JPS62244459A - Method and apparatus for purifying air by irradiation of radioactive rays - Google Patents

Method and apparatus for purifying air by irradiation of radioactive rays

Info

Publication number
JPS62244459A
JPS62244459A JP61085996A JP8599686A JPS62244459A JP S62244459 A JPS62244459 A JP S62244459A JP 61085996 A JP61085996 A JP 61085996A JP 8599686 A JP8599686 A JP 8599686A JP S62244459 A JPS62244459 A JP S62244459A
Authority
JP
Japan
Prior art keywords
air
emitting material
photoelectron emitting
photoelectron
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61085996A
Other languages
Japanese (ja)
Inventor
Toshiaki Fujii
敏昭 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Corp
Ebara Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Ebara Research Co Ltd filed Critical Ebara Corp
Priority to JP61085996A priority Critical patent/JPS62244459A/en
Publication of JPS62244459A publication Critical patent/JPS62244459A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/38Particle charging or ionising stations, e.g. using electric discharge, radioactive radiation or flames
    • B03C3/383Particle charging or ionising stations, e.g. using electric discharge, radioactive radiation or flames using radiation

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electrostatic Separation (AREA)

Abstract

PURPOSE:To purify air only by providing a dust collecting plate to a downstream side, by generating a photoelectron by irradiating a photoelectron discharge material with radioactive rays and charging fine particles by the photoelectron to remove charged fine particles. CONSTITUTION:Air with a purifying degree of about 10,000 in a clean room is sucked in a clean bench 11 by a fan 5. Further, a photoelectron discharge member 21 is irradiated with radioactive rays to generate a photoelectron and fine particles in air are charged by said photoelectron. For example, when a <137>Cs or <60>Co ray source having sterilizing action is used as radioactive rays, microorganisms such as a virus, bacteria, yeast or fungi are sterilized and, thereafter, the charged fine particles are removed by a filter 10 to hold the top surface of the working bench 13 at a high purifying degree.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電子工業、薬品工業、食品工業、農林産業、
医療、精密機械工業等におけるクリーンルーム、クリー
ンベンチ、クリーントンネル、クリーンベンチ、安全キ
ャビネット、無菌室、バスボックス、無菌エアカーテン
、クリーンチューブ等における空気清浄方法及びその装
置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to the electronic industry, pharmaceutical industry, food industry, agriculture and forestry industry,
The present invention relates to air cleaning methods and devices for clean rooms, clean benches, clean tunnels, clean benches, safety cabinets, sterile rooms, bath boxes, sterile air curtains, clean tubes, etc. in the medical and precision machinery industries.

〔従来の技術及びその問題点] 従来の室内の空気清浄方法或いはその装置を大別すると
、 (1)機械的濾過方式(例えばHE P /4フィルタ
(2)静電的に微粒子の捕集を行なう高電圧による荷電
及び導電性フィルターによる濾過方式(例えばMESA
フィルター) があるが、これらの方式には夫々次のような欠点があっ
た。
[Prior art and its problems] Conventional indoor air purification methods and devices can be roughly divided into: (1) mechanical filtration methods (for example, HE P /4 filters); (2) electrostatic collection of particulates; Charging with high voltage and filtration method with conductive filter (for example, MESA
filters), but each of these methods had the following drawbacks.

即ち、機械的濾過方式に訃いては、空気の清浄度(クラ
ス)をあげるためには目の細かいフィルターを使用する
必要があるが、この場合圧損が高く、また目づまりによ
る圧損の増加も著るしく、フィルターの寿命も短かく、
フィルターの維持、管理或いは交換が面倒であるばかり
でなく、フィルターの交換を行う場合、その間作業をス
トップする必要があり、復帰までには長時間を要してお
り、生産能率が悪いという欠点がちった。
In other words, when using mechanical filtration methods, it is necessary to use a fine-mesh filter in order to improve the air cleanliness (class), but in this case the pressure drop is high, and the increase in pressure drop due to clogging is also significant. and the filter life is short.
Not only is it troublesome to maintain, manage, and replace filters, but when replacing filters, it is necessary to stop work during that time, and it takes a long time to recover, resulting in poor production efficiency. Fell.

捷た、空気の清浄度を上げる為に換気回数(ファンによ
る空気循環回数)を増加することも行われているが、こ
の場合動力費が高くつくという欠点があった。
In order to improve the cleanliness of the air, the number of ventilations (the number of times air is circulated by a fan) has been increased, but this has the disadvantage of increasing power costs.

