiber with good polarization preservation. This makes it possible to prevent the polarization state of the signal light from changing. The other monitors the polarization state of the signal light during reception.
This is a device that controls the polarization state of signal light or local oscillation light, and attempts to achieve polarization matching between signal light and local oscillation light by controlling the polarization state. The remaining one is a polarization diversity destination receiving device related to the present invention. In this method, a signal light and a local oscillation light are combined by an optical multiplexer, and the combined light is incident on a polarization splitting element and split into two linearly polarized first and second light beams with planes of polarization perpendicular to each other. , are incident on separate light-receiving elements and converted into electrical signals, and the electrical signals are processed and synthesized by a processing section. In this case, the first
, each signal light component and local oscillation light component of the second light beam are:
Since the light beams are linearly polarized and have the same polarization direction, no signal loss occurs in the first and second light beams due to mismatch in polarization state.

通常の偏波ダイバーシチ光受信装置においては、局部発
振光の偏光分離素子による第1、第2の光ビームへの分
岐比が1=1になるように局部発振光の偏波状態を設定
している。最も簡便な偏波ダイバーシチ光受信装置では
第1、第2の光ビームをそれぞれ第1、第2の受光部で
受信しそこで得られた電気信号を処理部において強度比
1:1で合成する。
In a normal polarization diversity optical receiver, the polarization state of the locally oscillated light is set so that the split ratio of the locally oscillated light into the first and second light beams by the polarization separation element is 1=1. There is. In the simplest polarization diversity optical receiver, first and second light beams are received by first and second light receiving sections, respectively, and the electrical signals obtained there are combined in a processing section at an intensity ratio of 1:1.

第2図にこの合成方法の場合に生じるパワーペナルティ
−を示す。ここで信号光の偏波状態が偏光分離素子によ
って強度比1:1に分離されるような偏波状態になって
いる場合には、偏波ダイバーシチ受信による受信感度の
劣化は生じない。これに対して信号光が偏光分離素子に
よって一方のビームにのみ分岐される場合には、信号光
の入射しない受信系からは、信号を取り出すことができ
ず、電気系の合成で雑音のみを加算することになる。こ
の場合、単一の受信系で信号を復調した場合に比べ雑音
のみが2倍となるので3dBのパワーペナルティが生じ
る。このような劣化を防ぐために処理部における電気的
な合成を、次のように行なう装置、すなわち第1、第2
の受信部からの信号の大きさが異なる場合、その振幅比
を2乗した比率で信号を合成するレシオスケアラ合成(
最大比合成)装置が考えられている。(大越、笠、荀池
゛ヘテロゲインlコヒーレント型光ファイバ通信のため
の偏波ダイバーシチ光受信機′°電子通信学会通信方式
研究会資料C383−22,1983)。このレシオス
ケアラ合成が理想的に行なわれた場合には、信号光の偏
波状態によらず劣化なしに信号を復調することができる
FIG. 2 shows the power penalty that occurs in this synthesis method. Here, if the polarization state of the signal light is such that it is separated by the polarization separation element at an intensity ratio of 1:1, no deterioration in reception sensitivity occurs due to polarization diversity reception. On the other hand, if the signal light is split into only one beam by the polarization splitter, the signal cannot be extracted from the receiving system where the signal light is not incident, and only noise is added by electrical system synthesis. I will do it. In this case, compared to the case where the signal is demodulated using a single receiving system, only the noise is doubled, resulting in a 3 dB power penalty. In order to prevent such deterioration, the electrical synthesis in the processing section is performed by the following equipment, that is, the first and second
When the magnitude of the signals from the receiving section of the
A maximum ratio synthesis) device is being considered. (Okoshi, Kasa, and Tsuiike, ``Polarization diversity optical receiver for heterogain coherent optical fiber communication'' IEICE Communication Systems Study Group Material C383-22, 1983). If this ratio scaler synthesis is ideally performed, the signal can be demodulated without deterioration regardless of the polarization state of the signal light.

