JPS6224555A - Manufacture of positive plate for clad type lead-acid battery - Google Patents

Manufacture of positive plate for clad type lead-acid battery

Info

Publication number
JPS6224555A
JPS6224555A JP60162039A JP16203985A JPS6224555A JP S6224555 A JPS6224555 A JP S6224555A JP 60162039 A JP60162039 A JP 60162039A JP 16203985 A JP16203985 A JP 16203985A JP S6224555 A JPS6224555 A JP S6224555A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
substrate
soaking
sulfuric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60162039A
Other languages
Japanese (ja)
Inventor
Naoyuki Kato
尚之 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP60162039A priority Critical patent/JPS6224555A/en
Publication of JPS6224555A publication Critical patent/JPS6224555A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To shorten soaking time, increase the generation of lead sulfate inside a active material filling layer,and increase active material utilization in a positive electrode by soaking a clad type positive substrate in a dilute sulfuric acid solution, to which a small amount of anion surfactant is added, filled in a soaking bath. CONSTITUTION:A clad type positive substrate is formed by connecting core metals with a lead alloy lateral frame. The substrate is soaked in dilute sulfuric acid, to which a small amount of anion surfactant is added, filled in a soaking bath. The addition of 0.5wt% or more of anion surfactant is effective, and the generation of lead sulfate inside an active material filling layer is increased with the addition of the surfactant from 0.5wt% to about 2wt%. After 10min soaking, the substrate is dried by a usual method to obtain a non-formed positive substrate. By applying formation to the substrate, A positive electrode is obtained.

Description

【発明の詳細な説明】 (産業上の利用分骨) 本発明は、クラッド式鉛蓄電池用正極板の製造法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application) The present invention relates to a method for manufacturing a positive electrode plate for a clad lead-acid battery.

(従来の技術) 従来のクラッド式鉛蓄電池用正極板の製造法は、鉛合金
芯金とその外周のガラス繊維チューブとの間の空隙内に
鉛粉等の原料粉を充填した筒体の多数本から成る正極基
板をソーキング槽の稀硫酸に単に所要時間浸漬後、乾燥
し未化成板を得、次で化成して製造されている。
(Conventional technology) The conventional manufacturing method for positive electrode plates for clad lead-acid batteries involves manufacturing a large number of cylindrical bodies in which raw material powder such as lead powder is filled into the gap between a lead alloy core and a glass fiber tube around the core. A positive electrode substrate consisting of a book is simply immersed in dilute sulfuric acid in a soaking tank for a required period of time, dried to obtain an unformed plate, and then chemically formed.

(発明が解決しようとする問題点) 上記従来の方法では、正極基板を稀硫酸に単に浸漬する
だけでは、所要量の硫酸鉛を生成するまでに長時間を要
するばかシでなく、第1図示の如く芯金aとチューブb
との間の厚さ方向における活物質充填層0中の各部にお
ける硫酸鉛の生成率は、その生成分右曲[4が示す如く
、その充填層0の芯金a側、即ち内側部においてその生
成率は著しく小さい。又このような硫酸鉛の不均一な生
成分右曲IIAをもつ正極基板を正極として使用した場
合の活物質充填層の厚さ方向における各部の活物質利用
率は、第2図にその分布面1jleが示す如く、特にそ
の層の内側部において著しく低下する欠点を有する。
(Problems to be Solved by the Invention) In the conventional method described above, simply immersing the positive electrode substrate in dilute sulfuric acid requires a long time to generate the required amount of lead sulfate; Core metal a and tube b as shown
The production rate of lead sulfate at each part of the active material packed layer 0 in the thickness direction between The production rate is significantly lower. In addition, when a positive electrode substrate with a right-hand curve IIA due to the uneven production of lead sulfate is used as a positive electrode, the active material utilization rate of each part in the thickness direction of the active material filling layer is shown in the distribution plane in Figure 2. As shown in 1jle, it has the disadvantage that it deteriorates significantly, especially in the inner part of the layer.

