JPS6123121A - Optical heterodyne receiving method - Google Patents

Optical heterodyne receiving method

Info

Publication number
JPS6123121A
JPS6123121A JP59144699A JP14469984A JPS6123121A JP S6123121 A JPS6123121 A JP S6123121A JP 59144699 A JP59144699 A JP 59144699A JP 14469984 A JP14469984 A JP 14469984A JP S6123121 A JPS6123121 A JP S6123121A
Authority
JP
Japan
Prior art keywords
light
polarization
signal light
output
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59144699A
Other languages
Japanese (ja)
Inventor
Katsumi Emura
克己 江村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59144699A priority Critical patent/JPS6123121A/en
Publication of JPS6123121A publication Critical patent/JPS6123121A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To eliminate deterioration in S/N ratio by separating the multiplexed light of input signal light and local oscillation light into two light beams which have mutually orthogonal planes of polarization, and controlling the polarization state of the input signal light so that one separated light beam is minimum or maximum. CONSTITUTION:The input signal light 1 is made incident on the polarization control element consisting of a phase compensating element 2 and a polarization rotary element 3, and its output signal light 4 is multiplexed by an optical multiplexer 7 with local oscillation light 6 from a local oscillator 5. This multiplexed output light 8 is separated by a polarization splitting element 9 into light beams 10 and 11 which have mutually orthogonal planes of linear polarization, and they are supplied to the 1st and the 2nd photodetectors 12 and 13 for heterodyne detection. The 2nd intermediate frequency signal 15 is shifted in phase by pi/2 through a phase shifter 16 and a driving circuit 20 generates a control signal 21 corresponding to the value of the output 19 of a mixer 18; and a phase compensating element 2 is controlled to shift the phase of the input signal light 1, thereby making the signal line 4 into a linear polarized wave. The polarization direction of the signal light is changed to a desired direction through the polarization rotary element 3 and the output of a photodetector 12 is detected by a detecting circuit 28 to obtain a demodulated signal output 29 with high efficiency.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光通信システムや光情報処理システム等に用い
られる光ヘテロダイン受信方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical heterodyne reception method used in optical communication systems, optical information processing systems, and the like.

(従来技術とその問題点) 一般に光ヘテロゲイン検波方式には従来の光直接検波方
式に比べ、受信感度を10〜100倍以上に高めること
ができるという大きな特長があるため、長距離光通信幹
線システムや各種高感度光センナに有効な光検波方式と
なっている。
(Prior art and its problems) In general, the optical heterogain detection method has the great advantage of increasing reception sensitivity by 10 to 100 times or more compared to the conventional optical direct detection method, so it can be used for long-distance optical communication trunk lines. It is an effective optical detection method for various types of high-sensitivity optical sensors.

この光検波方式において高い受信感度を実現するために
は、信号光と局部発振光の効率の良い合波が必要であシ
、そのためには、信号光と局部発振光両光の伝搬方向、
偏波状態、ビーム径等を一致させなければならない。と
ころが、光通信にお  ′いて長距離の光ファイバを伝
搬してきた信号光の偏波状態は、光ファイバに加わる様
々な擾乱の影響を受は時間的に変動し、また光センナの
場合も被測定物の状態によシ偏波状態が変動する。従っ
てこのままでれ安定で効率の良い合波を行なうことはで
きない。
In order to achieve high reception sensitivity in this optical detection method, efficient multiplexing of the signal light and local oscillation light is required.
Polarization state, beam diameter, etc. must be matched. However, in optical communications, the polarization state of signal light propagated through a long-distance optical fiber is affected by various disturbances applied to the optical fiber and changes over time. The state of polarization varies depending on the state of the object to be measured. Therefore, stable and efficient multiplexing cannot be performed if the current state remains as it is.