(発明が解決しようとする問題点) ところが実際には、例えば合弁らによる文献(合弁、岩
下、松本′°ダイオード型可変減衰器を用いた偏波ダイ
バーシチ″昭和60年度電子通信学会情報・システム部
門全国大会279)に示されるように、振幅比の2乗を
実現するためにダイオードの自乗特性等を用いている。
(Problems to be solved by the invention) However, in reality, for example, the literature by Joint Venture et al. As shown in National Convention 279), the square characteristic of a diode, etc. is used to realize the square of the amplitude ratio.

このような自乗特性の回路を通した場合にはその自乗特
性によって信号成分より雑音成分が強調され、S/Nの
劣化がおこるという問題があった(ファン、デア、ツイ
ール、(A、V、D、Ziel)瀧、成鳥、田宮訳雑音
第13章、無線従事者教育協会刊)。そこで本発明の目
的はこの問題点を解決し電気的な自乗特性を使わずにレ
シオスケアラ合成が行なえる偏波ダイバーシチ光受信装
置を提供することにある。
When passing through a circuit with such a square-law characteristic, there is a problem in that the noise component is emphasized more than the signal component due to the square-law characteristic, resulting in a deterioration of the S/N ratio (Fan, Dare, Tweel, (A, V, D., Ziel) Taki, Narutori, Tamiya Translated Noise Chapter 13, published by Radio Operator Education Association). SUMMARY OF THE INVENTION An object of the present invention is to solve this problem and provide a polarization diversity optical receiver that can perform ratio scaler combining without using electrical square characteristics.

(問題点を解決するための手段) 本発明の偏波ダイバーシチ光受信装置は、局部発振光用
の光源と、信号光と前記光源から出射した偏波状態の安
定している局部発振光とを合波する光合波部と、光合波
部によって得られる合波光を偏波面が互いに直交する第
1、第2の光ビームに分離する偏光分離素子と、この第
1、第2の光ビームを受光してそれぞれ第1、第2の電
気信号に変換する第1、第2の受光部と、第1、第2の
受光部からの各電気信号から信号出力を検出する処理部
とを含む偏波ダイバーシチ光受信装置にさらに、局部発
振光の偏波状態を変化させる偏光制御素子と偏光分離素
子における信号光の第1、第2の光ビームへの分岐比を
検出する手段を加え、偏波制御素子には、局部発振光の
偏光分離素子による第1、第2の光ビームへの分岐比が
信号光の分岐比と等しくなるように局部発振光の偏波を
調整するような機能を持たせることで実現される。
(Means for Solving the Problems) A polarization diversity optical receiver of the present invention includes a light source for locally oscillated light, a signal light, and a locally oscillated light having a stable polarization state emitted from the light source. An optical multiplexing unit that combines the waves, a polarization separation element that separates the combined light obtained by the optical multiplexing unit into first and second light beams whose polarization planes are orthogonal to each other, and receives the first and second light beams. and a processing section that detects signal output from each electrical signal from the first and second light receiving sections. The diversity optical receiver is further equipped with a polarization control element that changes the polarization state of the locally oscillated light and a means for detecting the splitting ratio of the signal light into the first and second light beams in the polarization separation element, thereby achieving polarization control. The element is provided with a function of adjusting the polarization of the locally oscillated light so that the splitting ratio of the locally oscillated light into the first and second light beams by the polarization splitting element is equal to the splitting ratio of the signal light. This is achieved by

