JPS59122140A - Optical heterodyne detector - Google Patents

Optical heterodyne detector

Info

Publication number
JPS59122140A
JPS59122140A JP57229060A JP22906082A JPS59122140A JP S59122140 A JPS59122140 A JP S59122140A JP 57229060 A JP57229060 A JP 57229060A JP 22906082 A JP22906082 A JP 22906082A JP S59122140 A JPS59122140 A JP S59122140A
Authority
JP
Japan
Prior art keywords
light
signal
optical
polarized
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57229060A
Other languages
Japanese (ja)
Other versions
JPH0572777B2 (en
Inventor
Katsumi Emura
克己 江村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57229060A priority Critical patent/JPS59122140A/en
Publication of JPS59122140A publication Critical patent/JPS59122140A/en
Publication of JPH0572777B2 publication Critical patent/JPH0572777B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/64Heterodyne, i.e. coherent receivers where, after the opto-electronic conversion, an electrical signal at an intermediate frequency [IF] is obtained
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/614Coherent receivers comprising one or more polarization beam splitters, e.g. polarization multiplexed [PolMux] X-PSK coherent receivers, polarization diversity heterodyne coherent receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/615Arrangements affecting the optical part of the receiver
    • H04B10/6151Arrangements affecting the optical part of the receiver comprising a polarization controller at the receiver's input stage

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To attain optical heterodyne detection stable in the detecting characteristic by separating a synthesized wave of an input signal and a local oscillating light into two optical beams where polarized planes are orthogonal. CONSTITUTION:An output light 2 of a local oscillator 1 is synthesized with a signal light 6 at an optical wave synthesizer 7 as a circular polarized light at a circular polarized element 3 of a polarized light converting element 3. A synthesized output light 8 is separated into the 1st and the 2nd optical beams 10, 11 having a linearly polarized wave orthogonal with each other by a polarized light separating element 9. Each optical beam is converted into electric signals 14, 15 at the 1st and the 2nd photodetecting sections 12, 13, and inputted to detecting circuits 16, 17. Each detected output is converted into base band signals 18, 19, synthesized at a synthesizer 22 and reduced to a demodulated output 23. Thus, the stable detecting characteristic is attained independently of the polarized state of the signal.

Description

【発明の詳細な説明】 この発明は光通信システムや光情報処理システム等に用
いられる光へテロダイン検波装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical heterodyne detection device used in optical communication systems, optical information processing systems, and the like.

一般に、光ヘテロダイン検波方式は、従来@光直接検波
方式に比べ受信感度を10〜100倍以上に高めること
ができるという大きな特長があるため、長距離光通信幹
線システムや各種高感度光センナに有効な光検波方式と
なっている。
In general, the optical heterodyne detection method has the great advantage of increasing reception sensitivity by 10 to 100 times compared to the conventional optical direct detection method, so it is effective for long-distance optical communication trunk systems and various high-sensitivity optical sensors. It uses a light detection method.

この光検波方式において高い受信g度を実現するために
は信号光と局部発振光の効率の良い合波が必要であシ、
そのためにこれら両光の伝搬方向、偏波状態、ビーム径
等を一致させなければならない。ところが、光通信にお
いて長い距離の光ファイバを伝搬してきた信号光の偏波
状態は光ファイバに加わる様々な擾乱の影響を受は時間
的に変動し、また光センチの場合も被測定物の状態に、
!′シ偏波状態が変動する。従ってこのままでは安定で
効率の良い合波を行なうことはできない。
In order to achieve high reception g with this optical detection method, efficient multiplexing of signal light and local oscillation light is required.
For this purpose, the propagation directions, polarization states, beam diameters, etc. of these two lights must be matched. However, in optical communications, the polarization state of signal light propagated over a long distance through an optical fiber is affected by various disturbances applied to the optical fiber, and the polarization state changes over time. To,
! 'The polarization state fluctuates. Therefore, stable and efficient multiplexing cannot be performed as is.

