JPH01262953A - Sterilization and removal of microbe in air and its apparatus - Google Patents

Sterilization and removal of microbe in air and its apparatus

Info

Publication number
JPH01262953A
JPH01262953A JP63089113A JP8911388A JPH01262953A JP H01262953 A JPH01262953 A JP H01262953A JP 63089113 A JP63089113 A JP 63089113A JP 8911388 A JP8911388 A JP 8911388A JP H01262953 A JPH01262953 A JP H01262953A
Authority
JP
Japan
Prior art keywords
air
microorganisms
ozone
sterilizing
ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63089113A
Other languages
Japanese (ja)
Inventor
Toshiaki Fujii
敏昭 藤井
Shuhei Shinozuka
篠塚 修平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Corp
Ebara Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Ebara Research Co Ltd filed Critical Ebara Corp
Priority to JP63089113A priority Critical patent/JPH01262953A/en
Publication of JPH01262953A publication Critical patent/JPH01262953A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Central Air Conditioning (AREA)
  • Electrostatic Separation (AREA)

Abstract

PURPOSE:To achieve effective sterilization of microbes in air, by a method wherein ultraviolet is radiated to generate ozone and sterilize microbe and at the same time sterilized microbe-contg. fine particles are treated to carry electric charge, and then the electrically charged particles and remaining ozone as well are removed simultaneously. CONSTITUTION:An ultraviolet radiating part, a sterilizing part, an electric field, a photoelectron emitting part, a remaining ozone removing part, and an electrically charged particle collecting part are composed of mainly an electrode 20, a metal surface 21 from which photoelectrons are emitted, an ultraviolet lump 22, a remaining ozone removal filter 23, and an electrically charged particle collecting filter 24. By using the apparatus, ozone is generated by ultraviolet radiation and microbes are sterilized. At the same time, sterilized microbe- contg. fine particles are treated to carry electric charge and then the electrically charged fine particles are remaining ozone as well are removed. As a result, microbes in air are sterilized and removed efficiently.

Description

【発明の詳細な説明】 し座業上の技術分野〕 本発明は、薬品工業、食品工業、農林産業、医療等にお
けるバイオロジカルクリーンルーム、クリーンブース、
クリーントンネル、クリーンベンチ、安全キャビネット
、無m室、無菌エアカーテン、無菌ボックス等における
微生物類の殺菌除去方法及びその装置、ならびに家庭、
事8f9r、病院等の無菌空−又は無菌空気供給システ
ムにおける微生物類の殺菌除去方法及び七の。
[Detailed Description of the Invention] Technical Field of Leo Business] The present invention is applicable to biological clean rooms, clean booths,
A method and device for the sterilization and removal of microorganisms in clean tunnels, clean benches, safety cabinets, m-free rooms, sterile air curtains, sterile boxes, etc., as well as household,
Item 8f9r, Method for sterilizing and removing microorganisms in sterile air or sterile air supply systems in hospitals, etc., and Item 7.

装置に関する。Regarding equipment.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

従来のこの独の技術として、バイオロジカルクリーンル
ームにおける無−室について祝用する。
As a conventional and unique technology, we would like to congratulate you on the use of a biological clean room.

微生物類は、一般に大気中に浮遊している粉塵(微粒子
)に付層しているため、粉#&を愼械的ろ過方式(し1
」えばHEPAフィルター〕で空気中より捕集、除去す
ることにエリ無菌空気を得ている。
Since microorganisms are generally attached to dust (fine particles) floating in the air, mechanical filtration method (1
For example, sterile air is obtained by collecting and removing air from the air using a HEPA filter.

この方式には、次の欠点がある。This method has the following drawbacks.

即ち、機械的ろ過方式においてに、粉塵の捕集性能をあ
げるためKに目の細かいフィルターを使用する必要があ
るが、この場合圧損が昼く、また目づ′!りによる圧損
の増加も著るしく、フィルター寿命も短かく、フィルタ
ーの維持、管理或いは交換が面倒であるばかりでなく、
フィルターの交換を行う場合、その間作条をストップす
る必要があり、俣帰筐でには長時間を要しており、生産
能率が悪いという欠点があった。
In other words, in the mechanical filtration method, it is necessary to use a fine-mesh filter for K in order to improve the dust collection performance, but in this case, the pressure drop is low and the dust is too small! Not only does the pressure drop increase significantly due to air leakage, the filter life is shortened, and maintenance, management, and replacement of the filter is troublesome,
When replacing the filter, it is necessary to stop the cropping in the meantime, and it takes a long time to return the filter, which has the disadvantage of poor production efficiency.

又−フィルターにはピンホールが存在する楊会がめり、
一部の微生物類金含む粉塵がリークするという問題がめ
った。
Also, there is a pinhole in the filter.
The problem of leakage of some microbial gold-containing dust has been frequent.

別の方式として、上記の方式に索外線殺函ランプを組付
せた方式かめる。
Another method is to combine the above method with a cable killing lamp.