(作用) 本発明では信号光の第1、第2の光ビームへの分岐比を
検出する手段によって得られた情報により偏波制御素子
が局部発振光の偏波状態を変化させる。偏波状態が変化
することにより偏光分離素子による局部発振光の第1、
第2の光ビームへの分岐比が変化するがここでは局部発
振光の分岐比が信号光の分岐比と等しくなるように偏波
制御素子は動作する。これにより第1、第2の受光部か
らの出力の比は偏光分離素子による信号の分岐比の2乗
に比例したものになる。そこで、第1、第2の受光部か
らの電気信号を処理部で線形に加え合せて、信号復調の
ための信号を得る。ここで局部発振光が充分に強い場合
にはシステムのS/Nを決定する最も大きな雑音成分は
局部発振光によるショット雑音であるが信号光の弱いほ
うの受光部には、微弱な局部発振光しか加えられないの
でその受光部で発生する雑音は小さい。従って本発明の
偏波ダイバーシチ光受信装置では信号が微弱なほうの受
光部からの電気信号を処理部で加え合せても系のS/N
はほとんど劣化しない。しかも加え合わせる電気信号は
信号の大きさの比の2乗に比例している。
(Function) In the present invention, the polarization control element changes the polarization state of the locally oscillated light based on the information obtained by the means for detecting the branching ratio of the signal light into the first and second light beams. By changing the polarization state, the first local oscillation light produced by the polarization separation element is
Although the branching ratio to the second light beam changes, the polarization control element operates so that the branching ratio of the locally oscillated light becomes equal to the branching ratio of the signal light. As a result, the ratio of the outputs from the first and second light receiving sections becomes proportional to the square of the signal splitting ratio by the polarization splitting element. Therefore, the electrical signals from the first and second light receiving sections are linearly added together in the processing section to obtain a signal for signal demodulation. If the local oscillation light is strong enough, the largest noise component that determines the S/N of the system is the shot noise due to the local oscillation light, but the weak local oscillation light Since only a small amount of light is added, the noise generated at the light receiving section is small. Therefore, in the polarization diversity optical receiver of the present invention, even if the electrical signals from the light receiving section with the weaker signal are added together in the processing section, the system's S/N
hardly deteriorates. Moreover, the electric signals to be added are proportional to the square of the ratio of signal magnitudes.

従って本発明によれば従来処理部で用いていた電気的な
非線形素子を用いなくても偏波制御素子による光学的な
制御によりレシオスケアラ合成を行なうことができ、偏
波変動による劣化の少ない偏波ダイバーシチ受信装置を
実現することができる。
Therefore, according to the present invention, it is possible to perform ratio scaler synthesis by optical control using a polarization control element without using an electrical nonlinear element conventionally used in a processing section, and polarization with less deterioration due to polarization fluctuations. A diversity receiving device can be realized.

(実施例) 以下、本発明の実施例について図面を参照して詳細に説
明する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の実施例のブロック図である。局部発振
光源1から出射した直線偏光を持つ局部発振光2は、1
/2波長板からなる偏光制御素子3を通ったのちビーム
スプリッタ−で構成される光合波器5によって信号光4
と合波される。これによって得られた合波出力光6は、
偏光分離素子7によって互いに直交する直線偏波をもつ
第1、第2の光ビーム8,9に分離される。
FIG. 1 is a block diagram of an embodiment of the invention. Local oscillation light 2 with linear polarization emitted from local oscillation light source 1 is 1
After passing through a polarization control element 3 consisting of a /2 wavelength plate, the signal light 4 is sent to an optical multiplexer 5 consisting of a beam splitter.
It is combined with The combined output light 6 obtained by this is
The polarization separation element 7 separates the light beam into first and second light beams 8 and 9 having mutually orthogonal linear polarizations.

これら第1、第2の光ビーム8,9はそれぞれ第1、第
2の受光部10.11でヘテロダイン検波され、第1、
第2の電気信号12.13に変換される。これら第1、
第2の電気信号12.13はともに局部発振光2と信号
光4の周波数差に対応した周波数をキャリア周波数とし
て有する中間周波電気信号である。これら第1、第2の
電気信号12.13は第1、第2の遅延線14,15、
合成器16、検波回路18からなる処理部により復調さ
れる。すなわち第1、第2の電気信号12.13は、第
1、第2の遅延線14.15で位相が合わされた後合成
器16で合成される。この合成器16の出力中間周波信
号17は検波回路18で検波され、ベースバンド復調信
号19として出力される。
These first and second light beams 8 and 9 are heterodyne detected by first and second light receiving sections 10.11, respectively.
It is converted into a second electrical signal 12.13. The first of these,
The second electrical signals 12 and 13 are both intermediate frequency electrical signals having a frequency corresponding to the frequency difference between the local oscillation light 2 and the signal light 4 as a carrier frequency. These first and second electrical signals 12.13 are transmitted through first and second delay lines 14, 15,
The signal is demodulated by a processing section consisting of a synthesizer 16 and a detection circuit 18. That is, the first and second electrical signals 12.13 are matched in phase by the first and second delay lines 14.15, and then combined by the combiner 16. The intermediate frequency signal 17 output from the synthesizer 16 is detected by a detection circuit 18 and output as a baseband demodulated signal 19.