この問題の解決方法として、従来から次の2つの方勉i
玉考えられている。その一つは偏波保存性の良いファイ
バを用いる方法である。これは、例えばファイバのコア
、クラッドの断面形状を楕円化することやファイバに応
力分布を持たせることによシ、ファイバの複屈折性を高
め、ある特定方向(以下固有軸という)の直線偏波維持
特性を良くしようとするものである。しかし、長距離伝
搬時の保存性、偏波の安定性の確iは現状ではなされて
いない。又、ファイバ接続時には固有軸を合わせなけれ
ばならず光フアイバ敷設時の接続工事が困難であるとい
う問題を生ずる。さらに1円偏波を保存するスパンファ
イバも考えられているが、これは外力に弱いという欠点
がある。
Traditionally, the following two methods have been studied to solve this problem.
It is considered a ball. One method is to use a fiber with good polarization preservation. This can be achieved by increasing the birefringence of the fiber by, for example, making the cross-sectional shapes of the fiber core and cladding oval, or by giving the fiber a stress distribution. The aim is to improve wave sustaining characteristics. However, the conservation and polarization stability during long-distance propagation have not been confirmed at present. Further, when connecting fibers, the characteristic axes must be aligned, which causes a problem in that connection work when installing optical fibers is difficult. Furthermore, span fibers that preserve unicircularly polarized waves have been considered, but this has the drawback of being weak against external forces.

もう一つの方法は、受信時に信号光の偏波状態をモニタ
し、それKより信号光あるいは局部発振光の偏波状態を
制御し信号光と局部発振光の偏波整合を図ろうとするも
のである。しかし、この方法は偏波状態を制御する装置
が複雑な構成になる上、挿入損失が5dB以上と太きく
、シかも信号光のレベルが小さいためにその偏波状態を
検知するのにかなシ高感度の検出器を必要とする等の数
々の問題点がある。
Another method is to monitor the polarization state of the signal light during reception, and then control the polarization state of the signal light or local oscillation light to achieve polarization matching between the signal light and the local oscillation light. be. However, this method requires a complicated configuration of the device that controls the polarization state, has a large insertion loss of 5 dB or more, and is difficult to detect due to the low level of the signal light. There are a number of problems, including the need for highly sensitive detectors.

本発明の目的は、このような欠点を除き信号の偏波状態
によらず安定な検波特性が得られしかも構成が簡単な光
へテロダイン検波装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an optical heterodyne detection device which eliminates these drawbacks, provides stable detection characteristics regardless of the polarization state of a signal, and has a simple configuration.

本発明の光ヘテロダイン検波装置は、入力信号光と偏波
状態の安定している局部発振光とを合波する光合波部と
、この光合波部によって得られる合波光を偏波面が互い
に直交する第1.第2の光ビームに分離する偏光分離素
子と、前記第1.第2の光ビームを受光してそれぞれ第
1.第2の電気信号に変換する第1.第2の受光部と、
これら第1.第2の受光部の各電気信号から信号出力を
検出する処理部とを含み構成される。
The optical heterodyne detection device of the present invention includes an optical multiplexing section that multiplexes input signal light and local oscillation light with a stable polarization state, and a multiplexed light obtained by this optical multiplexing section whose polarization planes are orthogonal to each other. 1st. a polarization splitting element that separates the light beam into a second light beam; receiving the second light beam and receiving the first and second light beams respectively; The first electrical signal is converted into a second electrical signal. a second light receiving section;
These first. and a processing section that detects a signal output from each electric signal of the second light receiving section.

本発明においては、光ファイバを伝搬した偏波方向が不
定、な信号光が、光合波部において偏波状態の安定な局
部発振光と合波され、この合波光が偏光分離素子に入射
して、互いに直交する偏波面を有する直線偏光の第1.
第2の光ビームに二分され、それぞれ別の受光素子に入
射して第1.第2の電気信号に変換される。
In the present invention, signal light with an undefined polarization direction propagated through an optical fiber is multiplexed with local oscillation light with a stable polarization state in an optical multiplexer, and this combined light enters a polarization separation element. , the first . of linearly polarized light having mutually orthogonal polarization planes.
The second light beam is split into two, each incident on a separate light receiving element, and the first and second light beams are split into two. converted into a second electrical signal.