この方式には、前述のフィルターの欠点に加えて次の欠
点がるる。即ち、微生?1類の殺菌は紫外線殺菌ランプ
の殺菌部によるものであるが。
This method has the following drawbacks in addition to the drawbacks of the filters mentioned above. In other words, microorganisms? Type 1 sterilization is caused by the sterilizing part of an ultraviolet germicidal lamp.

この場合、圀殊によV殺菌効果が異なるため殺菌効果が
不十分な場合がある。
In this case, the V sterilizing effect differs depending on the field, so the sterilizing effect may be insufficient.

別の方式として、オゾン又はオゾン水を用いる方式があ
る。この場合、オゾン発生器が別塗必要となるが、オゾ
ン発生器はコストがかかることから経済性に課題がある
Another method is to use ozone or ozonated water. In this case, the ozone generator needs to be coated separately, but the cost of the ozone generator is high, so there is a problem with economic efficiency.

し問題点を解決するための手段〕 本発明は、真空紫外域及び遠紫外域の紫外線?微生物類
を含む空気に照射し、オゾンの生成と生成オゾンの分解
を竹ない、オゾンの分解に工っで生ずるSIJ岐化注物
質により微生物類の殺凶?行ない、同時に紫外線を光電
子放出材に照射することにエフ発生する光電子に=ジ、
微生物の死がい?含む微粒子に荷′4を行ない、該照射
にニジ荷′亀した微粒子を前記空気中エリ除去し、又2
1c存オゾンを窒気宇=9除去することLり成る空気中
の微生′#専の殺菌除去方法及びその!A置である。
[Means for Solving the Problems] The present invention applies ultraviolet rays in the vacuum ultraviolet region and deep ultraviolet region. Is it possible to kill microorganisms by irradiating the air containing microorganisms to generate ozone and decompose the ozone? At the same time, the photoelectrons generated by irradiating the photoelectron-emitting material with ultraviolet light are
Dead microorganisms? Loading the fine particles contained in the air is carried out, and the fine particles that have been charged by the irradiation are removed from the air.
A specialized sterilization and removal method for microorganisms in the air that involves removing 1c of existing ozone using nitrogen gas! It is in A position.

以下、図面に基いて本発明を祝用する。Hereinafter, the present invention will be described based on the drawings.

第1図はバイオロジカルクリーンルームにおけるクリー
ンペンテ併用方式、即ち、作菜幀域内の一部だけ無菌空
気にエリ高清浄度にした方式の概略図を示すものでろる
FIG. 1 is a schematic diagram of a biological clean room with a clean pente system, that is, a system in which sterile air is used in only a part of the food storage area to provide high cleanliness.

第2図は、紫外線照射部、殺菌部、電場、光電子放出部
及び荷′1微粒子捕集都を示す概略図である。
FIG. 2 is a schematic diagram showing an ultraviolet irradiation section, a sterilization section, an electric field, a photoelectron emission section, and a particulate collection station.

クリーンルーム1内には、配管2から導入される外気の
@粒子?プレフィルタ−6でろ過した仮、クリーンルー
ム1のを気取出し口4から敗り出され7’C仝気と共に
ファン5を介して苧気調和装置6にて一度及び湿度を調
節した後、HEPAフィルター7により微生物類を含む
微粒子を大1かに除去した空気が循環供給されてお#)
、清浄度(クラス)10,000程度に保持されている
Inside the clean room 1, particles from the outside air are introduced from the pipe 2? After being filtered through the pre-filter 6, the air in the clean room 1 is discharged from the air outlet 4 and passed through the fan 5 along with 7'C air to the air conditioner 6. After adjusting the humidity, the air is filtered through the HEPA filter. Air from which particulates including microorganisms have been removed to a large extent is circulated and supplied by 7)
The cleanliness level (class) is maintained at approximately 10,000.

一方、クリーンルーム1内のファン及び電圧供給部8、
紫外線照射部9、フィルター10を設けたクリーンベン
チ11内の作業台13上は、高清浄度(クラス10)の
無菌雰囲気に保持される。
On the other hand, a fan and voltage supply section 8 in the clean room 1,
A workbench 13 in a clean bench 11 provided with an ultraviolet irradiation unit 9 and a filter 10 is maintained in a sterile atmosphere with high cleanliness (class 10).

即チ、クリーンペンテ11においては、クリーンルーム
1内の111F#度(クラス)10,000程度の空気
がファン及び電圧供給部8のファンにLp吸引され、紫
外線照射部9で紫外線を照射することにjDオゾンが生
成され、高は化性物質(敵累活1!11.鴇)國より空
気中のウィルス、バクテリヤ、酵母、かび等の微生物類
が殺菌されると共に、死滅した微生物を含む微粒子は荷
電フィルター10で荷電された微粒子及び残存オゾンを
除去することに工り、作業台13上は無菌空気で高清浄
度に保持される。
In other words, in the clean pente 11, the air in the clean room 1 with a temperature of about 111 F# degree (class) 10,000 is sucked by the fan and the fan of the voltage supply part 8, and is irradiated with ultraviolet rays in the ultraviolet irradiation part 9. jD ozone is generated, and microorganisms such as viruses, bacteria, yeast, and molds in the air are sterilized by high chemical substances (enemy accumulation 1! 11. 鴇), and fine particles containing dead microorganisms are A charged filter 10 is used to remove charged particles and residual ozone, and the workbench 13 is maintained at a high level of cleanliness with sterile air.