こめ問題の解決方法として受信時に信号光の偏波状態を
モニタし、それにょ多信号光あるいは局部発振光の偏波
状態を制御して信号光と局部発振光の偏波状態の整合を
図るという方法が考えられ、偏波の制御方法としては例
えば次の文献に記載の方法が考えられている。大原他「
単一姿態光ファイバの出力偏波補償用光回路」昭和55
年度電子通信学会総合全国大会論文集874.1980
年。しかし、一般<iの方法では信号光をモニタするた
めに信号光の一部を分離しなければならず、その際に信
号光に損失が生じるという問題点がある。
One way to solve this problem is to monitor the polarization state of the signal light during reception, and then control the polarization state of the multi-signal light or local oscillation light to match the polarization states of the signal light and the local oscillation light. For example, the method described in the following literature is considered as a polarization control method. Ohara et al.
“Optical circuit for output polarization compensation of single-mode optical fiber” 1977
Proceedings of the Annual National Conference of the Institute of Electronics and Communication Engineers 874.1980
Year. However, in the general method <i, a part of the signal light must be separated in order to monitor the signal light, and there is a problem that a loss occurs in the signal light at that time.

また信号光と局部発振光を合波した合波光を偏光分離素
子に入射して互いに直交する偏波面を有する直線偏波の
第1.第2の光ビームに2分し、それぞれ別々の受光素
子に入射して電気信号に変換しその電気信号を処理1合
成するという偏波ダイパーシティ光受信も考えられてい
る。この方式で2つの受光素子から得られる電気信号を
等利得で合成する場合には、信号光の偏波状態によって
得られる復調信号のS/N比が変化し、最大3dBのS
/N劣化があるという問題がある。また2つの電気信号
に、信号強度に比例した係数をかけて加え合わせればS
/Nの劣化はなくなるが回路構成が複雑になると伝う問
題点があった。(大越他「ヘテロゲイン/コヒーレント
型光ファイバ通信のための偏波ダイパーシティ光受信機
」電子通信学会通信方式研究会資料C383−22,1
983年)(発明の目的) 本発明の目的は前記の問題点を除き、信号光の偏波状態
の制御とモニタ用の信号光成分の低減が同時に実現され
S/N劣化なく常に一定の感度で光ヘテロダイン受信を
行なうことのできる光ヘテロダイン受信方法を提供する
ことにある。
Further, the combined light obtained by combining the signal light and the local oscillation light is input to the polarization separation element, and the first linearly polarized light having mutually orthogonal polarization planes is input. Polarization diversity optical reception is also being considered, in which the second light beam is divided into two, each incident on a separate light receiving element, converted into an electrical signal, and the electrical signals are processed and combined. When combining electrical signals obtained from two light-receiving elements with equal gain using this method, the S/N ratio of the demodulated signal changes depending on the polarization state of the signal light, and the S/N ratio of the demodulated signal changes by up to 3 dB.
/N deterioration is a problem. Also, if you multiply two electrical signals by a coefficient proportional to the signal strength and add them together, S
/N deterioration is eliminated, but there is a problem that the circuit configuration becomes complicated. (Okoshi et al. “Polarization Diperity Optical Receiver for Heterogain/Coherent Optical Fiber Communication” Institute of Electronics and Communication Engineers Communication Systems Study Group Material C383-22, 1
983) (Object of the Invention) The object of the present invention is to eliminate the above-mentioned problems, simultaneously realize control of the polarization state of the signal light and reduction of the signal light component for monitoring, and achieve constant sensitivity without S/N deterioration. An object of the present invention is to provide an optical heterodyne reception method that can perform optical heterodyne reception.

(発明の構成) 本発明の光ヘテロゲイン受信方法は、入力信号光と局部
発振光とを合波するプロセスと、合波光を偏波面が互い
に直交する2つの光ビームに分離するプロセスと、前記
各党ビームをそれぞれ電気信号に変換するプロセスと、
前記電気信号から復調信号出力を得るプロセスとを少な
くとも備え、さらに、前記2つの電気信号の位相差がn
=(n=0 、1 、2、−・・)で、かつ、一方の電
気信号が最小又は最大となるように前記入力信号光の偏
波状態を制御するプロセスを具備している構成となって
いる。
(Structure of the Invention) The optical heterogain receiving method of the present invention includes a process of multiplexing input signal light and local oscillation light, a process of separating the combined light into two light beams whose polarization planes are orthogonal to each other, and a process of multiplexing input signal light and local oscillation light. a process of converting each beam into an electrical signal;
and a process of obtaining a demodulated signal output from the electrical signal, and further, the phase difference between the two electrical signals is n.
= (n=0, 1, 2, -...) and includes a process for controlling the polarization state of the input signal light so that one of the electrical signals becomes minimum or maximum. ing.