この場合、第1.第2の光ビームの各信号光成分と局部
発振光成分とは直線偏光で、偏波方向も合っている。ま
た、局部発振光の偏波状態が安定なので局部発振光成分
の光強度も安定である。従って、第1.第2の光ビーム
が第1.第2の電気信号に変換される際のそれぞれの変
換効率は一定である。しかし、信号光の偏波方向は不定
なので、第1.第2の光ビームの信号光成分の光強度は
不安定でしかも大きく変動しておp、そのため第1゜第
2の電気信号の強度も信号光成分の変動に対応して変動
している。
In this case, 1. Each signal light component and local oscillation light component of the second light beam are linearly polarized lights and have the same polarization direction. Furthermore, since the polarization state of the locally oscillated light is stable, the light intensity of the locally oscillated light component is also stable. Therefore, the first. The second light beam is the first. The respective conversion efficiencies when converted into second electrical signals are constant. However, since the polarization direction of the signal light is indeterminate, the first. The light intensity of the signal light component of the second light beam is unstable and fluctuates greatly, so the intensity of the first and second electric signals also fluctuates in response to the fluctuations in the signal light component.

ところで第1.第2の光ビームそれぞれの信号光成分の
光強度の和は、偏光分離素子に入射する前の信号光の光
強度にはは等しく、シかもその光強度の和はほぼ安定し
ていると考えて良く、甘た受光部の電気信号への変換効
率は一定であるから。
By the way, number one. The sum of the light intensities of the signal light components of each of the second light beams is equal to the light intensity of the signal light before entering the polarization separation element, and it is considered that the sum of the light intensities is almost stable. This is fine because the conversion efficiency of the light receiving section to electrical signals is constant.

第1.第2の電気信号についてもそれぞれの電力の和を
取ると、はぼ一定値に安定化させることができる。
1st. If the sum of the respective powers of the second electrical signal is also taken, it can be stabilized to a nearly constant value.

なお、第1.第2の電気信号のうちの信号強度の大きな
方を選んだ場合、その信号電力は各電気信号の和の1/
2以上を得るようにもできる。従って、理想偏波状態(
一定偏波方向で直線偏波)の信号光をヘテロダイン検波
した場合に対して電気信号の強ルー劣化あるいはS/N
劣化を3dB以下に抑えることができる。
In addition, 1. If one of the second electrical signals is selected with a higher signal strength, the signal power is 1/1/2 of the sum of each electrical signal.
You can also get 2 or more. Therefore, the ideal polarization state (
In contrast to the case of heterodyne detection of a signal light (linearly polarized wave in a constant polarization direction), there is a strong Lou deterioration or S/N of the electrical signal.
Deterioration can be suppressed to 3 dB or less.

このように本発明によれば、偏波面保存ファイバあるい
は偏波面制御装置を用いることなく、簡単かつ低損失で
しかも信号光の偏波状態に依存せずに検波特性が安定な
光ヘテロダイン検波装置が得られる。
As described above, the present invention provides an optical heterodyne detection device that is simple, has low loss, and has stable detection characteristics independent of the polarization state of signal light without using a polarization-maintaining fiber or a polarization control device. can get.

次に図面によシ本発明の詳細な説明する。Next, the present invention will be explained in detail with reference to the drawings.

第1図は本発明の第1の実施例を説明するためのブロッ
ク図である。まず、局部発振器1の出力光2は偏光変換
素子3に入射し、円偏波の局部発振光4に変換される。
FIG. 1 is a block diagram for explaining a first embodiment of the present invention. First, the output light 2 of the local oscillator 1 enters the polarization conversion element 3 and is converted into circularly polarized locally oscillated light 4.

この円偏波の局部発振光4は光ファイバ5を出射した信
号光6と光合波器7によって合波される。この合波出力
光8は偏光分離素子9によって互いに直交する直線偏波
をもつ第1.第2の光ビーム10.11に分離される。
This circularly polarized locally oscillated light 4 is combined with a signal light 6 emitted from an optical fiber 5 by an optical multiplexer 7. This combined output light 8 is passed through a polarization splitting element 9 into a first wave having linearly polarized waves orthogonal to each other. It is split into a second light beam 10.11.

これら第1.第2の光ビーム10.11はそれぞれ第1
.第2の受光部12 、13に入射してそれぞれへテロ
ダイン検波され第1.第2の電気信号]、 4 、15
に変換される。これら第1.第2の電気信号14.15
は共に局部発振光4と信号光6の周波数差に対応した周
波数をキャリア周波数として有する電気信号である。
These first. The second light beams 10.11 are respectively
.. The light enters the second light receiving sections 12 and 13 and is subjected to heterodyne detection. second electrical signal], 4, 15
is converted to These first. Second electrical signal 14.15
Both are electric signals having a carrier frequency corresponding to the frequency difference between the local oscillation light 4 and the signal light 6.