−tた、従来のフィルグーによる方法は微粒子の除去だ
けを目的としているので、工業用クリーンμmム用とし
ては使用できるが、フィルターには必ずと言ってよい程
ピンホールが、l、汚染空気の一部がリークするため、
バイオロジカルクリーンルームでの使用には限界があっ
た。
In addition, the conventional filter method is aimed only at removing particulates, so it can be used for industrial clean micrometers, but filters almost always have pinholes, which remove contaminated air. Because some of it leaks,
There were limitations to its use in biological clean rooms.

また、静電的に微粒子の捕集を行う方式においては、予
備荷電部に例えば15〜70に■ という高電圧を必要
とするため、装置が大型となり、また安全性、維持管理
の面で問題がちった。
In addition, in the method of electrostatically collecting particles, a high voltage of, for example, 15 to 70V is required in the pre-charging section, which increases the size of the device and poses problems in terms of safety and maintenance. It was small.

これらの問題点を解決するために本発明者は紫外線照射
による空気洗浄方式を提案したが(特願昭59−216
295号)、この方式は適用分野、用途によっては有効
であるが、超微細な粒子を含む空気の浄化や特定の分野
への適用においてれ未だ十分とけ言えない。
In order to solve these problems, the present inventor proposed an air cleaning method using ultraviolet irradiation (Japanese Patent Application No. 59-216
No. 295), this method is effective depending on the field of application and use, but it is still not sufficient for purifying air containing ultrafine particles or for application to specific fields.

〔発明の構成〕[Structure of the invention]

本発明は、l放射線を照射することにより、空気中の微
粒子を荷電させ、その後、該荷電した微粒子を空気中よ
り除去する空気清浄方法に於て、放射線を光電子放出材
に照射することにより発生させ、該光電子によ秒前記微
粒子を荷電させた後荷電した微粒子をAil記空剣中よ
り除去することを特徴とする空気の清浄方法。及び 2、空気吸入口から空気排出口までの空気流路上に、光
電子放出材上への放射線照射部、及び荷電敞粒子捕集部
を順次設U4てなる空気清浄装置。
The present invention provides an air cleaning method in which fine particles in the air are charged by irradiating radiation, and then the charged fine particles are removed from the air. A method for purifying air, comprising: charging the fine particles with the photoelectrons for a second, and then removing the charged fine particles from the air. and 2. An air purifying device U4 comprising a radiation irradiation unit for photoelectron emitting material and a charged particle collection unit sequentially provided on the air flow path from the air inlet to the air outlet.

であって、電場において、前η4光11(子放出材に放
射線を照射することにより発生する光電子により、前記
空気中の微粒子を荷電、させた後荷電餓粒子を除去する
方法及びその装置でちる。
In an electric field, the fine particles in the air are charged by photoelectrons generated by irradiating the electron emitting material with radiation, and then the charged particles are removed by a method and an apparatus thereof. .

光電子放射材として好ましくは光電的な仕事関数の小さ
い物質、これらの化合物又は合金が選択され、これらは
単独で又は2種以上を複合した複合材として用いられ、
る。
As the photoelectron emitting material, preferably a substance with a small photoelectric work function, a compound or an alloy thereof is selected, and these are used alone or as a composite material of two or more types,
Ru.

つ号゛に、図面に基いて本発明の詳細な説明する。In No. 2, the present invention will be explained in detail based on the drawings.

第1図はバイオロジカルクリーンフレームにおけるクリ
ーンベンチ併用方式、即ち、作条領域内の一部だけを尚
清浄度にした方式の概略図を示すものである。
FIG. 1 shows a schematic diagram of a method in which a biological clean frame is used in combination with a clean bench, that is, a method in which only a part of the row area is kept clean.

第2図は、放射線照射による光電子放出部の実施例を示
す概略図である。
FIG. 2 is a schematic diagram showing an embodiment of a photoelectron emission section by radiation irradiation.

クリーンル・−ム1内には、配管2から導入される外気
の粗粒子をプレフィルタ3で濾過した後、クリーンμm
ム1の空気取出し口4から取り出された循環空気と共に
ファン5を介して空気調和装置6にて温度及び湿度を調
節した後、HEPAフイ!レター7により微粒子を除去
した空気が循環供給されており、清浄度(クラス)10
、000程度に保持されている。
Inside the clean room 1, after filtering the coarse particles of the outside air introduced from the pipe 2 with a pre-filter 3, a clean μm
After adjusting the temperature and humidity of the circulating air taken out from the air outlet 4 of the air conditioning system 1 through the fan 5 and the air conditioner 6, the HEPA filter is installed. Air from which particulates have been removed is circulated through Letter 7, and the cleanliness (class) is 10.
,000.