ここで、紫外線照射による微生物類の殺菌は、真空紫外
域の波長(100〜200 nm )  及び遠紫外域
の波長(200〜500 nm )  の紫外線を微生
物類を含む空気中へ照射することで行なわれる0すなわ
ち、真空紫外域の波長の紫外息に工9オゾンの生成が起
こり、一方遠紫外域のii長の紫外線及び光電子放出材
から放出される九゛−子に工り生成オゾンが分解され、
オゾン工9も活性な酸素原子や励起状態にある酸素分子
等(ば索活性檎)を生成し、微生物類の殺菌が効果的に
行なわれる。
Here, sterilization of microorganisms by ultraviolet irradiation is carried out by irradiating the air containing microorganisms with ultraviolet rays with wavelengths in the vacuum ultraviolet region (100 to 200 nm) and deep ultraviolet regions (200 to 500 nm). In other words, the production of ozone occurs in ultraviolet breath with wavelengths in the vacuum ultraviolet region, while ozone is decomposed into nine particles emitted from ultraviolet rays in the deep ultraviolet region and from photoelectron emitting materials. ,
The ozone generator 9 also generates active oxygen atoms and excited oxygen molecules (activated oxygen), thereby effectively sterilizing microorganisms.

紫外線照射部、殺菌部、電場、九′電子放出部、残存オ
ゾン除去部及び荷奄微粒子抽果部は、その概略図が第2
図に示されている如く、主として′電極20、光電子放
出材の金属向21、紫外線ランプ22、残存オゾン侑去
フィルター23、及び荷電微粒子摘果フィルター24L
り成り、’ia極20と金属向21とのj田にファン及
び電圧供給部8から電圧を負荷し、又、金属向21に向
けて紫外脈ランプ22に=9紫外縁照射を行い、篭慣2
0と金属向21間に微生物類を含む仝気50を通すこと
にニジ、前述のごとく、微生*aは殺菌されるとともに
空気50中の死戚微生物明を含む微粒子が効率良く荷電
嘔れる0放寛を極20と金属向21の距離は、装置の形
状にもよるが、一般的には2〜20c!Itでめる。
The schematic diagram of the ultraviolet irradiation section, sterilization section, electric field, 9' electron emission section, residual ozone removal section, and bulk particle extraction section is shown in the second diagram.
As shown in the figure, the main components are an electrode 20, a metal layer 21 for photoelectron emission material, an ultraviolet lamp 22, a residual ozone removal filter 23, and a charged fine particle thinning filter 24L.
Then, a voltage is applied from the fan and the voltage supply section 8 to the field between the ia electrode 20 and the metal side 21, and the ultraviolet pulse lamp 22 is irradiated with =9 ultraviolet edge toward the metal side 21. Practice 2
By passing the air 50 containing microorganisms between the air 50 and the metal head 21, as mentioned above, the microorganisms *a are sterilized and the fine particles containing dead microorganisms in the air 50 are efficiently charged. The distance between the 0-relaxation pole 20 and the metal direction 21 depends on the shape of the device, but is generally 2 to 20c! I can buy it.

紫外線ランプ22の機能は、第一にその照射により空気
中にオゾンを生成させ、かつ生成オゾンを分解させるも
のである。すなわち、紫外線ランプ22は、オゾンの生
成に対して真空紫外域(100〜200 nm )、生
成オゾンの分解に幻して遠紫外域(200へ500 n
m )の波長の紫外線を有するものが良く、これらの両
方の領域の波長の紫外線を同一ランプで発生しうるもの
が好ましい。紫外線ランプは、オゾン生成用とオゾン分
解相を個別に設置しても良い。
The function of the ultraviolet lamp 22 is first to generate ozone in the air through its irradiation and to decompose the generated ozone. That is, the ultraviolet lamp 22 operates in the vacuum ultraviolet region (100 to 200 nm) for ozone generation, and in the far ultraviolet region (200 to 500 nm) for the decomposition of generated ozone.
It is preferable to use a lamp that emits ultraviolet rays with wavelengths in the wavelength range 100 m), and it is preferable that the same lamp can generate ultraviolet rays with wavelengths in both of these ranges. The ultraviolet lamp may be installed separately for ozone generation and ozone decomposition phases.

紫外線照射による生成オゾン濃度は、3〜200 pp
m程度通常10〜30 ppm程度で良く、装置の適用
分野、規模、構造、ランプの種類、効果、細陽性等に基
いて適宜夫々)ることが出来る。又、紫外線ランプ22
の機能の第二は1元電子放出材への照射に工す光電子放
出材から光電子を効果的に放出させるものでるる。
The ozone concentration produced by ultraviolet irradiation is 3 to 200 pp.
The amount may be normally about 10 to 30 ppm, and can be adjusted as appropriate depending on the field of application, scale, structure, type of lamp, effect, positive polarity, etc. of the device. Also, ultraviolet lamp 22
The second function is to effectively emit photoelectrons from the photoelectron emitting material used to irradiate the single electron emitting material.