これら第1.第2の電気信号14.15は第1゜第2の
検波回路16 、17で検波され、第1.第2のベース
バンド信号18.19に変換される。これら第1.第2
のベースバンド信号18.19は第1.第2の遅延線2
0.21によって位相が合わされた後合成器22で合成
されて安定した復調信−号23として出力される。
These first. The second electric signal 14.15 is detected by the first and second detection circuits 16 and 17, and the second electric signal 14.15 is detected by the first and second detection circuits 16 and 17. It is converted into a second baseband signal 18.19. These first. Second
The baseband signal 18.19 of the first. second delay line 2
After the phases are matched by 0.21, the signals are combined in a combiner 22 and output as a stable demodulated signal 23.

この実施例において、局部発振器1としては出力を安定
化した半導体レーザを用い、偏光変換素子3としてはパ
ビネ・ソレイユ位相補償板を用いて安定な円偏波の局部
発振光4が得られた。また、光合波器7としては透過率
約70%2反射率約30%のミラー24を用いて局部発
振光4.信号光6に対して45°の角度をつくり両党の
合波を行なった。また、偏光分離素子9としてはプリズ
ムに多層膜を蒸着したものを使用し、第1.第2の受光
部12.1−3は高速フォトダイオード、前置増幅器、
主増幅器等で構成し、第1.第2の検波回路16.17
としては信号光6が振幅変調光でありたので包絡線検波
回路を用いた。なお、第1゜第2の検波回路16.17
、第1.第2の遅延線20.21.合成器22等は通常
のマイクロ波通信装置で使用されているものを用いた。
In this example, a semiconductor laser with stabilized output was used as the local oscillator 1, and a Pavinet-Soleil phase compensator was used as the polarization conversion element 3, so that stable circularly polarized locally oscillated light 4 was obtained. Further, as the optical multiplexer 7, a mirror 24 having a transmittance of about 70% and a reflectance of about 30% is used. An angle of 45° was created with respect to the signal light 6, and both parties were combined. Further, as the polarization separation element 9, a prism with a multilayer film deposited thereon is used. The second light receiving section 12.1-3 includes a high-speed photodiode, a preamplifier,
It consists of a main amplifier etc., and the first. Second detection circuit 16.17
Since the signal light 6 was amplitude modulated light, an envelope detection circuit was used. Note that the first and second detection circuits 16 and 17
, 1st. Second delay line 20.21. The combiner 22 and other components used in ordinary microwave communication equipment were used.

また、合成器22としては各ベースバンド信号を振幅比
を2乗した比で振幅合成を行うレシオスケアラ合成器を
用いた。
Further, as the synthesizer 22, a ratio scaler synthesizer was used which synthesizes the amplitudes of each baseband signal using a ratio obtained by squaring the amplitude ratio.

このような構成において、信号光を長さ10kmの単一
モードファイバ(光ファイバ)に供給すると、光ファイ
バ5からの出力信号光6はその偏波状態が光ファイバ5
に加えられる曲げ、ねじシ、周囲の温度変化等により大
きく変化し、また第1゜第2の電気信号14.15の強
度も信号光6の偏波状態の変化に対応して変化したが、
レシオスケアラ合成器22の出力復調信号としてはほと
んどS/N劣化および出力変動のない信号を得ることが
できた。
In such a configuration, when signal light is supplied to a single mode fiber (optical fiber) with a length of 10 km, the output signal light 6 from the optical fiber 5 has a polarization state of the optical fiber 5.
However, the intensity of the first and second electric signals 14 and 15 also changed in response to changes in the polarization state of the signal light 6.
As the output demodulated signal of the ratio scaler synthesizer 22, a signal with almost no S/N deterioration and no output fluctuation could be obtained.