本実施例では、偏光分離素子7による信号光4の第1、
第2の光ビーム8,9への分岐比の検出および偏光制御
素子3への制御信号29の大きさの決定を次のような手
段により同時に実現した。通常光へテロダイン検波を行
なう場合、信号光4の大きさに比べ、局部発振光2の大
きさが充分に大きい。従って、第1、第2の受光部10
.11に流れる光電流は局部発振光2によるものである
。そこで、第1、第2の受光部10.11における第1
、第2の直流成分20.21をモニタすることにより、
偏光分離素子7による局部発振光2の第1、第2の光ビ
ーム8,9への分岐比を知ることができる。本発明では
、この局部発振光2の第1、第2の光ビーム8,9への
分岐比が信号光4の分岐比と等しくなるように制御する
必要がある。そこで本実施例では次のような手段で、制
御を行なった。
In this embodiment, the first,
Detection of the splitting ratio into the second light beams 8 and 9 and determination of the magnitude of the control signal 29 to the polarization control element 3 were simultaneously realized by the following means. When performing normal optical heterodyne detection, the size of the local oscillation light 2 is sufficiently large compared to the size of the signal light 4. Therefore, the first and second light receiving sections 10
.. The photocurrent flowing through 11 is caused by locally oscillated light 2 . Therefore, the first
, by monitoring the second DC component 20.21,
The branching ratio of the locally oscillated light 2 into the first and second light beams 8 and 9 by the polarization separation element 7 can be known. In the present invention, it is necessary to control the branching ratio of the locally oscillated light 2 into the first and second light beams 8 and 9 to be equal to the branching ratio of the signal light 4. Therefore, in this embodiment, control was performed using the following means.

信号光4と局部発振光調?岐比が等しい場合には、第1
、第2の電気信号12.13の信号振幅の比は、第1、
第2の受光部10.11における第1、第2の直流成分
20,21の比すなわち局部発振光の分岐比の2乗に等
しくなる。そこで両者の誤差信号を制御信号29として
利用する。すなわち、本実施例では、まず第1、第2の
電気信号12,13の一部を分岐し、第1の除算回路2
2でその比を検出し、第1の出力信号24を得た。一方
、第2の除算回路23では第1、第2の受光部10.1
1における第1、第2の直流成分20.21の比を検出
した。ここで得られた信号25を自乗特性をもつ非線形
回路26を通すことにより、局部発振光2の第1、第2
の光ビーム8,9への分岐比の2乗に比例した第2の出
力信号27を得た。この第1、第2の出力信号24゜2
7を差動増幅器28に入力して得られる第1、第2の出
力信号24.27の大きさの差を偏光制御素子3への制
御信号29として利用した。この制御信号29によりV
2板からなる偏光制御素子3の固有軸を回転することに
より、局部発振光2の偏光方向がかわり、偏光分離素子
7による局部発振光2の分岐比が変化して、信号光4と
局部発振光2の分岐比が等しくなるように制御される。
Signal light 4 and local oscillation light control? If the split ratios are equal, the first
, the ratio of the signal amplitudes of the second electrical signal 12.13 is the first,
It is equal to the square of the ratio of the first and second DC components 20 and 21 in the second light receiving section 10.11, that is, the branching ratio of the locally oscillated light. Therefore, both error signals are used as the control signal 29. That is, in this embodiment, first, a part of the first and second electric signals 12 and 13 is branched, and the first dividing circuit 2
2, the ratio was detected and a first output signal 24 was obtained. On the other hand, in the second division circuit 23, the first and second light receiving sections 10.1
The ratio of the first and second DC components at 20.21 at 1 was detected. By passing the signal 25 obtained here through a nonlinear circuit 26 having a square characteristic, the first and second local oscillation lights 2 are
A second output signal 27 was obtained which was proportional to the square of the splitting ratio into the light beams 8 and 9. These first and second output signals 24°2
The difference in magnitude between the first and second output signals 24 and 27 obtained by inputting the signal 7 into the differential amplifier 28 was used as the control signal 29 to the polarization control element 3. This control signal 29 causes V
By rotating the characteristic axis of the polarization control element 3 consisting of two plates, the polarization direction of the locally oscillated light 2 changes, and the splitting ratio of the locally oscillated light 2 by the polarization separation element 7 changes, so that the signal light 4 and the locally oscillated light are separated. The branching ratio of the light 2 is controlled to be equal.