一方、クリーンルーム1内のファン及び電圧供給部材8
、光電子放出材上への放射線照射部9、フィルター10
を設けたクリーンベンチ11内の作業台15上は、高清
浄度(クラス10)の無菌雰囲俄に保持される。
On the other hand, the fan and voltage supply member 8 in the clean room 1
, a radiation irradiation unit 9 onto the photoelectron emitting material, a filter 10
The workbench 15 in the clean bench 11 provided with the above is maintained in a sterile atmosphere of high cleanliness (class 10).

即ち、クリーンベンチ11においては、クリーンμmム
1内のm浄度(クラス) I n、 00 (]程度の
空気がファン8のファンにより吸引され、光電子放出部
材上へ放射線を照44することにより発生した光電子に
より空気中の微粒子は荷電されると共に、放射線として
殺菌作用のある例えば、+37 CB又は6°Co線源
を用いた場合は、ウィルス、バクテリヤ、酵母、かび等
の微生物が殺菌された後、フィルター10で荷電された
微粒子を除去することにより、作業台13上は高清浄度
に保持される。
That is, in the clean bench 11, air of about m cleanliness (class) I n, 00 () in the clean μm 1 is sucked by the fan 8, and radiation is irradiated 44 onto the photoelectron emitting member. The generated photoelectrons charge particles in the air, and when a +37 CB or 6°Co radiation source, which has a sterilizing effect as radiation, is used, microorganisms such as viruses, bacteria, yeast, and mold are sterilized. Thereafter, by removing the charged particles with the filter 10, the workbench 13 is maintained at a high level of cleanliness.

放射線照射による光電子放出部は、その概略図が第2図
に示されている如く、主として放電電極20、光電子放
出材21、放射線源22からカリ、放電電極20と光電
子放出材21との間にファン及び電圧供給部8から電圧
を負荷し、又光電子放出材21に放射線の照射を行い、
放電電極20と光電子放出材210間に空気50を通す
ことにより、空気50中の微粒子が効率良く荷電される
As shown in the schematic diagram in FIG. 2, the photoelectron emitting section due to radiation irradiation mainly consists of a discharge electrode 20, a photoelectron emitting material 21, and a source of potassium between the discharge electrode 20 and the photoelectron emitting material 21. Applying voltage from the fan and voltage supply unit 8, and irradiating the photoelectron emitting material 21 with radiation,
By passing air 50 between discharge electrode 20 and photoelectron emitting material 210, fine particles in air 50 are efficiently charged.

放電電極20と光電子放出材21の距離は、装置の形状
にもよるが、一般的には2〜20譚が好ましく、特に3
〜101Mが好ましい。
The distance between the discharge electrode 20 and the photoelectron emitting material 21 depends on the shape of the device, but is generally preferably 2 to 20 steps, particularly 3 steps.
~101M is preferred.

放電電極20の材料と、その構造は通常の荷電装置に使
用されているものでよい。通常タングステン線が用いら
れている。第2図中、符号25は粗フィルタ、符号24
は静電フィルターである。
The material and structure of the discharge electrode 20 may be those used in ordinary charging devices. Tungsten wire is usually used. In FIG. 2, numeral 25 is a coarse filter, numeral 24
is an electrostatic filter.

なお、第2図の例では電場を形成するために、光電子放
出材としての光電子放出材21と放電電極20とを別部
材として構成しであるが、勿論光電子放出材21を放電
ttHMとして兼用させても良い。この場合には、第2
図の例から放電電極20が省略され、ファン及び電圧供
給部8から電圧を光電子放出材21に印加することとな
る。
In the example shown in FIG. 2, the photoelectron emitting material 21 as a photoelectron emitting material and the discharge electrode 20 are constructed as separate members in order to form an electric field, but of course the photoelectron emitting material 21 may also be used as a discharge ttHM. It's okay. In this case, the second
The discharge electrode 20 is omitted from the illustrated example, and voltage is applied to the photoelectron emitting material 21 from the fan and the voltage supply unit 8.

次に光電子放出材21は、放射線照射により光電子を放
出するものであれば何れでも良く、光電的な仕事関数の
小さいもの程好ましい。効果や経済性の面から、Ba、
 Sr、 Ca、 Y、 ()d、 La。
Next, the photoelectron emitting material 21 may be any material as long as it emits photoelectrons when irradiated with radiation, and the smaller the photoelectric work function, the more preferable it is. From the viewpoint of effectiveness and economy, Ba,
Sr, Ca, Y, ()d, La.

Ce、 Nd、 Th、 Pr、 Be、 Zr、 F
e、 Ni、 Zn、 Cu、 Ag。
Ce, Nd, Th, Pr, Be, Zr, F
e, Ni, Zn, Cu, Ag.