(構成の詳細な説明) 本発明においてはまず入力信号光と局部発振光を光合波
部で合波し、その合波光を偏光分離素子で偏波面が互い
に直交する第1.第2の光ビームに分離する。ここで入
力信号光の偏波状態を制御し、入力信号光の大部分が偏
光分離素子によシ第1の光ビーム側へ進むようにする。
(Detailed Description of Configuration) In the present invention, first, an input signal light and a local oscillation light are multiplexed in an optical multiplexer, and the multiplexed light is sent to a first polarization splitter whose polarization planes are orthogonal to each other. split into a second light beam. Here, the polarization state of the input signal light is controlled so that most of the input signal light travels to the first light beam side through the polarization separation element.

この場合、第1の光ビームの信号光と局部発振光の偏波
状態は一致しており、また信号光の#1とんどがこの第
1の光ビームに含まれるのでこれを光ヘテロダイン検波
した出力からはほとんどS/N劣化なく、安定に復調信
号出力を得ることができる。本発明では信号光の偏波状
態の検出、制御を次のよう々手順で行なうことによシ第
1の光ビームへ信号光の大部分が進むようにする。ここ
では簡単のため局部発振光としては直線偏波の光を用い
、その偏光方向が偏光分離素子の固有軸と450の角度
をなしている場合を考える。この場合、局部発振光は偏
光分離素子によシ同位相あるいはπの位相差をもつ振幅
の等しい2つの直線偏光に分離される。ここでは、簡単
のために同位相の場合を考えることにする。偏光分離素
子では局部発振光と同時に信号光も直交する2つの直線
偏波に分けられるので、偏光分離素子で分離された2つ
の光ビームについてそれぞれヘテロダイン検波を行なう
ことができ、等しい中間周波数をもつ2つの中間周波信
号が得られる。この場合、前記したように2つの光ビー
ムの局部発振光成分の振幅および位相は等しいので、2
つの中間周波信号の振幅比および位相差は信号光の偏波
状態に対応している。そこで2つの中間周波信号の位相
差が零になるように信号光の偏波状態を制御すると信号
光は直線偏波になる。
In this case, the polarization states of the signal light of the first light beam and the local oscillation light are the same, and since most of the #1 signal light is included in this first light beam, this is detected by optical heterodyne detection. From this output, a demodulated signal output can be stably obtained with almost no S/N deterioration. In the present invention, the polarization state of the signal light is detected and controlled in the following manner so that most of the signal light travels to the first light beam. Here, for simplicity, consider a case where linearly polarized light is used as the locally oscillated light, and its polarization direction forms an angle of 450 with the eigenaxis of the polarization separation element. In this case, the locally oscillated light is separated by the polarization separation element into two linearly polarized lights having the same phase or a phase difference of π and having the same amplitude. Here, for simplicity, we will consider the case of the same phase. Since the polarization separation element separates the local oscillation light and the signal light into two orthogonal linearly polarized waves, it is possible to perform heterodyne detection on each of the two light beams separated by the polarization separation element, and it is possible to perform heterodyne detection on each of the two light beams separated by the polarization separation element, so that the signal light has the same intermediate frequency. Two intermediate frequency signals are obtained. In this case, as mentioned above, the amplitude and phase of the local oscillation light components of the two light beams are equal, so 2
The amplitude ratio and phase difference between the two intermediate frequency signals correspond to the polarization state of the signal light. Therefore, if the polarization state of the signal light is controlled so that the phase difference between the two intermediate frequency signals becomes zero, the signal light becomes linearly polarized.

さらに2つの中間周波信号のうち一方が零になるように
、信号光の偏波方向を制御することによ多信号光が偏光
分離素子で一方の光ビームにのみ分離されるようにする
ことができる。位相差の検出。
Furthermore, by controlling the polarization direction of the signal light so that one of the two intermediate frequency signals becomes zero, the multi-signal light can be separated into only one light beam by the polarization separation element. can. Detection of phase difference.