(問題点を解決するための手段) 本発明は、上記従来法の欠点を改善し、ソーキング処理
時間を短縮し、活物質充填層の特に内側部の硫酸鉛生成
率を向上せしめると共に正極として使用した場合の活物
質利用率を増大し得るクラッド式鉛蓄電池の正極板の製
造法を提供するもので、芯金とその外周の多孔性チュー
ブとの間の空隙内に鉛粉等の原料粉を充填した筒体の多
数本から成るクラッド式正極基板をソーキング槽内の稀
硫酸に浸漬処理するに当シ1陰イオン界面活性剤を少量
添加した稀硫酸に浸漬することを特徴とする。
(Means for Solving the Problems) The present invention improves the drawbacks of the conventional method described above, shortens the soaking treatment time, improves the lead sulfate production rate especially in the inner part of the active material packed layer, and uses it as a positive electrode. The present invention provides a method for manufacturing a positive electrode plate for a clad lead-acid battery that can increase the active material utilization rate when A clad positive electrode substrate consisting of a large number of filled cylinders is immersed in dilute sulfuric acid in a soaking tank.1 This method is characterized in that it is immersed in dilute sulfuric acid to which a small amount of anionic surfactant is added.

(作用) 拳法によれば、稀硫酸中に陰イオン界面活性剤が少量添
加されているので、各筒体内の活物質充填層の内側部へ
の浸透が容易となシ該部での硫酸鉛の生成を増大し厚さ
全体に亘シ均一な硫酸鉛の生成曲線をもたらす。
(Function) According to Kenpo, since a small amount of anionic surfactant is added to dilute sulfuric acid, it can easily penetrate into the inner part of the active material packed layer in each cylinder, and lead sulfate in this part can be easily absorbed. leads to a uniform lead sulfate production curve throughout the thickness.

(実施例) 本発明の実施例を次に説明する。(Example) Examples of the present invention will now be described.

従来と同様にして鉛合金の下部横杆より上方に突出する
平行する多数本の鉛合金芯金の夫々に上方からガラス繊
維等から成る多孔性チューブを芯金の外周に筒状空隙が
存するように嵌合し1その空隙内に鉛粉等の原料粉を所
望量充填して成る筒体の多数本を作成し、これらの上面
全密閉し葛鉛合金上部横杆で各芯金を接続してクラッド
式正極基板金作成する。次で、この基板をソーキング槽
内の稀硫酸に浸漬する。この場合、本発明によれば、稀
硫酸に少量の陰イオン界面活性剤を添加したものに浸漬
する。その添加量は(L5重量%以上で有効であシ、添
加量が2重量外柵度まではその添加量の増大に伴ない内
側部の硫酸鉛の生成量も増大するが、それ以上の添加は
有効であるが、添加効果の増大は認められないので、経
済的には2重量%程度までの添加量にとyめることが好
ましい。
As in the conventional method, a porous tube made of glass fiber or the like is inserted from above into each of the multiple parallel lead alloy core metals that protrude upward from the lower horizontal rod of the lead alloy so that a cylindrical void exists around the outer periphery of the core metal. 1.Make a large number of cylinders by filling the desired amount of raw material powder such as lead powder into the gaps, completely sealing the upper surfaces of these cylinders, and connecting each core metal with the upper crossbar of the arrow lead alloy. A gold clad positive electrode substrate is prepared. Next, this substrate is immersed in dilute sulfuric acid in a soaking tank. In this case, according to the invention, immersion is carried out in dilute sulfuric acid to which a small amount of anionic surfactant is added. It is effective at an addition amount of 5% by weight or more, and the amount of lead sulfate produced inside increases as the addition amount increases up to 2wt. is effective, but no increase in the effect of addition is observed, so economically it is preferable to limit the amount added to about 2% by weight.