Pt、 Cd、 Pb、 A4 C,Mg、 Au、 
In、 Bi、 Nb、 Si、。
Pt, Cd, Pb, A4 C, Mg, Au,
In, Bi, Nb, Si,.

Ti、 Ta、 8n、 Pのいずれか又はこれらの化
合物又は合金が好ましく、これらは単独で又は二種以上
を複合して用いられる。複合材としては、アマルガムの
如く物理的な複合材も用いうる。
Any one of Ti, Ta, 8n, and P, or a compound or alloy thereof is preferred, and these may be used alone or in combination of two or more. As the composite material, a physical composite material such as amalgam can also be used.

例えば、化合物としては酸化物、はう化物、灰化物があ
り、酸化物にはBad、 SrO,Cab。
For example, compounds include oxides, ferrides, and ashes, and oxides include Bad, SrO, and Cab.

Y2 o61 aa、o3. Nd2031 ’rho
、 、 F E3203 、 Z no、 Cuo。
Y2 o61 aa, o3. Nd2031 'rho
, , FE3203, Z no, Cuo.

A g20r P t+ Og P b OHA Z2
03 + M g O9I n203 + B 10+
NbO,BeOなどがあり、またほう化物にはYB6゜
G4B6 、 LaB6 、 CeB6. PrB6 
、 ZrB2などがあり、さらに炭化物としてはZrC
,TaC,TiC,NbCなどがある。
A g20r P t+ Og P b OHA Z2
03 + M g O9I n203 + B 10+
There are NbO, BeO, etc., and borides include YB6°G4B6, LaB6, CeB6. PrB6
, ZrB2, etc., and carbides such as ZrC
, TaC, TiC, NbC, etc.

また、合金としては黄銅、青銅、リン青銅。In addition, alloys include brass, bronze, and phosphor bronze.

AgとMgとの合金(Mgが2〜20 vrt%)、C
uとBeとの合金(Beが1〜10 wt % )及び
BaとALとの合金を用いることができ、上記AgとM
gとの合金、CuとBeとの合金及びBaとAlとの合
金が好ましい。酸化物としては金属を空気中で加熱した
り、或いは薬品で酸化することにより、金属板の表面の
みを酸化物としたものを用いてもよい。
Alloy of Ag and Mg (Mg 2-20 vrt%), C
An alloy of u and Be (1 to 10 wt% Be) and an alloy of Ba and AL can be used, and the above-mentioned Ag and M
An alloy of Cu and Be, and an alloy of Ba and Al are preferable. The oxide may be one in which only the surface of the metal plate is made into an oxide by heating the metal in air or oxidizing it with a chemical.

さらに他の方法としては使用前に加熱し、表面に酸化層
を形成して長期にわたって安定な酸化層を得ることもで
きる。この例としてはMgとAg との合金を水蒸気中
で500〜400℃の温度の条件下でその表面に酸化薄
膜を形成させることができ、この酸化薄膜は長期間にわ
たつて安定なものである。
Still another method is to heat the material before use to form an oxidized layer on the surface to obtain a stable oxidized layer over a long period of time. As an example of this, a thin oxide film can be formed on the surface of an alloy of Mg and Ag in water vapor at a temperature of 500 to 400°C, and this thin oxide film is stable over a long period of time. .

これらの材料の使用形状は、板状、プリーツ状、網状等
何れの形状でもよいが、放射線の照射面積及び空気との
接触面積の大きな形状のものが好ましく、このようか観
点からは網状のものが好ましい。
These materials may be used in any shape such as plate, pleat, or net, but it is preferable to use a shape that has a large radiation irradiation area and a large contact area with air, and from this perspective, a net is preferable. is preferred.

印加する電圧は、[1,1〜15 kV 、好捷しくは
α1〜5kV、より好ましくは01〜3 kVであるが
、該電圧は装置の形状、使用する電極或いは光電子放出
材の材質、構造等により異々る。
The voltage to be applied is [1,1 to 15 kV, preferably α1 to 5 kV, more preferably 01 to 3 kV, but the voltage depends on the shape of the device, the material and structure of the electrode or photoelectron emitting material used. Varies depending on etc.

放射線の照射は、その照射により光電子放出材が光電子
を放出しつるものであれば何れでもよく、従来周知の方
法で照射出来るが、殺菌作用を併せてもつものが好まし
い。例えば、殺菌作用を持つ137 C8,60CO線
源が好ましい。適用分野、作東内容、用途、経済性など
によね適宜決めることがで撚る。例えば、バイオロジカ
ル分野においては、殺菌作用も併用した照射を行うのが
好−チしい。
The radiation may be irradiated with any material that causes the photoelectron-emitting material to emit photoelectrons by the irradiation, and can be performed by a conventionally known method, but radiation that also has a bactericidal effect is preferred. For example, a 137 C8,60CO source with bactericidal activity is preferred. It can be determined as appropriate depending on the field of application, content, purpose, economic efficiency, etc. For example, in the biological field, it is preferable to use irradiation that also has a bactericidal effect.