制御は2つの中間周波信号のうち一方にπ/2の位相シ
フトを与えたのち両者を掛は合わせ、その出力が零にな
るように信号光の位相を制御すればよい。また振幅は必
要とする光ビームからの中間周波信号が最大あるいはも
う一方の中間周波信号が最小になるように制御すればよ
く、その制御の方法としては、信号光の偏波方向を微小
に変調しその変化を検出し、検出信号の位相2周期から
制御信号を作成し信号光の偏波方向の制御を行なうとい
う方法等が考えられる。また局部発振光が直線偏波以外
の場合もその偏波状態がわかっていれば、偏光分離素子
で分離された第1.第2の光ビームの局部発オキ光成分
の位相差がわかるので、この位相差を考慮に入れて制御
を行なえばよい。
The control may be performed by applying a phase shift of π/2 to one of the two intermediate frequency signals, then multiplying them together, and controlling the phase of the signal light so that the output becomes zero. In addition, the amplitude can be controlled so that the intermediate frequency signal from the required optical beam is at its maximum or the other intermediate frequency signal is at its minimum.One way to control this is to minutely modulate the polarization direction of the signal light. A possible method is to detect the change in the polarization, create a control signal from two periods of the detected signal, and control the polarization direction of the signal light. Furthermore, even if the local oscillation light is a non-linearly polarized wave, if the polarization state is known, the first oscillation light separated by the polarization separation element can be used. Since the phase difference of the locally emitted light component of the second light beam is known, control can be performed taking this phase difference into consideration.

(実施例) 第1図は本発明の第1の実施例のブロック図、第2図は
第2の光検出器の出力について示した図である。入力信
号光1は位相補償素子2および偏光回転素子3構成され
る偏光制御素子に入射される。この偏光制御素子から出
力された信号光4は、局部発振器5から出射した局部発
振光6と光合波器7によって合波される。この合波出力
光8は偏光分離素子9によって互いは直交する2つの直
線偏波をもつ第1.第2の光ビーム10.11に分離さ
れ、それぞれ第1.第2の光検出器12.13でヘテロ
ダイン検波される。ここで局部発振光6としては、直線
偏波を用いその偏波方向は、偏光分離素子の固有軸と4
50の角度を持つように調整しておいたので第1.第2
の光検出器1.2 、13の出力の第1.第2の中間周
波信号14.15の位相差は信号光4の偏波状態に対応
した値をとる。すなわち信号光4が直線偏波をもつとき
には第1.第2の中間周波信号14.15の位相差は零
またはπに、また信号光4が円偏波をもつときには第1
゜第2の中間周波信号14.15の位相差はπ/2また
はユπになっている。信号光4が楕円偏波の場合には直
線偏波と円偏波の中間の値をとる。ここで第2の中間周
波信号15に移相器16でπ/2の位相シフトを与え、
その出力信号17と第1の中間周波信号14をミキサー
8によシ掛は合わせる。このミキサ18からの平均出力
19は信号光4が直線偏波の場合に零となシ、その他の
場合は信号光4の偏波状態に対応して正または負の値を
とる。そこでこの正または負の値に対応した制御信号2
1を駆動回路20で発生させ、これによシ位相補償素子
2を制御して入力信号光1に適当な位相シフトを与える
ことによシ、信号光4の偏波状態を直線偏波にすること
ができる。また偏波の方向は次のようKして制御される
。ここでは正弦波駆動回路22で偏光回転素子3を駆動
し、信号光4の偏波の方向を第2図(alに示すような
正弦波で変調しておく。その結果、第2の光検出器13
のモニタ出力23はその変調信号に対応して変化するが
、そのときの位相および周期は偏波方向によって第2図
(b) 、 (e) 、 (d)に示すように変化する
I(第2図(b):偏波方向の+側へのずれ;第2図(
c):所望偏波;第2図(d) ?偏波方向の一側への
ずれ入そこでこの位相9周期を正弦波駆動回路のモニタ
出力24と比較することによシ検出回路25で検出し、
その検出出力26で偏光回転素子3を制御することによ
シ、信号光の偏波方向を所望の方向に向けることができ
る。そこで第1の光検出器12の出力信号27を検波回
路28で検波すれば高効率で復調信号出力29を得るこ
とができる。
(Embodiment) FIG. 1 is a block diagram of a first embodiment of the present invention, and FIG. 2 is a diagram showing the output of a second photodetector. Input signal light 1 is incident on a polarization control element composed of a phase compensation element 2 and a polarization rotation element 3. The signal light 4 output from this polarization control element is multiplexed with the locally oscillated light 6 emitted from the local oscillator 5 by an optical multiplexer 7. This combined output light 8 is passed through a polarization splitting element 9 into a first wave having two linearly polarized waves orthogonal to each other. are split into second light beams 10, 11, respectively. Heterodyne detection is performed by the second photodetector 12.13. Here, as the local oscillation light 6, a linearly polarized wave is used, and its polarization direction is the eigenaxis of the polarization separation element and 4