第2図は本発明の第2の実施例のブロック図である3、
この実施例において、局部発振器1の出力光2は、偏光
変換素子3により、偏光分離素子9のイ1irt光軸方
向に対し45°の傾きをもった直線偏波の局部発振光4
に変換されたものであるが、その他の光学系は第1の実
施例と同様である。この実施例が第1の実施例と異なる
構成は第1.第2の受光部12.13以後の信号の処理
にある。すなわち、第1.第2の受光部12.13から
の第1、第2の電気信号14.15は、それらの強度を
比較回路25で検出され、この検出信号によシ切換部2
6を動かして第1.第2の電気信号14゜15のうち強
度の大きな方のみを検波回路27へ送出している。
FIG. 2 is a block diagram of a second embodiment of the present invention3.
In this embodiment, the output light 2 of the local oscillator 1 is converted into a linearly polarized local oscillation light 4 having an inclination of 45° with respect to the optical axis direction of the polarization separation element 9 by the polarization conversion element 3.
However, the other optical systems are the same as in the first embodiment. The configuration in which this embodiment differs from the first embodiment is as follows. The problem lies in the processing of signals after the second light receiving section 12.13. That is, 1st. The first and second electric signals 14.15 from the second light receiving section 12.13 have their intensities detected by a comparison circuit 25, and this detection signal causes the switching section 2
Move 6 to 1st. Of the second electrical signals 14.degree. 15, only the one with greater intensity is sent to the detection circuit 27.

光ファイバ5からの信号光6の偏波状態はその光ファイ
バ5に加わる曲げ、ねじれあるいは周囲の温度等によシ
大きく変動する。このとき第1゜第2の光ビーム10.
11の信号光成分のうちどちらか一方は常に信号光6の
光強度の4以上の強さとなっておシ、従ってこの場合の
復調信号23は最大3dBのレベル変動がある。しかし
、この復調信号23のレベル変動は自動利得制御回路等
を用いれば十分安定化でき、また第1.第2の電気信号
14.15の変動は時間的には比較的ゆりくりしている
ので、比較回路25.切換部26も変動に十分追随でき
る。従って、この実施例においても第1の実施例と同様
比較的簡単な構成で安定な復調信号を得ることができる
The polarization state of the signal light 6 from the optical fiber 5 varies greatly depending on bending or twisting applied to the optical fiber 5, ambient temperature, etc. At this time, the first and second light beams 10.
One of the 11 signal light components always has an optical intensity that is 4 or more than the optical intensity of the signal light 6, and therefore the demodulated signal 23 in this case has a maximum level fluctuation of 3 dB. However, this level fluctuation of the demodulated signal 23 can be sufficiently stabilized by using an automatic gain control circuit or the like. Since the fluctuations of the second electrical signals 14.15 are relatively slow in terms of time, the comparison circuit 25. The switching unit 26 can also sufficiently follow the fluctuations. Therefore, in this embodiment, as in the first embodiment, a stable demodulated signal can be obtained with a relatively simple configuration.

本発明においては以上の実施例の他にもさまざまな変形
が可能である。例えば、局部発振光4としては偏光分離
素子9の偏光軸方向に対し45°の傾きを持つものであ
れば任意の楕円偏波でよく、また偏光軸方向に対し45
°以外の傾きをもつ偏波であっても、第1.第2の光ビ
ーム10.11の局部発振光成分の比を検知して対応し
た補正を電気回路で加えられる範囲であれば、どのよう
な偏波状態であっても実施例と同様に安定な復調信号を
得ることができる。信号光6は、光ファイバを伝搬した
ものではなく、空間あるいは他の光導波路を伝搬したも
のでもよい。光合波器7としてはミラー24を利用した
ものの他にも近接導波路を用いたもの、回折格子を用い
たもの等さまざまなものが使用可能である。偏光分離素
子9としては光学結晶を用いたローションプリズム等で
あっても良い。また、検波回路16,17.27は信号
の変調形式によって適当なものが用いられ、例えば光振
幅変調であれは包絡線検波回路、同期検波回路、光周波
数変調であれば周波数弁別回路。
In addition to the above-described embodiments, various modifications can be made to the present invention. For example, the local oscillation light 4 may be any elliptically polarized light as long as it has an inclination of 45 degrees with respect to the polarization axis direction of the polarization separation element 9;
Even if the polarization has a slope other than °, the first. As long as the ratio of the local oscillation light components of the second light beam 10.11 can be detected and the corresponding correction can be applied by the electric circuit, it will be stable in any polarization state as in the embodiment. A demodulated signal can be obtained. The signal light 6 may not be propagated through an optical fiber, but may be propagated through space or another optical waveguide. As the optical multiplexer 7, in addition to one using the mirror 24, various types such as one using a proximity waveguide, one using a diffraction grating, etc. can be used. The polarization separation element 9 may be a Rochon prism or the like using an optical crystal. Further, the detection circuits 16, 17, and 27 are appropriately selected depending on the modulation format of the signal, such as an envelope detection circuit or a synchronous detection circuit for optical amplitude modulation, and a frequency discrimination circuit for optical frequency modulation.