例えば、放射線としてはα線、β線、γ線などが用いら
れ、照射手段としてコバ/M)60゜セシウム157.
ストロンチウム90などの放射性同位元素、又は原子炉
内で作られる放射性廃棄物及びこれに適当な処理加工し
た放射性物質を線源として用いる方法、原子炉を直接線
源として用いる方法、電子線加速器などの粒子加速器を
用いる方法などを利用する。
For example, alpha rays, beta rays, gamma rays, etc. are used as radiation, and the irradiation means is 60°Cesium 157.
Methods that use radioactive isotopes such as strontium-90, radioactive waste produced in nuclear reactors, and radioactive materials that have been appropriately treated as radiation sources, methods that use nuclear reactors directly as radiation sources, electron beam accelerators, etc. Use methods such as those using particle accelerators.

加速器で電子線照射を行う場合は、低出力で行うことで
、高密度な照射が出来、効果的となる。加速電圧は、5
00 kV以下、好ましくは、50 kV〜300 k
Vである。
When electron beam irradiation is performed using an accelerator, high-density irradiation can be achieved by performing it at low output, making it more effective. The acceleration voltage is 5
00 kV or less, preferably 50 kV to 300 kV
It is V.

死滅した生物を含む荷電された微粒子は静電フィルタ・
−10で捕集される。荷電された粒子の捕集器は、何れ
でも良い。通常の荷電装置における集じん板(集じん電
極)や静電フィルタ一方式が一般的であるが、スチール
ウール電極としたような捕集部自体が電極を構成する構
造のものも有効である。静電フィルタ一方式は取り扱い
が容易であることや、性能、経済性の点で有効であるが
、一定期間使用すると目詰まりを生ずるので、必要に応
じカートリッジ構造とし、圧力損失の検出により交換す
るようにすることにより長期間にわたって安定した運転
が可能となる。
Charged particles, including dead organisms, are removed by electrostatic filters.
Collected at -10. Any collector for charged particles may be used. A dust collection plate (dust collection electrode) or an electrostatic filter in a normal charging device is common, but a structure in which the collection part itself constitutes an electrode, such as a steel wool electrode, is also effective. Single-type electrostatic filters are effective in terms of ease of handling, performance, and economy, but they tend to clog after being used for a certain period of time, so they are designed as cartridges and are replaced when pressure loss is detected. This allows stable operation over a long period of time.

クリーンペンチ11内の作業台13への器具、製品等の
出し入れは、クリーンベンチ11に設けた可動シャッタ
ー12により行う。
Instruments, products, etc. are taken in and out of the workbench 13 in the clean pliers 11 using a movable shutter 12 provided on the clean bench 11.

空気中の微粒子への荷電方式として、比較的高電圧を印
加した電場において、光電子放出材金属面に放射線を照
射し光電子を放出させて行う方式について説明したが、
電場を形成することなく光電子放出材料に放射線を照射
することにより、空気中の微粒子に荷電させることがで
きる。乙の場合には、第2図の実施例において、電場を
形成する構成は省略することができる。
As a method of charging fine particles in the air, we have explained a method in which the metal surface of the photoelectron emitting material is irradiated with radiation to emit photoelectrons in an electric field with a relatively high voltage applied.
By irradiating a photoelectron emitting material with radiation without forming an electric field, fine particles in the air can be charged. In case B, the configuration for forming an electric field can be omitted in the embodiment shown in FIG.

尚、本発明におけるファン、放射線源、電場、光電子放
出材料の位置関係は、空気清浄方式の種類や規模、気流
の方法などにより異なり、限定されるものではない。
Note that the positional relationship among the fan, radiation source, electric field, and photoelectron emitting material in the present invention varies depending on the type and scale of the air purification system, the airflow method, etc., and is not limited.

空気清浄方式の種類としては、作業領域内の一部を高清
浄度にする方式や室全体を高清浄度にする方式等がある
が、一般に前者の方が経済的である。
Types of air cleaning methods include methods that make a part of the work area highly clean, and methods that make the entire room highly clean, but the former is generally more economical.

バイオテクノロジーの分野で本発明を用いる場合には、
本発明者が先に提案した窒素富化空気を用うればより有
効である(特願昭59−21iS293号参照)。
When using the present invention in the field of biotechnology,
It is more effective to use nitrogen-enriched air, which was previously proposed by the present inventor (see Japanese Patent Application No. 59-21iS293).