I adjusted it so that it had an angle of 50, so the first. Second
of the outputs of the photodetectors 1.2 and 13. The phase difference between the second intermediate frequency signals 14 and 15 takes a value corresponding to the polarization state of the signal light 4. That is, when the signal light 4 has linear polarization, the first. The phase difference between the second intermediate frequency signals 14 and 15 is zero or π, and when the signal light 4 has circular polarization, the phase difference between the first
The phase difference between the second intermediate frequency signals 14 and 15 is π/2 or uπ. When the signal light 4 is elliptically polarized, it takes an intermediate value between linearly polarized and circularly polarized waves. Here, a phase shifter 16 gives a phase shift of π/2 to the second intermediate frequency signal 15,
The output signal 17 and the first intermediate frequency signal 14 are combined by the mixer 8. The average output 19 from the mixer 18 is zero when the signal light 4 is linearly polarized, and takes a positive or negative value in other cases depending on the polarization state of the signal light 4. Therefore, the control signal 2 corresponding to this positive or negative value
1 is generated by the drive circuit 20, and this controls the phase compensation element 2 to give an appropriate phase shift to the input signal light 1, thereby making the polarization state of the signal light 4 linearly polarized. be able to. Further, the direction of polarization is controlled by K as follows. Here, the polarization rotation element 3 is driven by the sine wave drive circuit 22, and the polarization direction of the signal light 4 is modulated by a sine wave as shown in FIG. Vessel 13
The monitor output 23 changes according to the modulation signal, and the phase and period at that time change depending on the polarization direction as shown in FIGS. 2(b), (e), and (d). Figure 2 (b): Shift in the polarization direction to the + side; Figure 2 (
c): Desired polarization; Figure 2 (d)? The shift to one side of the polarization direction is detected by the detection circuit 25 by comparing the nine periods of the phase with the monitor output 24 of the sine wave drive circuit,
By controlling the polarization rotation element 3 using the detection output 26, the polarization direction of the signal light can be directed to a desired direction. Therefore, if the output signal 27 of the first photodetector 12 is detected by the detection circuit 28, a demodulated signal output 29 can be obtained with high efficiency.