光位相変調であれば遅延検波回路、同期検波回路が用い
られる。第1の実施例において第1.第2の電気信号1
4.15を合成した後検波しても良く、また第2の実施
例において第1.第2の電気信号14.15を検波した
後信号レベルの比較。
For optical phase modulation, a delay detection circuit or a synchronous detection circuit is used. In the first embodiment, the first. second electrical signal 1
4.15 may be combined and then detected, and in the second embodiment, the first. Comparison of signal levels after detecting the second electrical signal 14.15.

切換を行なってもよい。また第1の実施例において第1
.第2の電気信号14.15の合成比率を一定にした簡
単な構成の合成器を用いてもよい。
Switching may also be performed. In addition, in the first embodiment, the first
.. A simply configured synthesizer in which the synthesis ratio of the second electrical signals 14 and 15 is kept constant may be used.

この場合の振幅の変動は最大3dBであるが自動利得制
御回路等を用いることによ多安定な復調信号を得ること
ができる。さらに、第1.第2の電気信号14.15お
よびこれら電気信号14.15を位相を合わせて合成し
た合成信号の3つのうちもつともS/Nが高いものを選
ぶような構成も可能であう、この構成によればS/Nの
変動を07dB以内に押えることが可能である。
Although the amplitude fluctuation in this case is 3 dB at maximum, a multistable demodulated signal can be obtained by using an automatic gain control circuit or the like. Furthermore, the first. It is also possible to select the one with the highest S/N among the second electric signal 14.15 and a composite signal obtained by combining these electric signals 14.15 with their phases matched. According to this configuration, the S It is possible to suppress the variation in /N to within 0.7 dB.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例のブロック図、第2図は
本発明の第2の実施例のブロック図である。図において
1・・・・・・局部発振器、2・・・・・・局部発振器
出力光、3・・・・・・偏光変換素子、4・・・・・・
局部発掘光、5・・・・・・光ファイバ、6・・・・・
・信号光、7・・・・・・光合波器、8・・・・・・合
波光、9・・・・・・偏光分離素子、10.11・・・
・・・光ビーム、12.13・・・・・・受光部、14
.15・・・・・・電気信号、16,17.27−°−
。 検波回路、18.19・・・・・・ベースバンド信号、
20゜21・・・・・・遅延線、22・・・・・・合成
器、23・・・・・・復調信号、24・・・・・・ミラ
ー、25・・・・・・比較回路、26・・・・・・切換
部である。
FIG. 1 is a block diagram of a first embodiment of the invention, and FIG. 2 is a block diagram of a second embodiment of the invention. In the figure, 1...Local oscillator, 2...Local oscillator output light, 3...Polarization conversion element, 4...
Local excavation light, 5... Optical fiber, 6...
・Signal light, 7... Optical multiplexer, 8... Combined light, 9... Polarization separation element, 10.11...
...Light beam, 12.13... Light receiving section, 14
.. 15... Electric signal, 16, 17.27-°-
. Detection circuit, 18.19...Baseband signal,
20゜21...delay line, 22...combiner, 23...demodulated signal, 24...mirror, 25...comparison circuit , 26... is a switching section.

Claims (3)