かくして、浸漬時間10分で、引き上げて、常法によシ
乾燥し、未化成正極基板を得る。この正極基板の各筒体
の活物質充填層の厚さ方向における各部の硫酸鉛の生成
率を検べた結果は、第3図に示す通シである。図面で(
1)は芯金(2)とガラス繊維チューブ(3)との間に
充填された厚さSeagの活物質充填層を示す。その充
填層(1)の厚さ方向における各部の硫酸鉛の生成率t
−測測定た結果のその生成分右曲laAが示すように、
その充填層(1)の芯金123 m 、即ちその内側部
の硫酸鉛の生成率は、NX1図示の従来のソーキング法
による場合に比し著しく向上して居シ、而もその厚さ方
向全体に亘シ極めて好ましい硫酸鉛生成率SO〜40%
程度の均一な生成分布が得られることが分る。f41図
の従来法の場合は拳法と同じ濃度の稀硫酸(比重1.1
0)に40分浸漬して得られた結果であるに徴し、拳法
のソーキング処理は、所要量の硫酸鉛を生成するまでの
処理時間が著しく短縮されることが分る。
After 10 minutes of immersion, the substrate was pulled out and dried in a conventional manner to obtain an unformed positive electrode substrate. The results of examining the production rate of lead sulfate at each part in the thickness direction of the active material filled layer of each cylinder of this positive electrode substrate are shown in FIG. 3. In the drawing (
1) shows an active material filled layer with a thickness of Seag filled between a core bar (2) and a glass fiber tube (3). Production rate t of lead sulfate at each part in the thickness direction of the packed bed (1)
- As shown by the right curve laA of the measured result,
The production rate of lead sulfate in the core metal 123 m of the packed bed (1), that is, in its inner part, is significantly improved compared to the conventional soaking method shown in NX1, and even in the entire thickness direction. Extremely favorable lead sulfate production rate SO ~ 40%
It can be seen that a fairly uniform production distribution can be obtained. In the case of the conventional method shown in figure f41, dilute sulfuric acid (specific gravity 1.1) is used at the same concentration as in Kempo.
0), it can be seen that the soaking treatment of Kempo significantly shortens the treatment time to generate the required amount of lead sulfate.

拳法によシ得た上記の正極基板を化成し電池の正極とし
て使用した場合の該基板の各筒体内の活物質充填層(1
1の厚さ方向における各部の活物質利用率は、第4図に
示す通りである。即ち、その分布面IsBが示すように
、その充填層(1)の内側部においても高い活物質利用
率を有することが分る。これを、従来法の@2図示の従
来法によりソーキング処理したものを電池の正極として
使用した場合の活物質充填層Cの内側部の著しく低い利
用率と対比すると、拳法により著しく改善されることが
分る。
When the above positive electrode substrate obtained by Kenpo is chemically converted and used as a positive electrode of a battery, the active material filling layer (1
The active material utilization rate of each part in the thickness direction of No. 1 is as shown in FIG. That is, as shown by the distribution plane IsB, it can be seen that the active material utilization rate is high even in the inner part of the filled layer (1). Comparing this with the extremely low utilization rate of the inner part of the active material filled layer C when a soaking-treated product as shown in the conventional method @2 is used as a positive electrode of a battery, it is found that the utilization rate of the inner part of the active material filled layer C is significantly improved. I understand.

実施例1 金属鉛30%の鉛粉をガラス繊維チューブと芯金との間
の筒状空隙内に所望量充填した筒体の多数本から成る正
極基板を多数枚作成したものを、各ソーキング槽内に、
比重1.10の稀硫酸に、界面活性剤例えば夫々0.2
%、Q、5%、2%、5%を添加したもの及び、従来法
に従い界面活性剤を添加しない比重1.10の稀硫酸に
夫々10分間浸漬した後、自然乾燥を行ない、夫々の未
化成板を得る。この夫々の正極基板につき、公称s O
Ah/s HRのクラッド式鉛蓄電池を作成し、その夫
々の電池容量を陰イオン界面活性剤の添加量との関係で
試験した。その関係は下記表の通シであった。従来法に
よる電池容量(放電時間5時間12分)t−100とし
た。
Example 1 A large number of positive electrode substrates each consisting of a large number of cylindrical bodies filled with a desired amount of lead powder containing 30% metallic lead in the cylindrical gap between the glass fiber tube and the cored metal were placed in each soaking bath. Inside,
Dilute sulfuric acid with a specific gravity of 1.10 and a surfactant such as 0.2
%, Q, 5%, 2%, 5% and dilute sulfuric acid with a specific gravity of 1.10 without adding a surfactant according to the conventional method for 10 minutes, and then air-dried. Obtain a chemically formed board. For each positive electrode substrate, the nominal s O
Ah/s HR clad lead-acid batteries were prepared, and their respective battery capacities were tested in relation to the amount of anionic surfactant added. The relationship was as shown in the table below. The battery capacity according to the conventional method (discharge time: 5 hours and 12 minutes) was set to t-100.