紫外線ランプによる殺菌と本発明の方式による荷電数式
、又は、放射線による殺菌と本発明者がすでに出願した
紫外線による荷電方式(特願昭6O−18723)を適
宜組合せて行っても有効であることは言うまでもない。
It is also effective to carry out sterilization using ultraviolet lamps and the charging formula according to the method of the present invention, or sterilization using radiation and the charging method using ultraviolet rays (Japanese Patent Application No. 60-18723) already filed by the present inventor in combination. Needless to say.

〔発明の効果〕〔Effect of the invention〕

1、 光電子放出材に放射線を照射することにより、成
いは比較的高電圧を印加した電場において、光電子放出
材に放射線を照射することにより、 (1)  従来の静電的濾過方式に比較して空気中の微
粒子への荷電を効率良く行うことができる。
1. By irradiating the photoelectron emitting material with radiation, or by irradiating the photoelectron emitting material with radiation in an electric field with a relatively high voltage applied, (1) Compared to the conventional electrostatic filtration method, This enables efficient charging of fine particles in the air.

(2)微粒子への荷電を高効率で行いうるので、後流側
に適当な荷電粒子の捕集部として楓、例對−は静電フィ
ルター、集じん板(集じん電極)、を設置するのみで、
高清浄度の空気を得ることができる。
(2) Since fine particles can be charged with high efficiency, a maple tree, for example, an electrostatic filter or a dust collection plate (dust collection electrode), is installed as a collection part for appropriate charged particles on the downstream side. Only with
Highly clean air can be obtained.

(3)  超微粒子も荷電することにより捕集できるの
で、超高清浄空気室(スーパークリーンルーム)を得る
ことが可能である。
(3) Since ultrafine particles can be collected by being charged, it is possible to obtain an ultra-clean air room (super clean room).

(4)従来の静電的に微粒子の捕集を行う方式に比較し
て、高電圧を必要としないので安全であり、維持管理が
容易でありコストも低減しうる。
(4) Compared to the conventional method of electrostatically collecting particles, it is safe because it does not require high voltage, and maintenance is easy and costs can be reduced.

2 放射線に殺菌作用を持たせることにより、(1)殺
菌クリーン空気が得られる。
2. By giving radiation a sterilizing effect, (1) sterilizing clean air can be obtained.

(2)バイオテクノロジー分野の如く微生物の存在が特
に影響を及ぼす分野において特に有効である。
(2) It is particularly effective in fields where the presence of microorganisms has a particular influence, such as the field of biotechnology.

(3)バイオテクノロジー関係では荷電粒子の捕集は厳
密なものでなくても良く、少しのリークは許容され、そ
れ酸コストの安い装置ができる。
(3) In the field of biotechnology, the collection of charged particles does not have to be strict, and a small amount of leakage is tolerated, making it possible to create devices with low acid costs.

五 従来技術によっては、超高清浄度(クラス1、クラ
ス10)を得るのは困難であったが、本発明では容易に
得ることができる。
5. Although it was difficult to obtain ultra-high cleanliness (class 1, class 10) with the conventional technology, it can be easily achieved with the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はクリーンペンチ併用方式の本発明方法を用いた
方法を説明するための概略図、第2図は本発明の装置の
一実施例を示す概略図である。 1・・・クリーンルーム、3・・・プレフィルタ、4・
・・空気取出し口、5・・・ファン、6・・・空気調和
室、7・・・フィルタ、8・・・ファン及び空気供給部
、9・・・光電子放出材上への放射線照射部、10・・
・フィルター、11・・・クリーンペンチ、13・・・
作業台、20・・・放電電極、21・・・光電子放出材
、22・・・放射線源、25・・・粗フィルタ24・・
・静電フイμター
FIG. 1 is a schematic diagram for explaining a method using the clean pliers combination method of the present invention, and FIG. 2 is a schematic diagram showing an embodiment of the apparatus of the present invention. 1...Clean room, 3...Pre-filter, 4.
... Air intake port, 5... Fan, 6... Air conditioning room, 7... Filter, 8... Fan and air supply unit, 9... Radiation irradiation unit onto photoelectron emitting material, 10...
・Filter, 11...Clean pliers, 13...
Workbench, 20...Discharge electrode, 21...Photoelectron emission material, 22...Radiation source, 25...Rough filter 24...
・Electrostatic filter μter

Claims (1)