この実施例において位相補償素子2としてはバビネ・ソ
レイユケ相補償板を用いた。また偏光回転素子3として
はλ/2板を用い、その固有軸を回転させて偏波方向の
回転を行なった。局部発振器5としては半導体レーザ、
光合波器7としては透過率70%9反射率30%のミラ
ーを偏光分離素子9としてはロションプリズムを第1.
第2の光検出器12.13としてはフォトダイオードを
用いた。ミキサ18としてはダブルバランスドミキサを
用い、この出力から制御信号21を作シバビゾ ネtレイユ位相補償板を制御して偏波状態を制御した。
In this embodiment, a Babinet-Soleiluke phase compensation plate was used as the phase compensation element 2. Further, a λ/2 plate was used as the polarization rotation element 3, and the polarization direction was rotated by rotating its eigenaxis. As the local oscillator 5, a semiconductor laser,
The optical multiplexer 7 is a mirror with a transmittance of 70% and the reflectance is 30%, and the polarization separation element 9 is a Rochon prism.
A photodiode was used as the second photodetector 12.13. A double-balanced mixer was used as the mixer 18, and a control signal 21 was generated from the output of the mixer 18 to control the phase compensator plate to control the polarization state.

またλ/2板の固有軸は正弦波駆動回路22によp I
KHzの周期で微小に変化させた。ここで、第2の光検
出器13から得られるモニタ出力23の位相関係を調ベ
モニタ出力23が2KHzの周期で変化するようにλ/
2板の固有軸方向を調整することによシ、徐々に第2の
光検出器13で得られる中間周波信号15が小さくなシ
、第1の中間周波信号14との比を1/ 100以下に
することができた。これによ多入力信号光1のほとんど
が第1の光ビーム10のほうへ進み、このときその偏波
状態は局部発振光と一致しているので、第1の光検出器
12の出力から常に高効率に復調信号を得ることができ
た。
In addition, the eigenaxis of the λ/2 plate is set to p I by the sine wave drive circuit 22.
It was changed minutely at a frequency of KHz. Here, the phase relationship of the monitor output 23 obtained from the second photodetector 13 is adjusted to λ/ so that the monitor output 23 changes at a cycle of 2 KHz.
By adjusting the direction of the characteristic axes of the two plates, the intermediate frequency signal 15 obtained by the second photodetector 13 gradually becomes smaller, and the ratio with the first intermediate frequency signal 14 is reduced to 1/100 or less. I was able to do it. As a result, most of the multi-input signal light 1 travels toward the first light beam 10, and at this time, its polarization state matches that of the local oscillation light, so that the output of the first photodetector 12 is always transmitted to the first light beam 10. We were able to obtain demodulated signals with high efficiency.

第3図は本発明の第2の実施例のブロック図、第4図は
偏波方向に対するミキサ平均出力の符号を示した図であ
る。この実施例が第1の実施例と異なる点は信号光4の
偏波方向の検出方法である。
FIG. 3 is a block diagram of a second embodiment of the present invention, and FIG. 4 is a diagram showing the sign of the mixer average output with respect to the polarization direction. This embodiment differs from the first embodiment in the method of detecting the polarization direction of the signal light 4.

この実施例の場合には第1.第2の光検出器12゜13
からの出力30.31をミキサ32で掛は合わせる。こ
のとき信号光の偏波方向が固有軸からどちら向きにずれ
ているかで第4図に示されるように、その平均出力が正
あるいは負の値をとるのでとのミキサ出力33によ)偏
波方向の補正すべき方向を定めて制御を行なっている。
In the case of this embodiment, the first. Second photodetector 12°13
The outputs 30.31 are mixed together by mixer 32. At this time, depending on which direction the polarization direction of the signal light deviates from the eigenaxis, the average output takes a positive or negative value, as shown in Figure 4. Control is performed by determining the direction in which the direction should be corrected.

その他の構成は第1の実施例と同様である。この実施例
においても第1の実施例と同様筒1.第2の中間周波信
号14.15の比を常に100以上にすることができ、
高効率の復調が実現できた。
The other configurations are similar to the first embodiment. In this embodiment as well, the cylinder 1. The ratio of the second intermediate frequency signal 14.15 can always be 100 or more,
Highly efficient demodulation was achieved.

本発明においては以上の実施例の他にもさまざまな変形
が可能である。例えば位相補償素子2および偏光回転素
子3としてはそれぞれλ4板。
In addition to the above-described embodiments, various modifications can be made to the present invention. For example, the phase compensation element 2 and the polarization rotation element 3 are each a λ4 plate.

λ/2 板の働きをするものであればよく、信号光の低
損失化を考え光ファイバに圧電素子で圧力を加えるもの
やリング状に光ファイバを巻いたファイバ形偏波面補償
器を利用する方法もある。また第1の実施例において、
偏波方向の検出は第2の光検出器13の出力をモニタし
これを最小にするようにして行なったが、第1の光検出
器12の出力をモニタしこれが最大になるように制御す
ることも可能である。
Any device that functions as a λ/2 plate will suffice, and in order to reduce the loss of the signal light, use a device that applies pressure to the optical fiber with a piezoelectric element, or a fiber-type polarization compensator in which the optical fiber is wound in a ring shape. There is a way. Furthermore, in the first embodiment,
The polarization direction was detected by monitoring the output of the second photodetector 13 and minimizing it, but by monitoring the output of the first photodetector 12 and controlling it so that it was maximized. It is also possible.