紫外線ラング22のal類は、前述の理由から通′pg
低圧水銀ランプや中〜高圧水銀ランプを好適に用いるこ
とが出来、装置の通用分野、yA僕、構造、九゛電子放
出材の槌部、生成オゾン−度、効果、経隣社等に工り適
宜法めることが出来る。
For the reasons mentioned above, ultraviolet rung 22 als are commonly used as pg.
Low-pressure mercury lamps and medium to high-pressure mercury lamps can be used suitably, and the general field of the device, the structure, the hammer part of the electron-emitting material, the degree of ozone produced, the effects, and the construction of neighboring companies, etc. It can be sanctioned as appropriate.

例えば紫外線ランプ22としては、低圧水銀ランプで1
85 nm及び254 nmの波長の強いものを用いる
と工い。
For example, as the ultraviolet lamp 22, a low pressure mercury lamp is used.
It is recommended to use strong wavelengths of 85 nm and 254 nm.

電極20の材料と、その構造に通常の荷電装置に使用さ
扛ているもので工く、図示例においてはタングステンが
用いられている。
The material and structure of the electrode 20 are those used in ordinary charging devices, and in the illustrated example, tungsten is used.

次に金M4面21は、紫外線照射により光電子を放出す
るものであれば何れでも良く、光電的な仕事関数の小さ
いもの程好ましい。効果や性隣注の囲からBa、 Sr
、 Ca、 Y、 Gd、 La、 Ce、 Nd。
Next, the gold M4 surface 21 may be any material as long as it emits photoelectrons when irradiated with ultraviolet rays, and the smaller the photoelectric work function, the more preferable it is. From the box next to the effect and gender, Ba, Sr.
, Ca, Y, Gd, La, Ce, Nd.

Th、 Pr、 Be、 Zr、 Fe、 Ni、 Z
n、 Cu、 Ag、 Pt、Ca。
Th, Pr, Be, Zr, Fe, Ni, Z
n, Cu, Ag, Pt, Ca.

Pb、 At、 C,Mg、 Au、 In、 Bi、
 Nb、 Si、 Ti、 Ta。
Pb, At, C, Mg, Au, In, Bi,
Nb, Si, Ti, Ta.

Sn、 Pのいずれか又はこれらの化合物又は台金が好
ましく、これらは単数で又は二線以上を複合して出いら
れる。俵合材としては、アマルガムの如く物理的な複会
材も用いつる。
Sn, P, a compound thereof, or a base metal is preferable, and these may be used singly or in combination of two or more wires. Physical composite materials such as amalgam can also be used as bales.

ガえは、化合物としては酸化物、はう化物、炭化物から
9、ば化物にd Bad、 SrO,Cab、 Y、O
,。
The moth compounds include oxides, ferrides, carbides, dBad, SrO, Cab, Y, O.
,.

Gd403. Nd2O3,Th02.’ZrO2,F
e2O2,ZnO,cuo、 Ag2O。
Gd403. Nd2O3, Th02. 'ZrO2,F
e2O2, ZnO, cuo, Ag2O.

PtO,PbO,At203. Mho、 In2O3
,Bib、 NbO,BeOな、どが6C1またほう化
物にf’l YB6. GdBg、 LaB6゜CeB
6. PrB6. Zr烏 などがらり、さらに炭化物
としてl’I ZrC,TaC,TiC,NbCなどが
ある。
PtO, PbO, At203. Mho, In2O3
, Bib, NbO, BeO, etc. are 6C1 and boride f'l YB6. GdBg, LaB6゜CeB
6. PrB6. There are carbides such as ZrC, TaC, TiC, and NbC.

また、合金としては黄銅、青銅、リン1を銅。Also, as alloys, brass, bronze, and phosphorus 1 are copper.

AgとMgとの合金(Mgが2〜20wt%)、Cuと
Beとの合金(Beが1〜10wt%ラ 及びBaとA
t  との合金金柑いることができ、上記AgとMg 
 との合金%Cu11!:Bθとの合金及びBaとAt
との合金が好ましい。酸化物は金属表面のみを空気中で
加熱したり、或いは薬品で酸化することによっても得る
ことができる。
Alloys of Ag and Mg (2 to 20 wt% Mg), alloys of Cu and Be (1 to 10 wt% Be, and Ba and A
Kumquat can be alloyed with Ag and Mg above.
Alloy with %Cu11! : Alloy with Bθ and Ba and At
An alloy with is preferred. Oxides can also be obtained by heating only the metal surface in air or by oxidizing it with chemicals.