なおこのとき第2の除算回路23のモニタ出力30によ
り局部発振光2の分岐比をモニタすることができる。こ
のモニタ出力の変動から信号光4の分岐比の変動を知る
ことが可能である。
Note that at this time, the branching ratio of the locally oscillated light 2 can be monitored by the monitor output 30 of the second division circuit 23. It is possible to know the variation in the branching ratio of the signal light 4 from the variation in the monitor output.

この実施例において、局部発振光源1としては半導体レ
ーザを用い、また偏光分離素子7としてはプリズムに多
層膜を蒸着したものを使用した。第1、第2の受光部1
0.11は高速フォトダイオード、前置増幅器、主増幅
器等で構成し、検波回路18としては信号光4が振幅変
調光であったので包路線検波回路を用いた。
In this embodiment, a semiconductor laser was used as the local oscillation light source 1, and a multilayer film deposited on a prism was used as the polarization separation element 7. First and second light receiving sections 1
0.11 is composed of a high-speed photodiode, a preamplifier, a main amplifier, etc., and as the detection circuit 18, since the signal light 4 is amplitude modulated light, an envelope detection circuit is used.

なお、第1、第2の遅延線14,15、合成器16、検
波回路18等は通常のマイクロ波通信装置で使用されて
いるものを用いた。第3図に本発明の偏波ダイバーシチ
光受信装置におけるパワーペナルティを信号光の分岐比
をパラメータとして測定した結果を示す。信号が一方の
出力端子にかたよっている場合のペナルティ−は信号が
出力される側の局部発振光出力が太き(、そのため、局
部発振光の強度雑音の影響があられれたために生じてい
る。しかしペナルティは1dB以下である。第2図に示
されるように従来のシステムでは最悪で3dBのパワー
ペナルティがあったことを考えると本発明により最悪値
が2dB以上改善されたことになる。
Note that the first and second delay lines 14, 15, synthesizer 16, detection circuit 18, etc. used are those used in ordinary microwave communication equipment. FIG. 3 shows the results of measuring the power penalty in the polarization diversity optical receiver of the present invention using the signal light branching ratio as a parameter. The penalty when the signal is biased toward one output terminal is caused by the fact that the local oscillation light output on the side where the signal is output is thick (and therefore, the influence of the intensity noise of the local oscillation light is eliminated). However, the penalty is less than 1 dB. Considering that the conventional system had a power penalty of 3 dB at worst as shown in FIG. 2, the present invention improves the worst value by more than 2 dB.

このとき信号光4として長距離の光ファイバを伝搬して
きた100Mb/sの2値振幅変調信号光を用いた。こ
の信号光4は光ファイバを伝搬することによる偏波変動
をともなっているが復調信号19の符号誤り率を検出し
たところ長時間にわたって誤り率の1桁以上の大きな変
動は見られなかった。
At this time, a 100 Mb/s binary amplitude modulated signal light propagated through a long distance optical fiber was used as the signal light 4. This signal light 4 is accompanied by polarization fluctuations due to propagation through the optical fiber, but when the code error rate of the demodulated signal 19 was detected, no large fluctuation of more than one digit in the error rate was observed over a long period of time.