(発明の効果) 以上のように、本発明の光ヘテロダイン受信方法では信
号光の偏波状態が制御されるに従ってモニタ用の信号光
成分も減少するので、偏波制御が行なわれている状態で
は常に信号光と局部発振光が高効率で合波される。従っ
て本発明によって信号光の偏波状態が変動してもS/N
劣化のない光ヘテロゲイン受信方法を実現することがで
きる。
(Effects of the Invention) As described above, in the optical heterodyne reception method of the present invention, as the polarization state of the signal light is controlled, the signal light component for monitoring also decreases. Signal light and local oscillation light are always combined with high efficiency. Therefore, according to the present invention, even if the polarization state of the signal light changes, the S/N
An optical heterogain reception method without deterioration can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例のブロック図、第2図(
a)〜(d)は第2の光検出器の出力について示した図
、第3図は本発明の第2の実施例のブロック図、第4図
は偏波方向に対するミキサ平均出力の符号を示した図で
ある。図において、1・・・入力信号光    2・・
・位相補償素子3・・・偏光回転素子   5・・・局
部発振器7・・・光合波器     9・−・偏光分離
素子12.13−・光検出器  16・−移相器18.
32・・・ミキサ   20−・駆動回路22・・・正
弦波駆動回路 25 ・・・検出回路28・・・検波回
路    29−・復調信号出力である。
FIG. 1 is a block diagram of the first embodiment of the present invention, and FIG. 2 (
a) to (d) are diagrams showing the output of the second photodetector, FIG. 3 is a block diagram of the second embodiment of the present invention, and FIG. 4 is a diagram showing the sign of the mixer average output with respect to the polarization direction. FIG. In the figure, 1... input signal light 2...
・Phase compensation element 3...Polarization rotation element 5...Local oscillator 7...Optical multiplexer 9...Polarization separation element 12.13-・Photodetector 16.-Phase shifter 18.
32...Mixer 20--Drive circuit 22...Sine wave drive circuit 25...Detection circuit 28...Detection circuit 29--Demodulated signal output.

Claims (1)

【特許請求の範囲】[Claims] 入力信号光と局部発振光とを合波するプロセスと、合波
光を偏波面が互いに直交する2つの光ビームに分離する
プロセスと、前記各光ビームをそれぞれ電気信号に変換
するプロセスと、前記電気信号のいずれか一方から復調
信号出力を得るプロセスとを少なくとも備えている光ヘ
テロダイン受信方法において、前記2つの電気信号の位
相差がnπ(n=0、1、2、・・・)で、かつ、いず
れか一方の電気信号が最小又は最大となるように前記入
力信号光の偏波状態を制御するプロセスを具備している
ことを特徴とする光ヘテロダイン受信方法。
a process of combining the input signal light and the local oscillation light; a process of separating the combined light into two light beams whose polarization planes are orthogonal to each other; a process of converting each of the light beams into electrical signals; and a process of obtaining a demodulated signal output from either one of the signals, wherein the phase difference between the two electrical signals is nπ (n=0, 1, 2, . . . ), and , an optical heterodyne reception method comprising a process of controlling the polarization state of the input signal light so that one of the electrical signals becomes a minimum or a maximum.
JP59144699A 1984-07-12 1984-07-12 Optical heterodyne receiving method Pending JPS6123121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59144699A JPS6123121A (en) 1984-07-12 1984-07-12 Optical heterodyne receiving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59144699A JPS6123121A (en) 1984-07-12 1984-07-12 Optical heterodyne receiving method

Publications (1)

Publication Number Publication Date
JPS6123121A true JPS6123121A (en) 1986-01-31

Family

ID=15368216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59144699A Pending JPS6123121A (en) 1984-07-12 1984-07-12 Optical heterodyne receiving method

Country Status (1)