芒らに他の方法としては使用前に加熱し1表面に酸化層
を形成して長期にわなって安定な酸化・vを得ることも
できる。このガとしてはMgとAg  との合金を水蒸
気中で500〜400tl:の偏度の条件下でその表面
に欧化薄膜を形成させることができ、この数比薄膜は長
期間にわたって安定なものである。
Another method for awns is to heat them before use to form an oxidized layer on the surface to obtain stable oxidation/v over a long period of time. For this moth, it is possible to form a European thin film on the surface of an alloy of Mg and Ag in water vapor at a concentration of 500 to 400 tl, and this numerically thin film is stable over a long period of time. .

これらの材料の使用形状は、板状、プリーツ状、網状前
例れの形状でも良いが、紮外奪の照射囲績及び空気との
接触面積の大きな形状のものが好lしく、このような観
点からは網状のものが好lしい。
These materials may be used in a plate-like, pleated-like, or net-like shape, but it is preferable to use a shape with a large irradiation radius and a large contact area with air. A net-like one is preferable.

印加する電圧に、α1〜10kV、好ましくはα1〜5
kV、工り好1しくはα1〜1  kVであるが、該電
圧は装置の形状、便用する電極或いは金属の材質、構造
成いは効率等により異なる。
The voltage to be applied is α1 to 10 kV, preferably α1 to 5.
kV, preferably α1 to 1 kV, but the voltage varies depending on the shape of the device, the material of the electrode or metal used, the structure, efficiency, etc.

前述の常外縁照射部において、分解しないで残存する低
濃度のJAAtゾン、し1」えば(L 2 ppmオゾ
ンは、注力の残存オゾン除去フィルター26で無祝し得
る程度の極く低濃度しUえば、αO5ppm以下筐で除
去される。
In the above-mentioned ordinary outer edge irradiation area, the low concentration of JAAt zone that remains without being decomposed, for example (L 2 ppm ozone, is so low that it can be ignored by the residual ozone removal filter 26, which is the focus of attention). For example, less than 5 ppm of αO is removed by the casing.

残存オゾンの除去方法は、を譲度オゾン企極く低濃度に
まで除去が出来、それ自体から粉塵の発生が無いもので
めればイIIIJれでも良く、周仰の活性炭法、フィル
ター法、触媒方式を通π選択しC用いることが出来る。
Methods for removing residual ozone include the activated carbon method, filter method, etc., as long as the ozone can be removed to a very low concentration and does not generate dust itself. The catalyst system can be selected through π and C can be used.

残存オゾンの除去方法μ、本発明者が廃オゾン処理方法
としてすでに提案した方法(特願昭61−192134
.特願昭61−237099、特願昭62−17324
)も適宜適用出来る。
The residual ozone removal method μ is a method already proposed by the present inventor as a waste ozone treatment method (Japanese Patent Application No. 192134/1986).
.. Patent application No. 61-237099, Patent application No. 62-17324
) can also be applied as appropriate.

本気の残存オゾンの除去は、イオン交俣フィルター金用
いている。死滅した微生物を含む荷電逼れた微粒子は静
電フィルター10.24で補集される。荷電された粒子
の捕集器は、何れでも艮い。通常の荷’4装置における
果じん仮(果しん電極)や静電フィルタ一方式が一般的
であるが、スチールウール電極とした工うな捕集部自体
が電極を構成する構造のものも有効である。又本発明者
がすでに提案したイオン交換フィルタ一方式も有効であ
る。イオン交換フィルターは微粒子の捕集とオノ/除去
の両方の機能が必るので好ましい(%順昭61−221
792、e#161−198083)。
Serious removal of residual ozone uses an ion exchange filter. Charged particles containing dead microorganisms are collected by an electrostatic filter 10.24. Any collector for charged particles will work. One type of dust particles (fruit electrode) and electrostatic filter in ordinary cargo equipment is common, but it is also effective to have a structure in which the collection part itself constitutes an electrode, such as a steel wool electrode. be. Also, the one-type ion exchange filter proposed by the present inventor is also effective. Ion exchange filters are preferable because they have the functions of both collecting and removing fine particles (% Junsho 61-221
792, e#161-198083).

フィルター万弐μs、b扱いが容易でbることや、性能
、経済性の点で有効である。これらQ使用では一足期間
使柑すると目詰まりを生ずるので一必要に応じカートリ
ッジ構造とし、圧力損失の検出にL9交換するようにす
ることに=り長期間にわたって安定した運転が可能とな
る。
The filter is easy to handle and effective in terms of performance and economy. When these Qs are used for a period of time, they become clogged, so a cartridge structure is used as needed, and L9 is replaced to detect pressure loss, thereby allowing stable operation over a long period of time.

クリーンペンチ11内の作業台13への器具、製品等の
出し入れは、クリーンペンテ11に設けた可動シャッタ
ー12にエフ行う。
Instruments, products, etc. can be taken in and out of the workbench 13 in the clean pliers 11 using a movable shutter 12 provided in the clean pliers 11.

残存オゾンの除去法として、本例では個別に残存オゾン
除去フィルター23の設置を行なった場合を示したが、
後方の荷電微粒子の捕集において、残存オゾンが除去出
来る場合は残存オゾンの除去と荷電微粒子の捕集を同時
に行なうことが出来るので好ましい(この場合、個別の
残存オゾン除去部は不要となる〕。
As a method for removing residual ozone, this example shows a case in which a residual ozone removal filter 23 is installed individually.
When residual ozone can be removed when collecting charged particles at the rear, it is preferable because removal of residual ozone and collection of charged particles can be performed at the same time (in this case, a separate residual ozone removal section is not required).