【特許請求の範囲】[Claims] (1)入力信号光と偏波状態の安定している局部発振光
とを合波する光合波部と、この光合波部によって得られ
る合波光を偏波面が互いに直交する第1.第2の光ビー
ムに分離する偏光分離素子と、前記第1.第2の光ビー
ムを受光してそれぞれ第1.第2の電気信号に変換する
第1゜第2の受光部と、これら第1.第2受光部の各電
気信号から信号出力を検出する処理部とを含む光ヘテロ
ダイン検波装置。
(1) An optical multiplexer that multiplexes input signal light and local oscillation light with a stable polarization state, and a first optical multiplexer whose polarization planes are orthogonal to each other. a polarization splitting element that separates the light beam into a second light beam; receiving the second light beam and receiving the first and second light beams respectively; a first and second light receiving section that converts the first and second electrical signals into a second electric signal; An optical heterodyne detection device including a processing section that detects a signal output from each electrical signal of the second light receiving section.
(2)処理部が第1.第2の電気信号を加え合わせる信
号合成部を含む特許請求の範囲第1項記載の光ヘテロダ
イン検波装置。
(2) The processing section is the first. 2. The optical heterodyne detection device according to claim 1, further comprising a signal combining section that adds the second electrical signal.
(3)処理部が゛第1.第2の電気信号のうちの信号強
度の大きな方を選択する信号選択部を含む特許請求の範
囲第1項記載の光ヘテロゲイン検波装置。
(3) The processing unit is the first one. 2. The optical heterogain detection device according to claim 1, further comprising a signal selection section that selects one of the second electrical signals having a larger signal strength.
JP57229060A 1982-12-28 1982-12-28 Optical heterodyne detector Granted JPS59122140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57229060A JPS59122140A (en) 1982-12-28 1982-12-28 Optical heterodyne detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57229060A JPS59122140A (en) 1982-12-28 1982-12-28 Optical heterodyne detector

Publications (2)

Publication Number Publication Date
JPS59122140A true JPS59122140A (en) 1984-07-14
JPH0572777B2 JPH0572777B2 (en) 1993-10-13

Family

ID=16886105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57229060A Granted JPS59122140A (en) 1982-12-28 1982-12-28 Optical heterodyne detector

Country Status (1)

Country Link
JP (1) JPS59122140A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179330A (en) * 1984-09-26 1986-04-22 Nippon Telegr & Teleph Corp <Ntt> Optical heterodyne detection transmission system
WO1986007513A1 (en) * 1985-06-06 1986-12-18 British Telecommunications Public Limited Company Coherent optical receivers
EP0245026A2 (en) * 1986-05-08 1987-11-11 AT&T Corp. Optical heterodyne mixers providing image-frequency rejection
JPS62272233A (en) * 1986-05-08 1987-11-26 エイ・ティ・アンド・ティ・コーポレーション Optical heterodyne receiver
EP0250819A2 (en) * 1986-06-28 1988-01-07 Alcatel SEL Aktiengesellschaft Optical heterodyne receiver
EP0251062A2 (en) * 1986-06-20 1988-01-07 Fujitsu Limited Dual balanced optical signal receiver
US4723315A (en) * 1986-06-24 1988-02-02 Itek Corporation Polarization matching mixer
JPS6374331A (en) * 1986-09-18 1988-04-04 Kokusai Denshin Denwa Co Ltd <Kdd> Diversity optical reception system
JPS63135829A (en) * 1986-11-12 1988-06-08 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Optical heterodyne detector
US4817206A (en) * 1986-04-10 1989-03-28 Cselt- Centro Studi E Laboratori Telecomunicazioni S.P.A. Optical-fiber transmission system with polarization modulation and heterodyne coherent detection
EP0314491A2 (en) * 1987-10-28 1989-05-03 Kokusai Denshin Denwa Kabushiki Kaisha Polarization diversity light receiving system
US5142402A (en) * 1988-12-16 1992-08-25 Hitachi, Ltd. Polarization diversity optical receiving apparatus and method
JPH0787428B2 (en) * 1985-06-19 1995-09-20 ブリティシュ・テレコミュニケ−ションズ・パブリック・リミテッド・カンパニ Digital information transmission method and apparatus
RU2584185C1 (en) * 2015-01-21 2016-05-20 ОАО "Национальный центр лазерных систем и комплексов "Астрофизика" Laser receiver

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5024586A (en) * 1972-11-13 1975-03-15
JPS57193143A (en) * 1981-05-25 1982-11-27 Nippon Telegr & Teleph Corp <Ntt> Optical polarized wave transmitting system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5024586A (en) * 1972-11-13 1975-03-15
JPS57193143A (en) * 1981-05-25 1982-11-27 Nippon Telegr & Teleph Corp <Ntt> Optical polarized wave transmitting system