Country Link
JP (1) JPS6123121A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250428A (en) * 1986-04-10 1987-10-31 クセルト セントロ・ステユデイ・エ・ラボラトリ・テレコミニカチオ−ニ・エツセ・ピ−・ア− Optical fiber transmission system having polaroid modulationand hetrodyne coherent detection
JPS62272234A (en) * 1986-05-08 1987-11-26 アメリカン テレフオン アンド テレグラフ カムパニー Optical heterodyne mixer
JPS6325632A (en) * 1986-06-28 1988-02-03 アルカテル・エヌ・ブイ Optical heterodyne receiver
JPS6370623A (en) * 1986-09-09 1988-03-30 アルカテル・エヌ・ブイ Photoheterodyne receiver
JPS63243913A (en) * 1987-03-31 1988-10-11 Yokogawa Electric Corp Polarization plane controller
US4868897A (en) * 1987-01-19 1989-09-19 Siemens Aktiengesellschaft Network formed as an optical homodyne or heterodyne receiver circuit
JPH02110524A (en) * 1988-10-20 1990-04-23 Fujitsu Ltd Heterodyne detection receiver for coherent optical communication
US5477369A (en) * 1987-04-20 1995-12-19 U.S. Philips Corporation Device for optical heterodyne or homodyne detection of an optical signal beam and receiver provided with such a device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250428A (en) * 1986-04-10 1987-10-31 クセルト セントロ・ステユデイ・エ・ラボラトリ・テレコミニカチオ−ニ・エツセ・ピ−・ア− Optical fiber transmission system having polaroid modulationand hetrodyne coherent detection
US4817206A (en) * 1986-04-10 1989-03-28 Cselt- Centro Studi E Laboratori Telecomunicazioni S.P.A. Optical-fiber transmission system with polarization modulation and heterodyne coherent detection
JP2577905B2 (en) * 1986-04-10 1997-02-05 クセルト セントロ・ステユデイ・エ・ラボラトリ・テレコミニカチオ−ニ・エツセ・ピ−・ア− Optical-fiber transmission system with polarization modulation and heterodyne coherent detection
JPS62272234A (en) * 1986-05-08 1987-11-26 アメリカン テレフオン アンド テレグラフ カムパニー Optical heterodyne mixer
JPS6325632A (en) * 1986-06-28 1988-02-03 アルカテル・エヌ・ブイ Optical heterodyne receiver
JPS6370623A (en) * 1986-09-09 1988-03-30 アルカテル・エヌ・ブイ Photoheterodyne receiver
US4868897A (en) * 1987-01-19 1989-09-19 Siemens Aktiengesellschaft Network formed as an optical homodyne or heterodyne receiver circuit
JPS63243913A (en) * 1987-03-31 1988-10-11 Yokogawa Electric Corp Polarization plane controller
JP2625713B2 (en) * 1987-03-31 1997-07-02 横河電機株式会社 Polarization plane controller
US5477369A (en) * 1987-04-20 1995-12-19 U.S. Philips Corporation Device for optical heterodyne or homodyne detection of an optical signal beam and receiver provided with such a device
JPH02110524A (en) * 1988-10-20 1990-04-23 Fujitsu Ltd Heterodyne detection receiver for coherent optical communication

Similar Documents

Publication Publication Date Title
EP0409260B1 (en) Receiver for coherent optical communication
JP5339910B2 (en) Optical demodulation apparatus and method
US5046848A (en) Fiber optic detection system using a Sagnac interferometer
US4506388A (en) Process and apparatus for the coherent detection and demodulation of a phase-modulated carrier wave in a random polarization state
EP0245026B1 (en) Optical heterodyne mixers providing image-frequency rejection
JP2658180B2 (en) Polarization diversity optical receiver
JPS6123121A (en) Optical heterodyne receiving method
US4433915A (en) Dual-polarization interferometer with a single-mode waveguide
JPS59122140A (en) Optical heterodyne detector
US7095963B2 (en) Multi-channel optical receiver for processing tri-cell polarization diversity detector outputs
US5351124A (en) Birefringent component axis alignment detector
GB2046434A (en) Optical-fibre interferometric gyrometer
JPH05323243A (en) Polarization controller
US6141136A (en) Active phase-shift control in optical-hybrid etalons
JPS63135829A (en) Optical heterodyne detector
CN115437160A (en) Polarization insensitive space optical mixer
US5170275A (en) Optical mixing for heterodyne detection
JPH01108534A (en) Optical type heterodyne or homodyne detector for optical signal beam
JP2760856B2 (en) Phase shift keying method using Mach-Zehnder type optical modulator
JP3443810B2 (en) Polarization control circuit
JPS6147403B2 (en)
US6989903B2 (en) Polarization diversity detector mask selection algorithm
JP2629700B2 (en) Optical fiber sensor
JPS62245741A (en) Polarization diversity optial reception
JP2625713B2 (en) Polarization plane controller