一般に、フィルタ一方式により荷ARL微粒子全梱果す
る場@は、捕集粂件によっては、残存オゾンを除去出来
るので好ましい。
In general, it is preferable to pack all ARL fine particles using a single filter because residual ozone can be removed depending on the collection conditions.

空気中の微粒子への荷電方式として、比較的尚底圧を印
加した電場において、光電子放出材金属而に紫外線を照
射し光電子を放出させて行う方式について説明したが、
電場全形成することなく光電子放出材料に紫外線を照射
することに工υ、窒気甲の微粒子に(′1!J11Lさ
せることができる。この場合には、第1図乃至第2図の
実施レリにおいて、電場を形成する構成は省略すること
ができる。
As a method of charging fine particles in the air, we have explained a method in which ultraviolet rays are irradiated onto the metal photoelectron emitting material to cause it to emit photoelectrons in an electric field with a relatively still applied bottom pressure.
By irradiating the photoelectron emitting material with ultraviolet rays without forming a full electric field, it is possible to make the fine particles of the nitrogen shell ('1!J11L). In this case, the configuration for forming an electric field can be omitted.

尚、本発明におけるファン、紫外線ランプ、電場、ff
:、電子放出材料の位置関係は、本方式の種類や規模、
気流の方法などに工り異なり、限足嘔れるものではない
In addition, the fan, ultraviolet lamp, electric field, ff in the present invention
:, The positional relationship of the electron-emitting materials depends on the type and scale of this method,
The airflow method is different, so there are no limitations.

第2図中符号25は、粗フィルターである。Reference numeral 25 in FIG. 2 is a coarse filter.

〔発明の効果〕〔Effect of the invention〕

1、 真空紫外域及び遠紫外域の紫外線を照射すること
によす、 ■ 真空紫外域の紫外線でオゾンが生成し、遠紫外域の
紫外線及び光電子放出材からの光電子に工9生成したオ
ゾンが分所して活性な厭索原子や励起状態にろる酸素分
子等が生成し、微生物類が動床的に殺困される。
1. By irradiating ultraviolet rays in the vacuum ultraviolet region and far ultraviolet region, ■ Ozone is generated by ultraviolet rays in the vacuum ultraviolet region, and the ozone produced by ultraviolet rays in the far ultraviolet region and photoelectrons from the photoelectron emitting material is Active penetrating atoms and excited oxygen molecules are generated locally, and microorganisms are annihilated in a dynamic manner.

■ 九′電子放出材に紫外mt照射することにより発生
する光電子に工り微粒子が効果的に荷′1aされ、死滅
した微生物類?包言する仮粒子を効果的に捕集すること
ができる。
■ Are the microorganisms killed by the photoelectrons generated by ultraviolet mt irradiation of the 9' electron-emitting material? It is possible to effectively collect the tentative particles.

■ 死滅微生物3A?含む荷亀倣粒子を後方で捕集する
ことで、殺菌された高清浄な空気が得られる。
■ Killed microorganisms 3A? By collecting the particles at the rear, sterilized and highly clean air can be obtained.

■ 生成オゾンは、上述紫外線及び光電子で効率良く分
層されるので、排出オゾン01隻は低−度である。
(2) The produced ozone is efficiently separated into layers by the above-mentioned ultraviolet rays and photoelectrons, so the emitted ozone is of low level.

λ ’asにおいてよ8己の様に紫外線照射することに
19゜ ■ 死滅した微生W鎗を含む微粒子への荷電が一層効果
的となるので、殺丸された超高Tft浄な空気が得られ
る。
At λ'as, ultraviolet irradiation at 19°■ becomes more effective in charging fine particles containing dead microorganisms, resulting in ultra-high Tft and clean air. It will be done.

ム 紫外線にオゾンの生成及びオゾンの分路作用を待た
せることに工り、 (i)  殺菌りリーン望気が容易に侍られる。
By making ultraviolet rays wait for the generation of ozone and the shunt action of ozone, (i) Sterilization and lean air can be easily served.

(従来の殺菌ランプによる方法に比べて、効果的でめる
。) ■ バイオテクノロジー分野の如く微生物の存在が粉に
影41!−及ばず分野において特に有効である。
(It is more effective than the conventional method using a germicidal lamp.) ■ The presence of microorganisms affects the powder as in the biotechnology field41! - It is particularly effective in areas where it is unreachable.