このように、ソーキング処理において、本法のように界
面活性剤を添加した稀硫酸で浸漬処理して得られる正極
基板を使用した電池の容量は、従来法の単に稀硫酸で浸
漬処理して得られる正極基板を使用した電池に比しその
電池容量も増大することが認められた。
In this way, in the soaking process, the capacity of a battery using a positive electrode substrate obtained by soaking in dilute sulfuric acid to which a surfactant has been added as in the present method is lower than that obtained by simply soaking in dilute sulfuric acid using the conventional method. It was also observed that the battery capacity was increased compared to a battery using a positive electrode substrate.

(発明の効果) このように本発明によるときは、クラッド式正極の製造
に当り、その正極基板素材を界面活性剤を少量添加した
稀硫酸に浸漬するようにしたので、短時間で所要量の硫
酸鉛の生成がその各筒体内の活物質充填層の芯金側、即
ち内側部も高い硫酸鉛の生成状態で得られる効果を有し
、これに伴ないこれを使用した電池の容量も増大し得る
等の効果を有する。
(Effects of the Invention) According to the present invention, when manufacturing a clad type positive electrode, the positive electrode substrate material is immersed in dilute sulfuric acid to which a small amount of surfactant has been added, so that the required amount can be obtained in a short time. The production of lead sulfate has the effect of producing a high amount of lead sulfate on the core metal side of the active material packed layer in each cylinder, that is, on the inner side, and the capacity of the battery using this increases accordingly. It has the following effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来法による活物質充填層の厚さ方向における
各部の硫酸鉛の生成率を示すグラフ1第2図は従来法に
より製造した正極基板を正極とした電池の活物質充填層
の厚さ方向における各部の活物質利用率を示すグラフ、
第5図は、本法による活物質充填層の厚さ方向における
各部の硫酸鉛の生成率を示すグラフ、第4図は本法によ
υ製造した正極基板を正極とした電池の活物質充填層の
厚さ方向における各部の活物質利用率を示すグラフであ
る。 A・・・硫酸鉛生成分布曲線 B・・・活物質利用率曲線
Figure 1 is a graph showing the production rate of lead sulfate at each part in the thickness direction of the active material filled layer produced by the conventional method. Figure 2 is the thickness of the active material filled layer of a battery using the positive electrode substrate manufactured by the conventional method as the positive electrode. A graph showing the active material utilization rate of each part in the horizontal direction,
Figure 5 is a graph showing the production rate of lead sulfate in each part in the thickness direction of the active material filled layer by this method, and Figure 4 is the active material filling of a battery using the positive electrode substrate manufactured by this method as the positive electrode. It is a graph showing the active material utilization rate of each part in the thickness direction of the layer. A... Lead sulfate production distribution curve B... Active material utilization rate curve

Claims (1)