【特許請求の範囲】 1、放射線を照射することにより空気中の微粒子を荷電
させた後、荷電した微粒子を空気中より除去することに
より空気を清浄にする方法において、放射線を光電子放
出材に照射することにより光電子を発生させ、該光電子
により空気中の微粒子を荷電させた後、荷電した微粒子
を除去することを特徴とする空気の清浄方法。 2、電場において、前記光電子放出材に放射線を照射す
ることにより発生する光電子により、前記空気中の微粒
子を荷電させる、特許請求の範囲第1項記載の空気の清
浄方法。 3、前記光電子放出材が、光電的な仕事関数の小さい物
質より成る、特許請求の範囲第1項又は第2項記載の空
気の清浄方法。 4、前記光電子放出材が、Ba、Sr、Ca、Y、Gd
、La、Ce、Nd、Th、Pr、Be、Zr、Fe、
Ni、Zn、Cu、Ag、Pt、Cd、Pb、Al、C
、Mg、Au、In、Bi、Nb、Si、Ta、Ti、
Sn、P及びその化合物から選ばれた材料の1つより成
る、特許請求の範囲第3項記載の空気の清浄方法。 5、前記光電子放出材が、Ba、Sr、Ca、Y、Gd
、La、Ce、Nd、Th、Pr、Be、Zr、Fe、
Ni、Zn、Cu、Ag、Pt、Cd、Pb、Al、C
、Mg、Au、In、Bi、Nb、S1、Ta、Ti、
Sn、P及びこれらの化合物から選ばれた材料の少なく
とも二種以上の複合材又は合金より成る、特許請求の範
囲第3項記載の空気の清浄方法。 6、前記光電子放出材が、AgとMgとの合金である、
特許請求の範囲第5項記載の空気の清浄方法。 7、前記光電子放出材が、CuとBeとの合金である特
許請求の範囲第5項記載の空気の清浄方法。 8、前記光電子放出材が、BaとAlとの合金である、
特許請求の範囲第5項記載の空気の清浄方法。 9、前記光電子放出材が、黄銅、青銅、りん青銅から選
ばれた材料の1つより成る、特許請求の範囲第5項記載
の空気の清浄方法。 10、前記光電子放出材が網状である、特許請求の範囲
第1項乃至第9項の何れか1項記載の空気の清浄方法。 11、電場電圧が、0.1〜15kV、好ましくは0.
1〜5kV、より好ましくは0.1〜3kVである、特
許請求の範囲第2項乃至第10項の何れか1項記載の空
気の清浄方法。 12、空気吸入口から空気排出口までの空気流路上に、
光電子放出材上への放射線照射部及び荷電粒子捕集部を
順次設けてなる空気の清浄装置。 13、光電子放出材上への放射線照射部に電場を付与す
るための装置を付加してなる特許請求の範囲第12項記
載の空気の清浄装置。
[Claims] 1. In a method of purifying the air by charging fine particles in the air by irradiating them with radiation and then removing the charged fine particles from the air, irradiating the photoelectron emitting material with radiation 1. A method for cleaning air, which comprises: generating photoelectrons, charging fine particles in the air with the photoelectrons, and then removing the charged fine particles. 2. The air cleaning method according to claim 1, wherein the fine particles in the air are charged with photoelectrons generated by irradiating the photoelectron emitting material with radiation in an electric field. 3. The air cleaning method according to claim 1 or 2, wherein the photoelectron emitting material is made of a substance with a small photoelectric work function. 4. The photoelectron emitting material is Ba, Sr, Ca, Y, Gd
, La, Ce, Nd, Th, Pr, Be, Zr, Fe,
Ni, Zn, Cu, Ag, Pt, Cd, Pb, Al, C
, Mg, Au, In, Bi, Nb, Si, Ta, Ti,
The air purifying method according to claim 3, wherein the air purifying method is made of one material selected from Sn, P, and compounds thereof. 5. The photoelectron emitting material is Ba, Sr, Ca, Y, Gd
, La, Ce, Nd, Th, Pr, Be, Zr, Fe,
Ni, Zn, Cu, Ag, Pt, Cd, Pb, Al, C
, Mg, Au, In, Bi, Nb, S1, Ta, Ti,
The air cleaning method according to claim 3, comprising a composite material or alloy of at least two or more materials selected from Sn, P, and compounds thereof. 6. The photoelectron emitting material is an alloy of Ag and Mg.
An air cleaning method according to claim 5. 7. The air cleaning method according to claim 5, wherein the photoelectron emitting material is an alloy of Cu and Be. 8. The photoelectron emitting material is an alloy of Ba and Al.
An air cleaning method according to claim 5. 9. The air cleaning method according to claim 5, wherein the photoelectron emitting material is made of one material selected from brass, bronze, and phosphor bronze. 10. The air cleaning method according to any one of claims 1 to 9, wherein the photoelectron emitting material has a net shape. 11. The electric field voltage is 0.1 to 15 kV, preferably 0.
The air cleaning method according to any one of claims 2 to 10, wherein the voltage is 1 to 5 kV, more preferably 0.1 to 3 kV. 12. On the air flow path from the air inlet to the air outlet,
An air purifying device comprising a radiation irradiation section on a photoelectron emitting material and a charged particle collection section sequentially provided. 13. The air purifying device according to claim 12, further comprising a device for applying an electric field to the radiation irradiation section onto the photoelectron emitting material.
JP61085996A 1986-04-16 1986-04-16 Method and apparatus for purifying air by irradiation of radioactive rays Pending JPS62244459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61085996A JPS62244459A (en) 1986-04-16 1986-04-16 Method and apparatus for purifying air by irradiation of radioactive rays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61085996A JPS62244459A (en) 1986-04-16 1986-04-16 Method and apparatus for purifying air by irradiation of radioactive rays