■ バイオテクノロジー関係では荷′亀粒子の油染は厳
腎なものでなくても艮く、少しのリークはd[拝され、
それ故コストの安い装置ができる。
■ In the field of biotechnology, oil dyeing of cargo particles does not have to be rigorous, and a small leak can be treated as a
Therefore, a low-cost device can be created.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明方法及び装置を説明するため
の概略図である。 1・・・クリーンルーム、3・・・)”レフィルター、
7・・・HEPAフィルター、8・・・ファン及び電圧
供−I@都、9・・・常外線照射都、10・・・フィル
ター、11・・・クリーンベンチ、13・・・作業台、
20・・・電惨、21・・・元′屈子放出材、22・・
・紫外線ランプ、26・・・残存オゾン除去フィルター
、24・・・荷電粒子捕果フィルター第1図
1 and 2 are schematic diagrams for explaining the method and apparatus of the present invention. 1...Clean room, 3...)" refilter,
7...HEPA filter, 8...Fan and voltage supply-I@Miyako, 9...Extraordinary radiation irradiation city, 10...Filter, 11...Clean bench, 13...Workbench,
20...Denzan, 21...Gen'resonant emitting material, 22...
・Ultraviolet lamp, 26... Residual ozone removal filter, 24... Charged particle capture filter Figure 1

Claims (1)

【特許請求の範囲】 1、空気中に含有されている微生物を殺菌除去する方法
において、紫外線を照射することによりオゾンを生成さ
せ微生物を死滅させると同時に、死滅した微生物を包含
する微粒子を荷電させた後該荷電微粒子を除去すると共
に残存オゾンをも除去することを特徴とする空気中の微
生物を殺菌除去する方法。 2、真空紫外域及び遠紫外域の波長の紫外線を照射する
特許請求の範囲第1項記載の空気中の微生物を殺菌除去
する方法。 3、微粒子の荷電を、紫外線を光電子放出材に照射する
ことにより発生する光電子により行う特許請求の範囲第
1項又は第2項記載の空気中の微生物を殺菌除去する方
法。 4、微粒子の荷電を、電場において光電子放出材に紫外
線を照射することにより発生する光電子により行う特許
請求の範囲第3項記載の空気中の微生物を殺菌除去する
方法。 5、光電子放出材として網状のものを用いる特許請求の
範囲第3項又は第4項記載の空気中の微生物を殺菌除去
する方法。 6、電場電圧が0.1〜10kV、好ましくは0.1〜
5kV、より好ましくは0.1〜1kVである特許請求
の範囲第4項又は第5項記載の空気中の微生物を殺菌除
去する方法。 7、死滅した微生物を包含する荷電微粒子の除去を、フ
ィルター方式又は集じん板方式で行う特許請求の範囲第
1項乃至第6項の何れか1つに記載された空気中の微生
物を殺菌除去する方法。 8、残存オゾンの空気中からの除去を活性炭方式、フィ
ルター方式及び/又は触媒方式で行う特許請求の範囲第
1項乃至第7項の何れか1つに記載された空気中の微生
物を殺菌除去する方法。 9、空気吸入口から空気排出口までの空気流路上に、紫
外線照射部、殺菌部、光電子放出部、残存オゾン除去部
及び荷電微粒子捕集部を設けてなる空気中の微生物を殺
菌除去するための装置。 10、光電子放出部に電場を付与する如く構成してなる
特許請求の範囲第9項記載の空気中の微生物を殺菌除去
するための装置。
[Claims] 1. A method for sterilizing and removing microorganisms contained in the air, in which ozone is generated by irradiating ultraviolet rays to kill microorganisms, and at the same time, fine particles containing the killed microorganisms are charged. A method for sterilizing and removing microorganisms in the air, which comprises removing the charged fine particles and also removing residual ozone. 2. A method for sterilizing and removing microorganisms in the air according to claim 1, which comprises irradiating ultraviolet rays with wavelengths in the vacuum ultraviolet region and deep ultraviolet region. 3. A method for sterilizing and removing microorganisms in the air according to claim 1 or 2, in which the fine particles are charged by photoelectrons generated by irradiating the photoelectron emitting material with ultraviolet rays. 4. A method for sterilizing and removing microorganisms in the air according to claim 3, wherein the fine particles are charged by photoelectrons generated by irradiating a photoelectron emitting material with ultraviolet rays in an electric field. 5. A method for sterilizing and removing microorganisms in the air according to claim 3 or 4, using a net-like material as the photoelectron emitting material. 6. Electric field voltage is 0.1 to 10 kV, preferably 0.1 to 10 kV
The method for sterilizing and removing microorganisms in the air according to claim 4 or 5, wherein the voltage is 5 kV, more preferably 0.1 to 1 kV. 7. Sterilization and removal of microorganisms in the air as described in any one of claims 1 to 6, in which charged particles including dead microorganisms are removed using a filter method or a dust collection plate method. how to. 8. Sterilization and removal of microorganisms in the air as described in any one of claims 1 to 7, in which residual ozone is removed from the air using an activated carbon method, a filter method, and/or a catalyst method. how to. 9. In order to sterilize and remove microorganisms in the air, an ultraviolet irradiation unit, a sterilization unit, a photoelectron emission unit, a residual ozone removal unit, and a charged particle collection unit are provided on the air flow path from the air intake port to the air outlet. equipment. 10. An apparatus for sterilizing and removing microorganisms in the air as set forth in claim 9, which is configured to apply an electric field to the photoelectron emission section.
JP63089113A 1988-04-13 1988-04-13 Sterilization and removal of microbe in air and its apparatus Pending JPH01262953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63089113A JPH01262953A (en) 1988-04-13 1988-04-13 Sterilization and removal of microbe in air and its apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63089113A JPH01262953A (en) 1988-04-13 1988-04-13 Sterilization and removal of microbe in air and its apparatus