【特許請求の範囲】 1 芯金とその外周の多孔性チューブとの間の空隙内に
鉛粉等の原料粉を充填した筒体の多数本から成るクラッ
ド式正極基板をソーキング槽内の稀硫酸に浸漬処理する
に当り、陰イオン界面活性剤を少量添加した稀硫酸に浸
漬することを特徴とするクラッド式鉛蓄電池用正極板の
製造法。 2 イオン界面活性剤の添加量は0.5〜2%程度であ
る特許請求の範囲1項記載の製造法。
[Claims] 1. A clad positive electrode substrate consisting of a large number of cylinders filled with raw material powder such as lead powder in the gap between a core metal and a porous tube on its outer periphery is soaked in dilute sulfuric acid in a soaking tank. A method for producing a positive electrode plate for a clad lead-acid battery, which comprises immersing it in dilute sulfuric acid to which a small amount of anionic surfactant is added. 2. The manufacturing method according to claim 1, wherein the amount of the ionic surfactant added is about 0.5 to 2%.
JP60162039A 1985-07-24 1985-07-24 Manufacture of positive plate for clad type lead-acid battery Pending JPS6224555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60162039A JPS6224555A (en) 1985-07-24 1985-07-24 Manufacture of positive plate for clad type lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60162039A JPS6224555A (en) 1985-07-24 1985-07-24 Manufacture of positive plate for clad type lead-acid battery

Publications (1)

Publication Number Publication Date
JPS6224555A true JPS6224555A (en) 1987-02-02

Family

ID=15746920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60162039A Pending JPS6224555A (en) 1985-07-24 1985-07-24 Manufacture of positive plate for clad type lead-acid battery

Country Status (1)

Country Link
JP (1) JPS6224555A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04223060A (en) * 1990-12-26 1992-08-12 Shin Kobe Electric Mach Co Ltd Manufacture of clad type lead storage battery
US7633548B2 (en) 2000-03-09 2009-12-15 Fujifilm Corporation Image capturing apparatus with a lens barrier that is a portion of a body of the image capturing apparatus
US8323929B2 (en) 1999-06-17 2012-12-04 Becton, Dickinson And Company Methods for detecting nucleic acid sequence variations

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04223060A (en) * 1990-12-26 1992-08-12 Shin Kobe Electric Mach Co Ltd Manufacture of clad type lead storage battery
US8323929B2 (en) 1999-06-17 2012-12-04 Becton, Dickinson And Company Methods for detecting nucleic acid sequence variations
US7633548B2 (en) 2000-03-09 2009-12-15 Fujifilm Corporation Image capturing apparatus with a lens barrier that is a portion of a body of the image capturing apparatus

Similar Documents

Publication Publication Date Title
US3870563A (en) Hermetically sealed storage battery
DE112022000774T5 (en) Method for producing a copper-based negative electrode material using battery waste
JPS6224555A (en) Manufacture of positive plate for clad type lead-acid battery
US3006821A (en) Manufacture of silver chloride electrodes
JPS6224556A (en) Manufacture of positive plate for clad type lead-acid battery
KR940005745B1 (en) Making method of hydrogen electrode
US3540930A (en) Production of negative electrodes for nickel-cadmium batteries
JPS6136348B2 (en)
US3320139A (en) Method for preparing negative electrodes
US3907594A (en) Method of manufacturing lead electrodes for storage cells
CA1036665A (en) Hermetically sealed storage battery with grid-supported electrodes
US3533842A (en) Process for impregnating sintered nickel plaques
JPS58129758A (en) Manufacture of negative plate in lead storage battery
JPH04196060A (en) Non-sintered plate
JPS62103972A (en) Manufacture of cathode plate for alkaline storage battery
JPS6251161A (en) Manufacture of cathode plate for lead storage battery
US711997A (en) Process of forming electric accumulators.
JPS5929366A (en) Manufacture of paste type electrode for lead storage battery
JPH01167952A (en) Manufacture of lead-acid battery
JPH0231460B2 (en)
JPS59157969A (en) Manufacture of lead storage battery
JPS6386348A (en) Manufacture of sealed lead acid battery
JPS6386258A (en) Manufacture of lead acid battery
JPS625562A (en) Manufacture of plate for lead-acid battery
JPS63314763A (en) Manufacture of nickel hydroxide electrode for alkaline storage battery