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179330A (en) * 1984-09-26 1986-04-22 Nippon Telegr & Teleph Corp <Ntt> Optical heterodyne detection transmission system
WO1986007513A1 (en) * 1985-06-06 1986-12-18 British Telecommunications Public Limited Company Coherent optical receivers
JPH0787428B2 (en) * 1985-06-19 1995-09-20 ブリティシュ・テレコミュニケ−ションズ・パブリック・リミテッド・カンパニ Digital information transmission method and apparatus
US4817206A (en) * 1986-04-10 1989-03-28 Cselt- Centro Studi E Laboratori Telecomunicazioni S.P.A. Optical-fiber transmission system with polarization modulation and heterodyne coherent detection
EP0247738A2 (en) * 1986-05-08 1987-12-02 AT&T Corp. Polarization independent coherent optical heterodyne receivers
EP0245026A2 (en) * 1986-05-08 1987-11-11 AT&T Corp. Optical heterodyne mixers providing image-frequency rejection
US4723317A (en) * 1986-05-08 1988-02-02 American Telephone And Telegraph Company, At&T Bell Laboratories Optical heterodyne mixers providing image-frequency rejection
US4723316A (en) * 1986-05-08 1988-02-02 American Telephone & Telegraph Company, At&T Bell Laboratories Polarization independent coherent optical heterodyne receivers
JPS62272233A (en) * 1986-05-08 1987-11-26 エイ・ティ・アンド・ティ・コーポレーション Optical heterodyne receiver
JP2786188B2 (en) * 1986-05-08 1998-08-13 エイ・ティ・アンド・ティ・コーポレーション Optical heterodyne receiver
EP0251062A2 (en) * 1986-06-20 1988-01-07 Fujitsu Limited Dual balanced optical signal receiver
US4723315A (en) * 1986-06-24 1988-02-02 Itek Corporation Polarization matching mixer
EP0250819A2 (en) * 1986-06-28 1988-01-07 Alcatel SEL Aktiengesellschaft Optical heterodyne receiver
JPS6374331A (en) * 1986-09-18 1988-04-04 Kokusai Denshin Denwa Co Ltd <Kdd> Diversity optical reception system
JPS63135829A (en) * 1986-11-12 1988-06-08 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Optical heterodyne detector
EP0314491A2 (en) * 1987-10-28 1989-05-03 Kokusai Denshin Denwa Kabushiki Kaisha Polarization diversity light receiving system
US5142402A (en) * 1988-12-16 1992-08-25 Hitachi, Ltd. Polarization diversity optical receiving apparatus and method
RU2584185C1 (en) * 2015-01-21 2016-05-20 ОАО "Национальный центр лазерных систем и комплексов "Астрофизика" Laser receiver

Also Published As

Publication number Publication date
JPH0572777B2 (en) 1993-10-13

Similar Documents

Publication Publication Date Title
EP0251062B1 (en) Dual balanced optical signal receiver
JPS59122140A (en) Optical heterodyne detector
EP0245026B1 (en) Optical heterodyne mixers providing image-frequency rejection
CA1308440C (en) Optical receiving method utilizing polarization diversity and apparatus for carrying out the same
JPS6352530A (en) Receiver for coherent light communication
JPH01114832A (en) Polarized wave diversity light receiving system by base band synthesizing method
JPS60242435A (en) Polarization diversity optical receiver
JPH01178940A (en) Polarization diversity optical receiver
EP0260745A1 (en) Device for optical heterodyne detection of an optical signal beam and optical transmission system provided with such a device
EP0271934B1 (en) Device for optical heterodyne detection of an optical signal beam and optical transmission system provided with such a device
JPH0418493B2 (en)
JPS63205611A (en) Dual balance type photodetector
JP3443810B2 (en) Polarization control circuit
JPH07281229A (en) Optical polarization controller
JPS62200831A (en) Optical heterodyne/homodyne reception circuit
JPH01108534A (en) Optical type heterodyne or homodyne detector for optical signal beam
JPS6344210B2 (en)
JPS6221128A (en) Optical heterodyne detecting device
JP2704987B2 (en) Polarization diversity optical receiving system
JPH02120726A (en) Coherent light communication system
JPH0828684B2 (en) Double balanced polarization diversity receiver
JPH02201324A (en) Polarization diversity optical receiver
JPH05303128A (en) Optical heterodyne detecting and receiving device capable of removing image signal
JP2509295B2 (en) Polarization diversity optical reception system
JPH0671232B2 (en) Double balanced polarization diversity receiver