本発明においては以上の実施例の他にもさまざまな変形
が可能である。たとえば局部発振光源1としては半導体
レーザの他に各種のレーザの使用が可能であるし、信号
光4は単一モード光ファイバ3を伝搬したものではなく
空間あるいは他の先導波路を伝搬したものでもよい。ま
た光合波器としては光フアイバーカブラを用いることも
可能である。この場合偏光制御素子3として、光ファイ
バをリング状に巻いたものや、光フアイバ側面に圧力を
加えるタイプの素子も考えられる。偏光分離素子7とし
ては光学結晶を用いたローションプリズム等であっても
よい。検波回路18は信号の変調形式によって適当なも
のが用いられ、例えば光振幅変調であれば包路線検波回
路、同期検波回路、光周波数変調であれば周波数弁別回
路、濾波器と包路線検波回路の組合せ、光位相変調であ
れば遅延検波回路、同期検波回路が用いられる。
In addition to the above-described embodiments, various modifications can be made to the present invention. For example, various lasers other than a semiconductor laser can be used as the local oscillation light source 1, and the signal light 4 may be propagated through space or another leading wave path instead of the one propagated through the single mode optical fiber 3. good. Furthermore, it is also possible to use an optical fiber coupler as the optical multiplexer. In this case, the polarization control element 3 may be one in which an optical fiber is wound into a ring shape, or an element that applies pressure to the side surface of the optical fiber. The polarization separation element 7 may be a Rochon prism or the like using an optical crystal. An appropriate detection circuit 18 is used depending on the modulation format of the signal, for example, an envelope detection circuit or a synchronous detection circuit for optical amplitude modulation, a frequency discrimination circuit, a filter and an envelope detection circuit for optical frequency modulation, etc. For combinational or optical phase modulation, a delay detection circuit or a synchronous detection circuit is used.

局部発振光2の偏波状態の制御をステップ状に行なうこ
とも可能である。すなわち局部発振光を一定に保ってお
き、差動増幅器28の出力があるレベルを越えた場合に
局部発振光2の偏波方向を変えるようにする。たとえば
局部発振光2の偏波方向を3方向(垂直、水平、45°
)に変化させるようにするだけでもペナルティを1dB
以下に押えることができる。
It is also possible to control the polarization state of the locally oscillated light 2 in steps. That is, the local oscillation light is kept constant, and the polarization direction of the local oscillation light 2 is changed when the output of the differential amplifier 28 exceeds a certain level. For example, the local oscillation light 2 can be polarized in three directions (vertical, horizontal, 45°).
), the penalty is 1 dB.
It can be held below.

(発明の効果) 以上のように本発明の偏波ダイバーシチ光受信装置を用
いれば、光学的に局部発振光の偏波の1パラメータを変
えるだけで受信信号成分の合成比を変化させることがで
きる。また電気的な非線形素子を通さないので合成比を
変えるために生じる劣化が小さい。従って本発明により
偏波変動による劣化の少ない光ヘテロダイン検波用偏波
ダイバーシチ光受信装置を得ることができる。
(Effects of the Invention) As described above, by using the polarization diversity optical receiver of the present invention, it is possible to change the combination ratio of received signal components by optically changing one parameter of the polarization of local oscillation light. . Furthermore, since electrical nonlinear elements are not passed through, the deterioration caused by changing the synthesis ratio is small. Therefore, according to the present invention, it is possible to obtain a polarization diversity optical receiver for optical heterodyne detection with little deterioration due to polarization fluctuations.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例のブロック図、第2図は従来の
簡便な偏波ダイバーシチ受信におけるパワーペナルティ
を示した図、第3図は本発明の偏波ダイバーシチ光受信
装置におけるパワーペナルティを示した図である。 図において、 1・・・局部発振光源、  3・・・偏光制御素子、4
・・・信号光、 5・・・光合波器、 7・・・偏光分
離素子、10.11・・・受光部、14.15・・・遅
延線、16・・・合成器、18・・・検波回路、   
 22.23・・・除算回路、26・・・非線形回路、
   28・・・差動増幅器、キ  1  図
Fig. 1 is a block diagram of an embodiment of the present invention, Fig. 2 is a diagram showing the power penalty in conventional simple polarization diversity reception, and Fig. 3 is a diagram showing the power penalty in the polarization diversity optical receiver of the present invention. FIG. In the figure, 1...Local oscillation light source, 3...Polarization control element, 4
...Signal light, 5.. Optical multiplexer, 7.. Polarization separation element, 10.11.. Light receiving section, 14.15.. Delay line, 16.. Combiner, 18..・Detection circuit,
22.23...Division circuit, 26...Nonlinear circuit,
28...Differential amplifier, K 1 Figure

Claims (1)