Publications (1)

Publication Number Publication Date
JPH01262953A true JPH01262953A (en) 1989-10-19

Family

ID=13961836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63089113A Pending JPH01262953A (en) 1988-04-13 1988-04-13 Sterilization and removal of microbe in air and its apparatus

Country Status (1)

Country Link
JP (1) JPH01262953A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5060805A (en) * 1989-06-20 1991-10-29 Ebara Research Co., Ltd. Photoelectron emitting member
US5154733A (en) * 1990-03-06 1992-10-13 Ebara Research Co., Ltd. Photoelectron emitting member and method of electrically charging fine particles with photoelectrons
KR20040035092A (en) * 2002-10-18 2004-04-29 주식회사 삼에스코리아 Ozone-sterilizable Plasma Air Cleaner
US7029518B2 (en) * 1992-12-02 2006-04-18 Ebara Research Co., Ltd. Method and apparatus for the preparation of clean gases

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61178050A (en) * 1985-02-04 1986-08-09 Ebara Corp Method and apparatus for purifying air by irradiation of ultraviolet rays
JPS61279248A (en) * 1985-06-04 1986-12-10 陽道産業株式会社 Method and apparatus for sterilizing and deodorizing air of wide region
JPS6239742B2 (en) * 1980-04-30 1987-08-25 Fujitsu Ltd
JPS6254758B2 (en) * 1980-06-27 1987-11-17 Komatsu Mfg Co Ltd
JPS6377557A (en) * 1986-09-22 1988-04-07 Ebara Res Co Ltd Method and apparatus for cleaning gas flow

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6239742B2 (en) * 1980-04-30 1987-08-25 Fujitsu Ltd
JPS6254758B2 (en) * 1980-06-27 1987-11-17 Komatsu Mfg Co Ltd
JPS61178050A (en) * 1985-02-04 1986-08-09 Ebara Corp Method and apparatus for purifying air by irradiation of ultraviolet rays
JPS61279248A (en) * 1985-06-04 1986-12-10 陽道産業株式会社 Method and apparatus for sterilizing and deodorizing air of wide region
JPS6377557A (en) * 1986-09-22 1988-04-07 Ebara Res Co Ltd Method and apparatus for cleaning gas flow

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5060805A (en) * 1989-06-20 1991-10-29 Ebara Research Co., Ltd. Photoelectron emitting member
US5154733A (en) * 1990-03-06 1992-10-13 Ebara Research Co., Ltd. Photoelectron emitting member and method of electrically charging fine particles with photoelectrons
US7029518B2 (en) * 1992-12-02 2006-04-18 Ebara Research Co., Ltd. Method and apparatus for the preparation of clean gases
KR20040035092A (en) * 2002-10-18 2004-04-29 주식회사 삼에스코리아 Ozone-sterilizable Plasma Air Cleaner

Similar Documents

Publication Publication Date Title
US4750917A (en) Method of and apparatus for cleaning air by irradiation of ultraviolet rays
EP0483855B1 (en) Method for cleaning closed spaces
JPH01262953A (en) Sterilization and removal of microbe in air and its apparatus
JP2989031B2 (en) Method and apparatus for removing hydrocarbon
JP2623290B2 (en) Gas cleaning method and apparatus
JPS63100955A (en) Method and apparatus for purifying air by irradiation with ultraviolet rays or radioactive rays
JP3460500B2 (en) Gas cleaning apparatus, method for cleaning closed space using the same, and closed space
JP2750694B2 (en) Gas cleaning method and apparatus
JPS6378471A (en) Method and apparatus for generating cations
JPS62244459A (en) Method and apparatus for purifying air by irradiation of radioactive rays
JPH0674910B2 (en) Gas cleaning method and apparatus
JPH0674909B2 (en) Gas cleaning method and apparatus
JPH07256141A (en) Method for sterilizing inside of room and sterile room
JP3761302B2 (en) Method and apparatus for removing fungi in the air
JP3696038B2 (en) Particulate matter collection device and collection method
JPH0674908B2 (en) Gas cleaning method and apparatus
JP3570612B2 (en) Negative ion generation method and device, fine particle charging method and trapping device
JPS63147565A (en) Method and apparatus for cleaning gas
JPH03288559A (en) Cleaning method of gas
JP3672077B2 (en) Method and apparatus for generating negative ions
JP2000153179A (en) Method and apparatus for generating anion
JPS63100956A (en) Air stream purifying apparatus
JP2004330193A (en) Method and device for generating negative ion by using sunlight in living space
JPH07110342B2 (en) Gas cleaning method and apparatus
JPS6397247A (en) Method and device for cleaning air by ultraviolet ray irradiation