Publications (1)

Publication Number Publication Date
JPS62244459A true JPS62244459A (en) 1987-10-24

Family

ID=13874266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61085996A Pending JPS62244459A (en) 1986-04-16 1986-04-16 Method and apparatus for purifying air by irradiation of radioactive rays

Country Status (1)

Country Link
JP (1) JPS62244459A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01262954A (en) * 1988-04-13 1989-10-19 Ebara Res Co Ltd Gas cleaning and its apparatus
US5060805A (en) * 1989-06-20 1991-10-29 Ebara Research Co., Ltd. Photoelectron emitting member
JPH04171061A (en) * 1990-11-02 1992-06-18 Ebara Res Co Ltd Method and apparatus for cleaning hermetically closed space
US5154733A (en) * 1990-03-06 1992-10-13 Ebara Research Co., Ltd. Photoelectron emitting member and method of electrically charging fine particles with photoelectrons
JPH0568910A (en) * 1991-09-13 1993-03-23 Ebara Res Co Ltd Apparatus and method for charging and collecting fine particles

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01262954A (en) * 1988-04-13 1989-10-19 Ebara Res Co Ltd Gas cleaning and its apparatus
US5060805A (en) * 1989-06-20 1991-10-29 Ebara Research Co., Ltd. Photoelectron emitting member
US5154733A (en) * 1990-03-06 1992-10-13 Ebara Research Co., Ltd. Photoelectron emitting member and method of electrically charging fine particles with photoelectrons
JPH04171061A (en) * 1990-11-02 1992-06-18 Ebara Res Co Ltd Method and apparatus for cleaning hermetically closed space
JPH08211B2 (en) * 1990-11-02 1996-01-10 株式会社荏原総合研究所 Method and device for cleaning closed space
JPH0568910A (en) * 1991-09-13 1993-03-23 Ebara Res Co Ltd Apparatus and method for charging and collecting fine particles

Similar Documents

Publication Publication Date Title
US4750917A (en) Method of and apparatus for cleaning air by irradiation of ultraviolet rays
US5225000A (en) Method for cleaning closed spaces with ultraviolet rays
JPS62244459A (en) Method and apparatus for purifying air by irradiation of radioactive rays
JP2750694B2 (en) Gas cleaning method and apparatus
JP2623290B2 (en) Gas cleaning method and apparatus
JPH0596125A (en) Method for removing hydrocarbon and equipment therefor
JPS63100955A (en) Method and apparatus for purifying air by irradiation with ultraviolet rays or radioactive rays
JPH0674910B2 (en) Gas cleaning method and apparatus
JPH028638A (en) Method and apparatus for cleaning gas
JPH0810616B2 (en) Method and apparatus for obtaining gas containing anion
JPH0674909B2 (en) Gas cleaning method and apparatus
JPS6397247A (en) Method and device for cleaning air by ultraviolet ray irradiation
JPH01262953A (en) Sterilization and removal of microbe in air and its apparatus
JPS63147566A (en) Method and apparatus for cleaning gas
JPS63147565A (en) Method and apparatus for cleaning gas
JPS63100956A (en) Air stream purifying apparatus
JP3202250B2 (en) Hazardous gas removal method
JPS6354958A (en) Method and apparatus for cleaning gas flow
JPH07256141A (en) Method for sterilizing inside of room and sterile room
JP2999221B2 (en) Method and apparatus for collecting fine particles in gas
JP3139591B2 (en) Method and apparatus for generating negative ions, method for charging fine particles, apparatus for collecting fine particles in gas, and stocker
JPH02303557A (en) Method for charging fine particle in gas by photoelectron
JPH04190860A (en) Method and apparatus for charging fine particle
JPH042852B2 (en)
JPH03288559A (en) Cleaning method of gas