【特許請求の範囲】[Claims] 局部発振光用の光源と、信号光と前記光源から出射した
偏波状態の安定している局部発振光とを合波する光合波
部と、前記光合波部によって得られる合波光を偏波面が
互いに直交する第1、第2の光ビームに分離する偏光分
離素子と、前記第1、第2の光ビームを受光してそれぞ
れ第1、第2の電気信号に変換する第1、第2の受光部
と、前記第1、第2の受光部からの各電気信号から信号
出力を検出する処理部と、前記局部発振光の偏波状態を
変化させる偏光制御素子と、前記偏光分離素子における
前記信号光の前記第1、第2の光ビームへの分岐比を検
出する手段とを少なくとも備え、前記偏波制御素子は、
前記局部発振光の前記偏光分離素子による前記第1、第
2の光ビームへの分岐比が前記信号光の分岐比と等しく
なるように前記局部発振光の偏波を調整するように動作
することを特徴とする偏波ダイバーシチ光受信装置。
a light source for local oscillation light; an optical multiplexing section that multiplexes the signal light and the local oscillation light with a stable polarization state emitted from the light source; a polarization separation element that separates the light beams into first and second light beams orthogonal to each other; and first and second light beams that receive the first and second light beams and convert them into first and second electrical signals, respectively. a light receiving section, a processing section that detects a signal output from each electric signal from the first and second light receiving sections, a polarization control element that changes the polarization state of the locally oscillated light, and a polarization control element that changes the polarization state of the locally oscillated light; and at least means for detecting a branching ratio of the signal light into the first and second light beams, the polarization control element:
operating to adjust the polarization of the locally oscillated light so that a splitting ratio of the locally oscillated light into the first and second light beams by the polarization separation element is equal to a splitting ratio of the signal light; A polarization diversity optical receiver featuring:
JP61089306A 1986-04-17 1986-04-17 Polarization diversity optial reception Pending JPS62245741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61089306A JPS62245741A (en) 1986-04-17 1986-04-17 Polarization diversity optial reception

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61089306A JPS62245741A (en) 1986-04-17 1986-04-17 Polarization diversity optial reception

Publications (1)

Publication Number Publication Date
JPS62245741A true JPS62245741A (en) 1987-10-27

Family

ID=13966979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61089306A Pending JPS62245741A (en) 1986-04-17 1986-04-17 Polarization diversity optial reception

Country Status (1)

Country Link
JP (1) JPS62245741A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01154036A (en) * 1987-12-10 1989-06-16 Fujitsu Ltd Polarized wave diversity optical receiver for coherent light communication

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01154036A (en) * 1987-12-10 1989-06-16 Fujitsu Ltd Polarized wave diversity optical receiver for coherent light communication

Similar Documents

Publication Publication Date Title
US6130766A (en) Polarization mode dispersion compensation via an automatic tracking of a principal state of polarization
EP0409260B1 (en) Receiver for coherent optical communication
US20100316393A1 (en) Method and apparatus for reception of optical signals
JPS62114340A (en) Bidirectional optical communication equipment
EP0245026B1 (en) Optical heterodyne mixers providing image-frequency rejection
JP2658180B2 (en) Polarization diversity optical receiver
US6862377B2 (en) System and method for PMD measurement from coherent spectral analysis
CA1308440C (en) Optical receiving method utilizing polarization diversity and apparatus for carrying out the same
JPS59122140A (en) Optical heterodyne detector
US5508839A (en) Control of a launched polarization state of a frequency modulated beam coincident with an optical fiber principal axis
EP0260745A1 (en) Device for optical heterodyne detection of an optical signal beam and optical transmission system provided with such a device
EP0271934A1 (en) Device for optical heterodyne detection of an optical signal beam and optical transmission system provided with such a device
JP3824885B2 (en) Polarization corrector and wavelength division multiplexing apparatus using the same
JPS60242435A (en) Polarization diversity optical receiver
JPS62245741A (en) Polarization diversity optial reception
JPH05191352A (en) Coherent optical fiber communication system using polarized-light modulation
JPS6123121A (en) Optical heterodyne receiving method
JPH07281229A (en) Optical polarization controller
US5414550A (en) Optical heterodyne detector and receiver
JP2659417B2 (en) Coherent optical communication system
JP2000330079A (en) Polarization mode dispersion compensating device
JPH01108534A (en) Optical type heterodyne or homodyne detector for optical signal beam
WO1993005554A1 (en) A method of suppressing relative intensity noise in coherent optical systems, such as communication receivers
JPS63224427A (en) Method and device for polarization diversity optical reception
JPH0418493B2 (en)